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Abstract

The Bird and Nanbu systems are particle systems used to approximate
the solution of the mollified Boltzmann equation. In particular, they have
the propagation of chaos property. Following [], we use coupling
techniques and results on branching processes to write an expansion of
the error in the propagation of chaos in terms of the number of particles,
for slightly more general systems than the ones cited above. This result
leads to the proof of the a.s convergence and the central-limit theorem
for these systems. In particular, we have a central-limit theorem for the
empirical measure of the system at a fixed time ¢ under far less stringent
assumptions then in ]

Keywords: interacting particle systems, Boltzmann equation, nonlin-
ear diffusion with jumps, random graphs and trees, coupling, propagation
of chaos, Monte Carlo algorithms.

MSC 2000: 31B10, 47H15, 60C05, 60F17, 60J80, 60J85, 60K35,
65C05, 76P05, 82C40, 82C80

1 Introduction

In a recent work ([DPR09a]), we showed a expansion of the propagation of
chaos for a Feynman-Kac particle system. This particle system approximates a
particular Feynman-Kac measure, in the sense that the empirical measure asso-
ciated to the system converges to the Feynman-Kac measure when the number
of particles N goes to co. What is called propagation of chaos is the prop-
erty of the particle system that ¢ particles, amongst the total of N particles,
looked upon at a fixed time, are asymptotically independent when N — +o0
(¢ is fixed) and their law is converging to the Feynman-Kac law. In [DPR094],
we wrote an expansion in powers of N of the difference between the law of ¢
independent particles, each of them of the Feynman-Kac law, and the law of ¢
particles coming from the particle system. One can also call this expansion a
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functional representation like in ]; in the present paper, we call it an
expansion of the error in the propagation of chaos. In the setting of ],
the time is discrete. We showed there how to use this kind of expansion to
derive a.s. convergence results (p. 824). In ([DPRO9H]), we extend the result
of [DPRO94] to the case where the time is continuous, still in the Feynman-Kac
framework, and we show central-limit theorems for U-statistics of these systems
of particles. The proof of the central-limit theorems for U-statistics relies only
on the exploitation of the expansion described above.

We wish here to establish a similar expansion for a family of particles systems
including Bird and Nanbu systems (that is, the equivalent of Theorem 1.6 and
Corollary 1.8 of [DPRO9H)). Bird and Nanbu systems are used to approximate
the solution of the mollified Boltzmann equation. We refer mainly to [GM97
and take into account models described in (2.5), (2.6) of [[GM97] (a similar
description can be found in [[GM9Y], Section 3). An other reference paper on
the subject is [[GM94]. The two main points of interest of this paper are: it
provides a sequel to the estimates on propagation of chaos of [GM97], [GM9Y
and it allows to apply the results of [[DPR09a], [[DPR0O9H] to Bird and Nanbu
systems. In particular,

e we get a.s. sure convergence (Th. F.1)) (completely new, based on our
knowledge)

e and we get a central-limit theorem for the empirical measure of the system
(Th. p.3) with far less stringent assumptions then in [Mel9§ Th. 4.2, 4.3.

The proofs leading to the development in the propagation of chaos are radically
different from those in and this is why we decided to write them in a
different paper.

In Section P}, we will recall the definitions of Bird and Nanbu models, as can
be found in } and will give an equivalent definition, useful to our purposes.
In Section B, we will state and prove our main theorem about the expansion of
the error in propagation of chaos (Theorem @) The proof relies on estimates
on population growth found in } and on coupling ideas. In Section @, we
prove in what is called a Wick-type formula in [DPR094] (see (3.6) p. 807 in
[DPR094] and [DPRO9Y], p.15 and PIOpOSitiOHé), this formula (Corollary [t.4)
and Proposition are used in Section ﬂ to prove an a.s. convergence theorem
for the empirical measure (Th. f.]]) and central-limit theorem for the emprirical
measure (Th. [.9).

2 Definition of the model
2.1 Bird and Nanbu models

In all the following, we deal with particles evolving in E := R?. We set the
mappings e; : h € R +— ¢;(h) = (0,...,0,h,0,...,0) € RN (h at the i-th
rank) (1 <i < N). We have a kernel fi(v, w, dh, dk) on R?? which is symmetrical



(that is fi(v, w, dh, dk) = f(w, v, dk,dh)). We set u(v,w, dh) to be the marginal
f(v,w,dh x R?). Our assumptions are the same as in [[GM97:

(H1) We are given a Markov generator L on R? acting on a sufficiently large
domain D(L) of L=(R?). (See [GM97] p. 119 for a discussion on D(L)).

(H2) We suppose sup, , fi(z,a,R? x RY) < A < .

In Nanbu and Bird systems, he kernel i and the generator L have specific
features coming from physical considerations, the coordinates in R? represent
the position and speed of molecules but these considerations have no effect on
our proof. This is why we claim to have a proof for systems more general than
Bird and Nanbu systems.

The Nanbu and Bird systems are defined in (2.5) and (2.6) of [GM97], by the
mean of integrals over Poisson processes. We give here an equivalent definition.

Definition 2.1. The particle system described in is denoted by

—N —N,i
(Zt )tZO = (Zt Z)tzo,lgigjv .

It is a process of N particles in R% and can be summarized by the following.

1. Particles (Z, 71)1Si§N in RY are drawn i.i.d. at time 0 according to a law
Py.

2. Between jump times, the particles evolve independently from each other
according to L.

3. We have a collection (N, j)1<i<j<n of independent Poisson processes of
parameter A/(N —1). For i > j, we set N; ; = N;,;. If N; ; has a jump
at time t, we say there is an interaction between particles i and j and we
take a uniform variable U on [0,1], in dependant of all the other variables,
, Az, z,7 r*) .
if U < ——=—="— then the system undergoes a jump:

e In the Bird system: 75[ = 7?& +ei(H) + ej(K) with

~=N,i =N,j
:u(Zt— 7Zt— 5'5')

—N,

(H,K) ~ —N
,a(th aZiJE\QJaRQd)

(2.1)

(independently of all the other variables).

o If we replace fi by i/ (z,a,dh,dg) = pu(z,a,dh) ® do(dg) + 8o(dh) @
wla, z,dg) in @), we obtain the Nanbu system (cf. Remark 2.6, p.
120, [GAi7)

Theorem 3.1 of [] implies that there is propagation of chaos for this
system. This theorem says (Vg,t):

—N,q

—N,1 _N,1 At + A2¢2
1£(Zy " Zy ) = L(Zy )2 ey < 2¢(q = 1) ———

N-1 "~



and
At _ 1

N1, = e
Ay <t —1
1£(2, ") = Billrv < 65—
where (B;) is solution of (with Py fixed)
Vé € D(L),

(o Pr) — (Lo, P2)
= ([ 3000 +1) = () + 6(a+ 1) = @)tz as i, ab), Pid:) i) )

We can deduce propagation of chaos from the previous results, that is V¢, VF
bounded measurable,

—N,1 —=N,q
t

eZY . 2V (F) - BPR)| < (2q<q ) +6

At + A%t? eM—1 I
N-1 N+1 °

In Theorem @, we will go further than the above bound by writing an expan-
sion of the left hand side term above in powers of N. We will use techniques
introduced in ] The main point is that we look at the processes backward
in time.

2.2 Backward point of view

From now on, we will work with a fixed time horizon T' > 0. For any j € N*, we
set [j] = {1,...,7}. For A > 0, we call £(\) the exponential law of parameter
A

We fix ¢ € N*. We start in s = 0 with C§ = {i}, Vi € [q]. We set Vi,
K} = #C§. For 1 <i < j < N, we define processes (N»J = N7%),5q and
for i € [q], we define (C%)s>0, (K!)s>0 (respectively in N, P(N), N*) by the
following. For all s € [0, 7], we set

K,=#(Clu---u09).

The processes (N7), (C?), (K*) are piecewise constant and make jumps. We
define the jump times recursively by (taking (Ux)i<i<qi<k, (Vk)i<i<q,1<k 1.1.d.
~ &(1)) Ty = 0 and (always with the convention inf ) = +o00 and (... ) standing
for the nonnegative part).

5 AK, (N - K,
Ty _iﬁ{ﬂlgng:/ -——L———ﬁwuzm}
Th s N -1
* AKL (K, —1)
T/ = inf Tk,lgng:/ ———du >V
g { Ti-1 2(N - 1)
T, = inf(T{,T}) .

In T3.:



o If T} = Ty, we take r(k) uniformly in C;, _U---UCf _ and j(k) uni-
formly in [N]\(Cf, _U---UCY, _). For any i such that that r(k) € Cy, _,
we then perform the jumps: Ci, = Ci, _ U {j(k)} and N"W3k)(Ty) =
N7RLIR) (T —) 4 1.

Notice that the (...)4 in the definition of T} above forbids to be in the
situation where we would be looking for j(k) in (.

o If T}, = T}, we take r(k) uniformly in Cf, _U---UCY, _ and j(k) uniformly
in Cp, _U---UC] _\{r(k)}. For any i, such that r(k) € Cj, _ and j(k) €
C4%, _, we perform the jumps: C, = C%, _ U{j(k)}, C, = C¥, _ U{r(k)}
and N7 (k).i(k) (Ty) = Nr(k),5(k) (Tp—) + 1.

For all 4, t, we set K} = #C}. This whole construction is analogous to the
construction of the interaction graph found in [[GM97], p. 122.

Ti, k> 1,T, <T}. (We say that the times (Ty) are defined backward in time.)
° Z(])V’l, .. .,Z(])V’N are i.i.d. ~ ﬁo

e Between the times (T — Ti)k>1, the ZN:%’s evolve independently from each
other according to the Markov generator L.

o At a jump time T — T}, where Ty, is a jump time of N©I, (ZN) undergoes
an interaction having the same law as in Definition @, (E)

Definition 2.3. For allt > 0, we set
Li=#{keN: T, <t,T, =T}
We call this quantity the number of loops on [0,t].

Example 2.4. Take q = 2. Suppose for example, that the only jumps of the
N®3’s occurring in [0,T] are

AN?3(2T/3) =1, ANY(T/3) =1
then
o forse(0,T/3[, Ks=2, L, =0, K} =K2?=1,
o forse[T/3,2T/3, Ky =2, Ly =1, K} = K2 =2,
o forse[2T/3,T), K, =3, Ly=1, K} =2, K2 =3 .

We have to keep in mind the following lemma throughout the whole paper.



Lemma 2.5. 1. IfYh,..., Y are independent and respectively of law E(\1),
SEMK) A1, o, A >0, ke N*) then

lnf(Yl,7Yk)~5()\1++)\k) ,

A1

P(Y; = inf(Yy,...,Y%)) = PV W

2. ForY ~ &) (A>0), LY —=t]Y >t) =E(N) (for anyt >0).
3. IfN1,Ys,... iiid. ~EN) (A>0), k € N, Uy,Us,...,Uy is the order

statistics of k uniform random variables on [0, T then

LY, Y14 Y .. Y14+ )
Yi+ 4+ Y <T <Y+ - +Y)
=L((U1,...,Uk))

We then have:
N,1 N,q\ law =N,1 “N.q
Lemma 2.6. For allT >0, (Zy",.... 2% = (Zy, ..., Zp7).

The system (ZN)o<s<y is of use in Section ] but is also useful to understand

the next auxiliary process, which we use in Section B We now define, for a fixed

time horizon T' > 0, the auxiliary process (Z\éN)QSSST = (Z(§V<’Z<T)1gi§N,ogng.

We start in s = 0, with Cp = [q], Ko = q, Lo = 0. We define processes
(55)520, (l?)szo, (Zs)szo (respectively in P(N), N*, N*). These processes are
piecewise constant and make jumps. We take (ﬁk)kzo to be i.i.d. ~ &£(1) and
(Ek)kzo to be i.i.d. ~U([0,1]) (these variables are independent of all the other

variables). We define recursively the jump times (fk)kzo by Tp = 0 and

~

/S (2(N_Ku)++f?u — 1)

fk+1 = inf {s > T\k : AIA(udu > ﬁk}

T 2(N - 1)
In fk:
o If A, < #}?—1 then we perform the following jump: IA(fk =
Rt Kus
Kz _+1, Ly = Lz _, we choose i(k) uniformly in [N\C7 _ and Cz =
éﬁ U {i(k)}. We choose j(k) uniformly in éﬁc_
o If Ay > % then we perform the following jump: ka =
Rt Kus
Kz Ly =Ly +1,Cz = Cz . We choose i(k) # j(k) uniformly in
Cs, _

Ty, k > 1,T, < TY. (This is why we say that the times (Ty,) are defined backward
in time.)



SN,1 SN,N . =
o 7y, ..., 2, are i.i.d. ~ Py

e Between the interaction times (ﬁc)kzl; the ZN4 s evolve independently
from each other according to the Markov generator L.

o At an interaction time T — fk, (ZN) undergoes an interaction having the
same law as in Definition B4, (3.), with i,j replaced by i(k), 7 (k).

Keeping in mind Lemma E, we get:
Lemma 2.8. For all T >0,

law , 7% =
(Zgy.. 238) E (Zhy ..., 22,
law

(K, Li)o<i<r = (f?t,it)ogth .

3 Expansion of the propagation of chaos

We define for any N, q € N*, ¢ < N:
(¢, N) ={a:[qg] — [N], a injective } , (N)q = #{q, N) =

Let us set

1
N v
U N Z 67?“’
1<i<N

1
N\Og _ _ _
()™ = &, ;( N)‘S(ziv’“(“,...,zi““”>'
a€l(q,

For any function F : R¥? — R, we call (p)¥)®4(F) a U-statistics. Notice that
for all function F,

N,q

E(F(Z,",....Z, ") = E((n)*1(F)) . (3.1)

We define

1 3 i
Fym(z',...,2%) = P S PO, 27@)
T oes,

where the sum is taken over the set S, of the permutations of [¢]. Notice
that

() 1(F) = (1) (Faym) -



Theorem 3.1. Set a = e 2T, For all ¢ > 1, for any bounded measurable F,
VT >0, Vip > 1,

E((n)*!(F)) = Pp"(F)P(Lr =0) (32)
1 N, 1 —N,lg+1
+ Z |:(N— l)lAq,T(F) + (N _ 1)lo+1 Aq,T (F)v
1<i<lo
where the Aév%, Zé\%o—kl are nmonnegative measures uniformly bounded in N

defined by, fof“ any bounded measurable F,
AJR(F) = E(F (27", 2| Ly = DP(Ly = D(N — 1)

—N,l
Ny p(F) =E(F(Z3, . Z2 )| Ly > DP(Ly > 1)(N — 1)" .

We further have the following bounds (VF € C; (R9%))

—N,l
sup(A N (F). By 7 (F))

q(1 —a)t/at 204 1)!

_al-a) QD
I (1— (1 — a)/a)2+
7 — )WET /a1 _ 1)
1 N -1 Flloo -
e s (0w (N =1)') |17

Let us define ]P’:qu(F) =E((nf)®(F)). Using the terminology of [DPR094],
p. 782, we cannot say that the sequence of measure (]P’¥ o)N>1 is differentiable

up to any order because the Aé\fl} appearing in the development depend on N.
For a specific class of functions F', we will compute what is the order of

Afl\’[’TLq/ 2 (F) (Proposition [I.3, Corollary [f.4). This last result, together with the

boundedness of the Aév%, is what we need on the proofs of Section ﬂ

Proof. According to [GM97] (section 3.4, p. 124) or, equivalently [GM94] (sec-

tion 5),
E(F(Zp"', ..., Zy )| Ly = 0) = Pr(F) .
We have by Lemma @, Yio:

E(F(Zy',.. ., ZyY) = EFEEZNY,...Z¥ Ly = 0)P(Ly = 0)
+YEFE (2 27 Ly = DP(Ly = )]

+E(F(Zpt . Z D) Ly > 1o + 1)
X]ID(LT >+ 1)

It is sufficient for the proof of (B.9) to show that P(Lz > 1) is of order < 1/N,
Vi e N*.



We define piecewise constant processes (K’ )s>0, (L, )s>0 (in N) such that
K} = q, Ly = 0. Their jump times are (Tk)k>0 defined recursively by T§ = 0

and
fé—inf{s:/ AI?;dUZﬁk} .
k-1

In Ty

~ (N-K%, )+ L ~ ~
o If Ay < ——4—, then we perform the following jump: K. = K%/ +1,

k kT
I =1
Ty, o

7I?L/ )+

~ (N _ ~ ~
o If A; > Niﬁ’ then we perform the following jump: K%, = K%, +1,
k Kk

T _ T
Lf,i = Lflé* + 1.

Notice that we use there the same variables ﬁk’s and A\k’s coming from the
definition of (ZV). We have:

2N — Ki(w))y + Ki(w) —1
as Vi, w, 2(N+— 0 <1 (3.3)
then Vt, w, Ki(w) < Ki(w) ,
as Vi, w 2(N — Ky(w))+ > (N - Ki(w)y

DN = Ky(w))4 + Ki(w) — 1 N-1
then Vt, w, Zt( )SZ( )5

Vt, w, Li(w) < Kl(w) .
The process (f{;)szo is equal in law to the sum of ¢ in dependant Yule

processes Ya, ..., Vi and its law is thus independent of N (see [ANTT], p
102-109, p. 109 for the law of the Yule process). We have ]P’(Ys(l) =k) =

e *M1— e *M)*=1 and so:
PR, =k = PO+ +Y@ =k
< Zq:JP YD > [k/q))
< q(l—e Akla=t (3.4)

Notice that Vt € [0,T]

P(AL; = 1|AK] = 1,(K{)120) = 1 — ~———



We decompose

h

Paciiac i< i
=
L

VoIV IV IV

P(Ly=1) < P
(by Lem. .§) = P

S5 N
o~ e~ o~
M ~— ~— ~—

IA A
~

and we compute

I<r<|VN—=1] r<k<|VN—1]

by @D, B3 < Y S g (%) o1 — a)tfa1

I<r<|VN—1| r<k<|VN-1]

< Z Z kQT 1—04)k/q L

I<k<|VN-1] l<r<k !
As, for k < |VN —1], Nk—jl <1, we get

~ —~ k2l
/ ! — . k/q—1
I<k<L|VN-1]

mZk k+1)(k+2)...(k+20)
1<k

X (1= a) /=11 — o)t/
< e —a)t/at (20 4 1)!
TN =-DE (- (1 =)ty

<

We also have

P(Ep > [VN-1]) < > ql—a)f/r
k>|vVN-1]
g(1 — a)VN=Tl/a-1
(1= (1 —a)9)
P
S (1-(1-a)t

x sup ((1 —a)VN-1/a=1(n 1)) ——
N;(( )L ( ))(N

10



4 Wick formula

We now define an auxiliary system (Zt)0<t<T1>1 with an infinite number of
particles. We start in s = 0 with C} = {i}, Vi € [g]. We set Vi, Ko = #C{. For
1 <i < j < N, we define processes (N = N7) 50, jene, (CH)as01<i<q,
(K ) s>0, 1<i<q_(respectively in N,P(N),N) by the following. The processes
(N#3),(C), (K?) are piecewise constant. We set

K,=#(Cl+---+09).

We define the jump times recursively by (taking (ﬁk)lgigq,lgk iid. ~ &(1)),
To =0 and

. - S~ AK.(N - K, ~
T, = inf{Tp 1 <s<T: AKU—MduzUk
Ty N -1

Tk = inf(fé,inf{Tl 2T > Tk—l})
(recall that the process (K;) and the T’s are defined in Subsection R-2). Notice
that {T,k > 0} C {T), k > 0}. In Tj:

o If Ty ¢ {T}',1 > 1}, we take 7(k) uniformly in CN'}IF U---u CN'%C_ and j (k)
uniformly in N*\(Cf, _ U---UC], _). For any i such that 7(k) € Cy, _,
we perform the jumps: Cp = Cp  U{j(k)}, Ky, = K + 1 and

W) _ Fre00 4y

k

o If T}, € {T",1 > 1}, we take 7(k) uniformly in CN'}IF U---u CN'%C_ and j(k)
uniformly in Cp, _U---UCT, _\{F(k)}. Forany i,i such that 7(k) € Cy, _,
j(k) € C'rfpk_, we perform the jumps: O, = Cpy _U{j(k)}, K7, = K7, +
1, Gy = G, U{F(R)}, Kiy, = K3y + 1 and Nj07®) = 70000 g

Notice that Vi € [g], the processes K¢ and #C' are not equal. The following
lemma is a consequence of Lemma

Lemma 4.1. 1. The process (I}s)szo is piecewise constant, has jumps of size
1 and satisfies V0 < s < t

P(I}t = I?su?s) = exp(—AI}S) :
And so it has the same law as (IA{;)SZO.

2. For adll t, f(t > Ky, a.s.
3. IfTy =T, ..., T = Ty then Kr, = Kp, .

11



Definition 4.2. The interaction times of the Z are {T — Ty, k > 1} (we say
they are defined backward in time).

o The (26) are i.i.d. ~ 150.

e Between the jump times, the 7' evolve independently from each other ac-
cording to the Markov generator L.

o At a jump time T — T, (Z) undergo a jump like in Definition @, (ﬂ’),

with i, j replaced by 7(k), j(k).
We define (V¢ > 0) the event G and the trajectories Ky, IEt by

G = {Vk>1suchthat Ty <T, T}, = Ty}
ICt = {(Kz)lgsgt;i € [Q]}
ICt = {(Kg)lgsgt;i € [Q]}

and, for q even, we set {Ty, < Ty, < ...} = {Ty : k > 1,Ty, = T}'}, {TEI <
T, <.} ={Tw:k>1,3,T =T},

A = {#k>1:T,=T],T, <T} = q/2}
N{r(k1) € Cg,, _,j(k1) € C, ...

ar(kq/2) € O%;ql/2*’j(kq/2) < O%kq/27}

A = {#{k>1:3,T, =TTy <T} = q/2}
{7 (k) € 6{ k) € 6% L
~( q/2) € Oq N( q/2) € C~ 7}
‘1/2 q/2

(recall the i(k)’s, r(k)’s are defined in Subsection P.9). For ¢ € N*, we say that
F : (R%)? — R is symmetric if for all o in the set of permutation of [q] (denoted
by S,), Vr1,..., 7, € RY, F(2(1)s - To(g)) = F(x1,...,24). We define

By (q) = {F : (R")? — R, F measurable, symmetric, bounded,
/ F(xl,...,xq)ﬁT(d;pq):()} X
z1
Proposition 4.3. For F € B;""(q), we have:

o fork <& ANA(F)=0,

e for q even,

NUEB(@N)UP) | = B (B 2R D

< I / AR~ 1K21ds) (4.1)

1<i<q/2

12



Proof. In the following computations, we set R = sup{k : Tk < T}. We have

E(GIKr) = E(lf_g, .15 g K1)

= E(lﬁle to 1TR—1:TR71

XE(]‘TR:TRVCT’Tl = Tl, . ,TVR_l = TR—I)) .

On the event {Tl =1T,... ,TVR_l = TR_1}, we have l?t =K, Vt:Thr 1 <t <
Tr. And so we have:

E(1z, _p, K, Ty, Ty =T1,...,Tp1 = Tr1)

Tr _ _
=P / AKu—MdugUk
Trs N -1

\Kp, Ty =T1,..., Ty = TRfl)

Tr 2 _
ZP(/ AED? < 5,

Kr,Th=Ti,....,Tp1 = TR1>

Tr-1 —1
A(K7)?
o (A 0y 1)
So, by recurrence,
AK?2
E(G|Kr) > exp <—N—_T1T) : (4.2)

When Fk,7, s : N*" jumps at s,k € Ci,r € CJ and s € [0,T], we say there
is a loop at s between C* and C7. If i = j, we say that gl has a loop with
itself at s. We can define in the same way loops between C?, C7. Notice that
[3i, C* has two loops on [0,T] and Lt < ¢/2] = [ 3j, C7 has no loop on [0, T1].
Conditionally on {C* has no loop on [0,7]} (i.e. C* has no loop with any other
C7 and has no loop with itself), errv’l is independent of ZéFV’Q, .. .,errv’q and
has the law Py (by Theorem Ell applied for ¢ = 1 and Lemma E) Suppose
k < q/2,as F € By""(q), we then get

E(F(ZYt, . 20| Ly = k)
E(E(F(Z)", ..., Z39)|C* has no loop on [0,T], Ly = k)| Ly = k)
0 (4.3)
We suppose by now that ¢ is even. Because of Theorem @7 we then get:
NPE()U(F) = NYPE(F(Zy,.... Zp")
NYZE(F(Zp, ... Z0)

which has same limit as Nq/QIE(F(ZéV"l, e Zév’q)lLT:q/Q) when N — +o00. As

#51/2)! is the number of ways of partitioning [¢] into ¢/2 couples, we get
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NYPE(F(Z 2y D —y)a)
! N,1 N,
= NQ/2WE(F(ZT oo Zp)1a) .
Noticing that L((ZN'',..., ZNDG) = L(ZN", ..., ZN)|G), we get:
NY2E(F(Zyt . Zn )1 n,—g)2)
| ~ ~
_ na/2 q: { N,1 N,q\q _
N 5 (q2)] E(F(Zp . Zy )1 5)
+E((F(Zp, .., Z )1 alge)
—E(F(ZN1, .., Z;V=q)1g1cc)} .

Notice that, knowing K, for i # j, the number of loops between C? and C7 on

[0, ¢] is a non-homogeneous Poisson process of intensity (Afﬁ_ll(g) . Notice
. oest’
also that, knowing Kr, for i # j, the number of loops between C* and C? on
[0,¢] is a non-homogeneous Poisson process of intensity (Aﬁz_llq) . So we
0<t<T
have:
: ; TAKIK]
P( no loop between C* and C?|Kr) =exp | — ~ 2 15 ds | =:«afi,j),
0 _
o TARIRD O\
P( no loop between C* and C’|Kr) =exp | — ~ 2 15 ds | =:afi, j) .
0 _
We set
B = {at least one loop between C! and C?} N...
---N{at least one loop between C?~ ' and C?} .
We have
P(A|KT) = P(B|Kr) — P(B\AIKT) . (4.4)
and
PBIKr) = J[ (1-a2i-1,2))
1<j<q/2
1 2%—1 7-2j
< W H (TAKT K7 )
1<j<q/2
1 2251 752j
1<j<q/2
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So, we have:

NYPE((F(Zp .. 27 ) 1alge|)
< N2||F || E(E(Lalce K1)
E(

= N2||F|| o E(E(L4|K7)E(Lg: |Kr))
(using (@)» (@)» (@))

) 1 ~2j—1 7524
< N92||F|| o E T [1 TAKF'KY)

1<j<q/2

(e[ 27)

(using Lemma @)

1 ~ . ~ .
< N?||F||oE -1 H (TAKY'KY)
1<j<q/2
AK7)2T
1 _ __ N -7
X ( exp ( N — 1 )
For a fixed w,
1 ~oi ~a
Vit T R RE )
1<j<q/2
7= 2
) (HXP <_%>>
and
1 I A(Kp)2T
- N 2j—1772j _ _\AT) 2
0= N (N —1)4/2 1<1:[/2(tAKT R L N -1
<j<q

< 24/2 H (tAl?%jilf?%j)
1<j<q/2
which is of finite expectation by (B.4) and Lemma .1 So, by dominated con-
vergence:
N,1 N,
NYPE((F(ZN', . Zy D)1 alge]) O
We can show in the same way :

NY2E(|(F(Zh, ..., Z8)1 116|) v O
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‘We have:
NY2E(F(Z4,...,Z8)15) = EE(F(Zk,...,Z8)|Kr, A)NV?P(AKy))
We set

B = {at least one loop between C' and C?} N ...
... N {at least one loop between C?~' and C9} .

We decompose

P(A|Cr) = P(B|Kr) — P(B\A|KT) -

We have
NPBIKr) = NY* [ (1-aei-1,2))
1<j<q/2
P 3 T ~2 1~2
Nt H /OAKS K:'ds
1<i<q/2
and

P( at least two loops between C' and C2|Kr) < (1 — &(1,2))? .

So we get, computing very roughly:

P(B\AKr) < Y 3 I[I a-aei-12))
1<r<q/21<i1,...ir<q/2 | 5E€{i1,0sir}
< JI  (a-a@i-1,2))
ié{i1,..., i}
1~ o\ 2 i 1~
< X o I1 |k my) vaesky i)
1<r<gq/2 1<j<q/2
1
“(N = 1yae
24/2
S Noieen

e o\ 2 SO
< I [(TAK:%J 'KY) v (TARY 1K§J)} ,

1<j<q/2

so N9/2P(B\A|K1) N% 0. And so:

T

120 A\ a.s. I l >2i—1 7521

N? ]P)(AVCT) N_>—+>OO /O AKS KS ds 5
1<i<q/2

16



and again by dominated convergence, we get the result.

We denote by Z, the set of partitions of [¢] into pairs.
Corollary 4.4. [Wick formula] For F € By (q) of the form (f1 @+ ® fy)sym

and q even,

NUEE()*F) — > ]I BV f)
Iqel—q{ivj}elq

with
~ ~ o~ ~ T o~ o~
V(i ;) = B ZD) (22 A, R) / ARIR2ds

0

5 Convergence theorems

All the theorems of this section are valid under assumptions (), ().

5.1 Almost sure convergence

Theorem 5.1. For any measurable bounded f, T >0,

W) 25 P

Proof. We recall the notations of [DPR094]. For any empirical measure m(z) =
2 SN 8, (based on N points 22, ..., zN), any g,

1
M@= 57 D0 a0
a€[N]ldl

where [N]l9 = a : [¢q] — [N]. Notice that for any F
m(z)®(F) = m(z)®(Fym) -

We define, V1 < p < ¢, [¢]i¥ := {a € [¢]l9, #Im(a) = p} and (Vk < q)
1
oL, = Z s(p,q — k)W Z a
q—k<p<g Dp acqle

(the s(.,.) are the Stirling numbers of the first kind) and VF'(of ¢ variables),
Wb € g,
Dy(F)(z',..., 2% = F(z*® ... 222

1 “ "
Do, (F) = Z s(p,q—k)—— Z FztW .. @)y

q—k<p<q (q)p ae[q][pq]
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We then have, by Corollary 2.3 p. 789 of [DPR094], for any empirical mea-
sure m(z) (based on N points), any F of ¢ variables,

()2 4(F) = m@)° | Y < Dors, (F)

0<k<q

Suppose F' € B;""(q),

E() () = Y w0 sta—k Y E(@) D)

0<k<q q—k<p<q ac[ql®

Notice that for 0 < k < ¢, q—k < p < ¢, a € [qlif, #{i € [q], #a({i}) =
1} > ¢ — 2k. Suppose by now that ¢ is even. If k < ¢/2, using Theorem and
reasoning in the same way as we did to prove (@), we get (for some constant
C which will change from line to line):

E ((n})®(Da(F))) <

And so

E(((nf (f) = Pr(f))?) = E((n7 (1))
= E((ny)?"(f*7)
C

IN

Provided we take g big enough, we can apply Borel-Cantelli Lemma to finish
the proof.
O

5.2 Central-limit theorem

Theorem 5.2. For all fi,..., f, € By (1), VT > 0,

N2 (fo), o (£a)) (2% N(0.K)

with K (i, j) = Pr(fif;) + VE (fi. f5)-
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Proof. For any uq,...,uq, we have:

o o i+ )

=1E< p(Z—“”k“le/%N(« froooti f)’“)))
ex A T (U1 )1 WqJq

k>1

N E(exp(VN (iun® (f1) + -+ + iugny (f9))))

X exp <—%15T((’Uqfl ++ Uqfq)z))> .

We also have

e (o (s (5572 )))

N . j . j
=K (H (1 + iu f1(&7) +\'/'N;+ wqfq(ét)))

1 )
=E ( N2 Z zkujl ce Uy
N

0<k< 1<150 00k <q

S W S (35 B N f"))

1< <<, <N

—E( Z 5\]/'\2)/]; Z ikujl"'ujk%(nfljy)@k(fjl®"'®fjk)>

0<k<N 1<, jn<q
_ k/2 uj1 . ’U,jk B
N—>—+>oo Z ( 1) ) Z k! Z H VT (faa fb)
k>0,k even 1<j1,..,Jx<q I €Ty {a,b}e}
> s
9Kk/2(L /9)
k>0,k even 2 / (k/2)

x Z Ujy '"ujkE(V'TB(fj17fj2))'"]E(‘/;B(f].k—l7fjk))

1<d1,--0k<q

(12 , v
> g | 2o wntnEOF L fw)

k>0,k even 1<51,52<q

= exp (—% > ujlusz(V’_TB(fjlvsz))) :

1<j1,52<¢
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