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Abstract

The Bird and Nanbu systems are particle systems used to approximate the solution
of Boltzmann mollified equation. In particular, they have the propagation of chaos
property. Following [GM94], we use coupling techniques and results on branching
processes to write an expansion of the error in the propagation of chaos in terms of
the number of particles, for slightly more general systems than the ones cited above.
As explained in [DPR09a] and [DPRO9b], this result will lead to the proof of the
convergence of U-statistics for these systems.

Keywords: interacting particle systems, Boltzmann equation, nonlinear diffusion
with jumps, random graphs and trees, coupling, propagation of chaos, Monte Carlo
algorithms.
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1 Introduction

In a recent work ([DPR09a]), we showed a expansion of the propagation of chaos for a
Feynman-Kac particle system. This particle system approximates a particular Feynman-
Kac measure, in the sense that the empirical measure associated to the system converges
to the Feynman-Kac measure when the number of particles N goes to co. What is called
propagation of chaos is the property of the particle system that ¢ particles, amongst the
total of NV particles, looked upon at a fixed time, are asymptotically independent when
N — +00 (g is fixed) and their law is converging to the Feynman-Kac law. In [DPR09a],
we wrote an expansion in powers of N of the difference between the law of ¢ independent
particles, each of them of the Feynman-Kac law, and the law of ¢ particles coming from
the particle system. Omne can also call this expansion a functional representation like in
[DPR09a]; in the present paper, we call it an expansion of the error in the propagation of
chaos. In the setting of [DPR09a], the time is discrete. In a forthcoming paper ([DPR0O9D]),
we wish to extend the result of [DPR09a)] to the case where the time is continuous, still in
the Feynman-Kac framework, and we wish to show central-limit theorems for U-statistics
of these systems of particles. The proof of the central-limit theorems for U-statistics relies
only on the exploitation of the expansion described above.

We wish here to establish a similar expansion for a family of particles systems including
Bird and Nanbu systems. Bird and Nanbu systems are used to approximate the solution of
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the mollified Boltzmann equation. We refer mainly to [GM97] and take into account models
described in (2.5), (2.6) of [GM97] (a similar description can be found in [GM99], Section
3). An other reference paper on the subject is [GM94]. The two main points of interest
of this paper are: it provides a sequel to the estimates on propagation of chaos of [GM97],
[GM99] and it allows to apply the results of [DPR0O9b] to Bird and Nanbu systems.

In Section 2] we will recall the definitions of Bird and Nanbu models, as can be found
in [GM97] and will give an equivalent definition, useful to our purposes. In Section Bl we
will state and prove our main theorem about the expansion of the error in propagation of
chaos (Theorem B.I]). The proof relies on estimates on population growth found in [ANT2)
and on coupling ideas. In Section [ we prove in what is called a Wick-type formula in
IDPR0O94] (Proposition 3), this formula and Corollary [4.4] will be useful to prove central-
limit theorems for U-statistics in [DPRO9D].

2  Definition of the model

2.1 Bird and Nanbu models

In all the following, we deal with particles evolving in R¢. We set the mappings e; : h € R? —
ei(h) = (0,...,0,h,0,...,0) € RN (R at the i-th rank) (1 <4 < N). We have a kernel
(v, w,dh,dk) on R?? which is symmetrical (that is fi(v, w, dh, dk) = fi(w, v, dk,dh)). We set
w(v,w,dh) to be the marginal fi(v, w, dh x R?). We suppose sup, , fi(z, a, RIxRY) < A < oo.
We are also given a Markov generator L on R? such that D(L) C L>(R?). In Nanbu and
Bird systems, he kernel i and the generator L have specific features coming from physical
considerations, the coordinates in R? represent the position and speed of molecules but these
considerations have no effect on our proof. This is why we claim to have a proof for systems
more general than Bird and Nanbu systems.

The Nanbu and Bird systems are defined in (2.5) and (2.6) of [GM97], by the mean of
integrals over Poisson processes. We give here an equivalent definition.

Definition 2.1. The particle system described in [GM97)] is denoted by

—N —N,i
(Z, )iz0 = (Z;, “Nizo1<i<n -

It is a process of N particles in R and can be summarized by the following.
1. Particles (Eé)lgigN in R are drawn i.4.d. at time 0 according to a law /PEB.

2. Between jump times, the particles evolve independently from each other according to

L.

3. We have a collection (N; ;)i1<i<j<n of independant Poisson processes of parameter
A/(N —=1). Fori > j, we set N;j = Nj;. If N;;j has a jump at time t, we say

there is an interaction between particles i and j and we take a uniform variable U on
i 7> N,J p2d
R*¢)

—=N.,i
[0,1], independant of all the other variables, if U < “(Zt’+
undergoes a jump:

then the system

e In the Bird system: Z, = Z,_ + e;(H) + ¢;(K) with

5N =N,j
/’L(th 7Zt7 90y )
Az, 7, R

(independently of all the other variables).

(HvK) ~




e If we replace 11 by ﬁ’(z, a,dh,dg) = p(z,a,dh) ® §o(dg) + do(dh) ® p(a, z,dg) in
(21)), we obtain the Nanbu system (cf. Remark 2.6, p. 120, [GMI7])

Theorem 3.1 of [GM97] implies that there is propagation of chaos for this system. This
theorem says (Vq,t):

=N,q

—N,1 —_N,1 At + A2¢2
H‘C(Zt yeenZy ) = ‘C(Zt )®q||TV < QQ(Q —1)——

N—-1 "~
and A
—N,1 ~ et —1

Z, ) - P, <6——m

1L = Bllrv <657 -

where (P,) is solution of (with P fixed)
V¢ € D(L),
Ou(d, Pr) — (Lo, Pr)
= </ %(qﬁ(z +h) = ¢(2) + pla+ k) — ¢(a))fi(z, a, dh, dk), E(dz)é(da)>

We can deduce propagation of chaos from the previous results, that is V¢, VF bounded
measurable,

L@ 2 ) - BEUE)) < (2q<q )

At + A2¢2 eM— 1
6 Flloeo
N-1 + N+1 11

In Theorem [3.I] we will go further than the above bound by writing an expansion of the left
hand side term above in powers of N. We will use techniques introduced in [GM97]. The
main point is that we look at the processes backward in time.

2.2 Backward point of view

From now on, we will work with a fixed time horizon T' > 0. For any j € N* we set
[1] =11,...,4}. For A > 0, we call £(\) the exponential law of parameter A.

We start in s = 0 with C§ = {i}, Vi € [q]. We set Vi, K} = #C¢. For 1 <i < j < g, we
define processes (N%J = N7%) >0, (C8)s>0, (K)s>0 (respectively in N, P([N]), N*)by the
following. For all s € [0, 7], we set

K,=#(Clu---u09).

The processes (N%7), (C?), (K") are piecewise constant and make jumps. We define the
jump times recursively by (taking (Uk)i<i<q, i<k, (Vi)i<i<gi<k 1id. ~ E(1)) Ty = 0 and
(always with the convention inf ) = +oo and (... )4 standing for the nonnegative part).

s AK,N-K
T, = inf nASSSTl/ ARN = Ku)r g > g,
T N-1
S AR (K, — 1)
T/ = inf nASSSTl/ Shu v gu > Vi
g { 1, 2(N-1)
T, = inf(T},T}).

In T}:



o If T, = Ty, we take r(k) uniformly in Cz, _ U---UCf] _ and j(k) uniformly in

[N]\(C%k_ U--- U C%k_)._ Suppo.se that r(k) € Cf, _, we then perform the jumps:
Ch = Ci _U{j(k)}, Ky, =Kl _+1 (at any time K] = #C}), N"®J®)(T}) =
N7HE)IF) (T —) + 1. So, in short, we have added particle j(k), which was in no set
C?, to the set C*.

Notice that the (... )4 in the definition of T}, above forbids to be in the situation where
we would be looking for j(k) in 0.

o If T, = T/, we take r(k) uniformly in Cf, U ---UCf _ and j(k) uniformly in
Ct,_U---UCh \{r(k)}. Suppose r(k) € Cp, _ and j(k) € C%/k_, we perform the
. i i . i i’ r(k r(k
jumps: Cp, = Cj,_ U {j(k)}, Cf, = Cp,_ U {r(h)}, Kr” = (K32 + 1) AN,
K3 = (K™ 4 1) AN, NT 82T = N7 R (T, —) + 1. So, in short, we have
added r(k) to the set C%C_ and we have added j(k) to the set Cf, _.

This whole construction is analogous to the construction of the interaction graph found

in [GMO7], p. 122.

We now define, for a fixed time horizon T > 0, an auxiliary process (ZN)o<s<r =
(ZNH)o<s<r1<i<n of N particles in R?.

B

(We say that the times (Ty) are defined backward in time.)
° Zév’l, e ,Zév’N are i.i.d. ~ ﬁo

e Between the times (T — Tk)k>1, the ZN:%’s evolve independently from each other ac-
cording to the Markov generator L.

o At a jump time T — Ty where Ty is a jump time of N©I, (ZN) undergoes an interaction
having the same law as in Definition 2], (3.).

Definition 2.3. For allt > 0, we set
Lt:#{kEN:TkSt,Tk:T]g
We call this quantity the number of loops on [0, t].

Example 2.4. Take ¢ = 2. Suppose for example, that the only jumps of the N*J ’s occurring
in [0,T] are
AN*3(2T/3) =1, ANY(T/3) =1

then
o forse|[0,T/3[, Ki=2,Ls=0,
o forse[T/3,2T/3[, Ks =2, L, =1,
o forse2T/3,T|, Ks=3,L; =1
We have to keep in mind the following lemma throughout the whole paper.

Lemma 2.5. 1. IfY1,..., Yy are respectively of law E(M1),...,EAg) (M1,..., >0,k €
N*) then
inf(Yl,...,Yk) NE()\l ++>\k) ,
A1

P(Y; = inf(Y1,...,Y3)) = Mt



2. ForY ~ &) (A>0), LY —t]Y >t)=E(N) (for anyt >0).

3 IfY1,Yo,... iid. ~EN) (A>0), ke N*, Uy,Us,..., Uy is the order statistics of k
uniform random variables on [0,T) then

LY, Yi+Ye, ... Y14+ +Y)Y1 4+ + Y, <T <Y1+ + Y1)
=L((U1,...,Ur))

We then have:
N,1 N.qy law 7Nl 7 N.q
Lemma 2.6. For allT >0, (Zy",...,Zp") = (Zy" ..., Zp7).

The system (ZN)o<s<y is of use in Section @ but is also useful to understand the next
auxiliary process, which we use in Section Bl We now define, for a fixed time horizon T' > 0,
the auxiliary process (Eév)ogng = (Zé\;iSST)lgigN,Ogng-

We start in s = 0, with 60 = [q], IA(O =g, ZO = 0. We define processes (65)520, (IA()SZO,
(Es)szo (respectively in P([N]), N*, N*). These processes are piecewise constant and make
jumps. We take (ﬁk)kzo to be iid. ~ &(1) and (A;) to be i.i.d. ~ U([0,1]). We define
recursively the jump times (fk)kzo by Tp = 0 and

~

S ~ [TRN-KJ)i+K.—1), =~ -
Thpr =inf s> T AR du >
e {S‘ * /? 2(N - 1) e

o If A) < % then we perform the following jump: IA{@ = IA(fr + 1,

L~ = Aifr, we choose i(k) uniformly in [N]\(?'fr and éﬂ = éﬁ_ U {i(k)}. We

choose j(k) uniformly in éﬁ_.

~ 2AN—K.) s W — R T —
o If Ay > N-Roetkil then we perform the following jump: KTk =Kz L =

Lz _+1,Cq =Cg; _. We choose i(k) # j(k) uniformly in éﬂ—‘
Definition 2.7. The interaction times of the (ZN1)1 < <ri1<icq are {T—Tg, k > 1,Ti, < T}.
(This is why we say that the times (T},) are defined backward in time.)
° Zév’l, .. .,’Z\év’N are i.i.d. ~ ﬁo

)

e Between the jump times (T\k)kzl, the ZN+ s evolve independently from each other

according to the Markov generator L.

o At a jump time T — fk, (EN) undergoes an interaction having the same law as in
Definition 21, (3.), with i,j replaced by i(k),j(k).

Keeping in mind Lemma 235 we get:

Lemma 2.8. For all T > 0,
(Zh, ... Z8)' 2 (Z},.. .. Z3)

law , 7> 5
(K, L)o<i<r = (K4, Li)o<i<r -



3 Expansion of the propagation of chaos

We define for any N,q € N*, ¢ < N:

e N!
(¢ N) ={a: [g] — [N],a injective } , (N)q = #(q, N) = N =g
Let us set
> gy
1<i<N
(77t Z 5 ZNe | ZNe@) -
a€ q,N)

Notice that for all function F, IE(F(ZN e ,7?’(1)) =E((nMN)®4(F)).

Theorem 3.1. Set a = e 2. For all ¢ > 1, for any F € C; (R9), VI >0, Vi > 1,

~ 1 1 ——N,lp+1
E((n)®U(F)) = PRY(F)P(Ly =0) + Y {WNH(F) + mAq,TO (F),
1<i<lo
(3.1)
where the Aé\%, ZZ;UH are nmonnegative measures uniformly bounded in N defined by,

VF € C;f (R9) (the set of continuous bounded monnegative functions on R),
AYHF) =EB(F(Z3, ..., 200 Ly = DP(Ly = 1)(N = 1)’

Ar(F) =B(F(ZNY, .. 2N Ly > DP(Ly > 1)(N = 1)! .
We further have the following bounds

——N,l
sup(Ag7(F), B, r(F))
gL —a)t/i! (20 +1)!
= l! (1—(1—a)l/a)2i+2 X [ Floo
1 IN-1)/q-1 ;
11—/ 1- N =D |IF|s -
ey e (@) (¥ =1)!) |l

Proof. According to [GM97] (section 3.4, p. 124) or, equivalently [GM94] (section 5),
E(F(ZN', ..., ZNY) Ly = 0) = Pr(F) .

We have by Lemma 2.6 Viy:

—N,1 —N,
E(F(Zy \...., 22" = E(FZN',...,ZN9 Ly = 0)P(Lr = 0)

lo
+Zwmﬁ%wﬁWMﬂmm:m

+ IE(F(ZN YL ZNY Ly > 1o+ D)P(Lr > 1o+ 1).

It is sufficient for the proof of (@) to show that P(Lz > 1) is of order < 1/N!, VI € N*.



We define piecewise constant processes (K)s>0, (L)s>0 (in N) such that K} = ¢, L = 0.

N

Their jump times are (I})r>0 defined recursively by 7 = 0 and

ﬁéinf{s:/A AI?;dUZﬁk} .
T/

k—1
In T}:
-~ N_I?%/,)+ . . -~ ~ ~
o If Ay < —x—4—, then we perform the following jump: K7, = K5, +1, L, =
k kT k
T
L,]":‘,;_.
-~ (N_I?r/f/,)+ . . -~ ~ ~
o If Ay > —x—5—, then we perform the following jump: K7, = K5, +1, L, =
k kT k
T
Ly +1.

NAotice that we use there the same variables ﬁk’s and Ek’s coming from the definition of
(ZN). We have:

2N — K Ki(w)—1 . _
as Vt, w, ( 1))+ + Ki(w) <1 then V¢, w, K;(w) < K{(w) , (3.2)
2(N — 1)
2N — K N - K] - -
as Vt, w, E t(w)A)+ > ( 1)+ then Vt, w, Li(w) < Lj(w) ,
AN~ Rl)s Ka) 1 N1
Vi, w, Lj(w) < K{(w) .

The process (IA( 1)s>0 is equal in law to the sum of ¢ independant Yule processes Ys(l),
cee v (see [ANT2], p. 102-109, p. 109 for the law of the Yule process). We have
PV = k) = e=s2(1 — e=*2)*~1 and so

P(K;=k) = PO+ +Y =)
q
< S P > [k/q)
=1
< (1 —e ARt (3.3)

Notice that V¢ € [0,T]

(N-K{ )y _ Kf

P(AL; = 1AK] = 1,(K)iz0) = 1 — = < T

(3.4)

We decompose

P(Ly=1) < P(Lr>1)
(by Lem. EZ8) = P(Ly >1)
< P(Ip>10)

< P(Ep > |VN=1))+P(Ly >, Ky < [VN 1),

and we compute



P(Lp > 1, K; < [VN = 1))
T

= Y. Plr=rKp<|[VN-1))
I<r<|VN-1]

- >

1<r<|VN=1] r<k<|V/N—1|

=
o
Ly
I
=
3
I
=
=
3
I
N

ko e
< rf _ /q—1
b EDED < Y > aye) aa-a
1<r<|VN—1] r<k<|vVN—1]
k27‘
< (- ket
C Y Y

I<kE<|VN—-1|I<r<k

As, for k < |VN —1], Nk—il <1, we get

~ —~ k2l
P(Ly > 1, Kp < [VN—1]) < > k(1 — o)t

NN —1)
I<k<|VN=1)
< mgkz(kzﬂka)...(lﬂwz)
X (1= @)/ (1 )t
q(1 —a)t/a1 (20 + 1)!

< .
- N =-1DF (1= (1= a)l/a)2t2
We also have
P(Kp>|N-1)) < > q—a)e?
k>|[N—1]
q(l J— a)LNﬁlJ/qil
(1-(1 a9

1|/q—1 1
< e (T )

4 Wick formula

We now define an auxiliary system (Z})o<¢<7,;>1 with an infinite number of particles (for a
fixed time horizon T > 0). We start in s = 0 with C} = {i}, Vi € [q]. We set Vi, K} = #C{.
For 1 <i < j < N, we define processes (N2 = N7)s50, (C!)s>0, (K%)s>0 (respectively in
N, P(N),N) by the following. The processes (N*7), (C?), (K") are piecewise constant. We
set

Ki=#(Cl+ -+ 0C9).

We define the jump times recursively by (taking (ﬁk)lgigq,lgk iid. ~ &(1)), fo =0 and



~ ~ 5 ~ AK, (N — K ~
T,é = infdTp_1<s<T: / AK, — Mdu > U
Ty N -1

T = inf(T},inf{T;: T} > Th_1})

(recall that the process (K;) and the T}’s are defined in Subsection2.2)). Notice that {T%, k >
0} C {Tk,k > 0} In T}:

o If Ty, ¢ {T}',1 > 1}, we take 7(k) uniformly in é%k_ U---u 5%67 and j(k) uniformly
in N*\(Ck_ U---UC% _). Suppose 7(k) € C4,

., we perform the jumps: asz =

5%‘7 U {j(k)}, f(sz = I?’TF + 1 (at any time s and for any index i, we will have
Ri = #0), NJ00)  JrO95) g

A

o If T} € {1}, > 1}, we take 7(k) uniformly in é%k_ U---u é%ﬂ_ and j (k) uniformly in
5%k7 U---u 5%k_\{?(k)} Suppose 7(k) € 5%&‘7, j(k) € 5%;7, we perform the jumps:
Ct. :yc%kf U {j(jﬂ)}, Kj, = Kp_+1,0; = Cp, _U{F(k)}, K, = Ki,_ + 1,
N;ik)d(k) _ N;}(ﬁ)d(@ +1

The following lemma is a consequence of Lemma

Lemma 4.1. 1. The process (Ks)s>o is piecewise constant, has jumps of size 1 and
satisfies V0 < s <t B o B
P(K: = K |K;) = exp(—AKS) .

And so it has the same law as (l?;)szo.
2. For adllt, I~(t > Ky, a.s.
3. If Ty =T, ..., Tp = Ty then K5, = K.

Definition 4.2. The interaction times of the Z® are {T—Tk, k> 1} (we say they are defined
backward in time).

o The (Z3) are ii.d. ~ F.

e Between the jump times, the Z' evolve independently from each other according to the
Markov generator L.

o At ajump time T—Tj, (Z) undergo a jump like in Definition[21], {3), with i, j replaced

by 7(k), j (k).
We define (Vt > 0)

G = {Vk>1suchthat Ty <T, Tj, = T};}
ICt = {(K;)lgsgtvi S [q]}
ICt = {(Kg)lgsgtvi € [q]}



and, for ¢ even, we set {T}, < Ty, < ...} ={Tkx: k> 1,1 =1}'}, {TE1 < TEQ <...}=
{Ty : k>1,31, T = T/"},

A = {#Hk>1:Tp =T}, Tp <T} = q/2}
N{r(ka) € Chy, . 3(k1) € OF oo rlhyga) € C2 1 ilkyyo) € O )
A = {#{k>1:3T, =T/ T <T} =q/2}
N{Fk) € CL G(k) € C& ... 7 (kysn) € CY*71 j(kypn) € Y2}
1 k1 kg2 kg/2

(recall the i(k)’s, 7(k)’s are defined in subsection22)). For ¢ € N*, we say that F : (R%)? — R
is symmetric if for all o in the set of permutation of [¢] (denoted by S,), Vz1,...,7, € R?,
F(Zg(1)s -+ To(q)) = F(w1,...,74). We define

By*™(q) = {F 1 (RY)? — R, F symmetric, bounded,

F(x1,...,24)Pr(dey) = o} .

Proposition 4.3. For I € By"™(EY), we have:
o fork <% AMy(F)=0,
e for q even,

q!

NEEGN)P) 2 gy

E(E(F(f}, 290Ky, A)

T ~ . ~ .
/ AK?Z‘IK?ds). (4.1)

1<i<q/2”0

Proof. In the following computations, we set R = sup{k : Tvk < T}. We have
E(GIKr) = EQz_q 15, 1K)
= E(lflle te ]'T‘R,I:TR,IE(]‘TR:TRUCT? T1 = Tla ceey TR*I = TR*I) .

On the event {fl =1,.. .,TR,l =Tr-1}, we have I~(t =Ky, Vt : Tr1 <t <Tgr. And so
we have:

E(1z, _p, K7, Th-1, Ty=Ti,....,Tp-1 = Tr1)

Tr AK (N — K ~
=1-P / AKu—MdugUk
Ty N —1

|Kr, Ty =Ti,...,Tp1 = TR—l)

Tr 2 _

Tr—1 -1

= exp (— Ajél(ff (Tr — TR_l)) .

Kr,Th=Ti,....,Tp1 = TR1>

10



So, by recurrence

E(GIKr) > exp <_ ]\A[If%lT) . (4.2)

When JFk,r, s : N¥" jumps at s,k € Ci,r € CJ and s € [0,T], we say there is a loop at
s between C* and C7. If i = j, we say that C* has a loop with itself at s. We can define
in the same way loops between C? CY. Notice that [Fi, C* has two loops on [0,7] and
Lt = q/2] = [ 3j, C7 has no loop on [0,T]]. Conditionally on {C* has no loop on [0, T]}
(i.e. C! has no loop with any other CV and has no loop with itself), ZJTV "1 is independent of
Z;V’Q, e Z]TV’q and has the law Pr (by Theorem Bl and Lemma [2.8]). Suppose k < ¢/2, as

F € By"™(q), we then get
E(F(ZNY . 2N Ly = k)
= EE(F(ZN',...,ZN9)|C* has no loop on [0,T], Ly = k)| Ly = k)
=0
We suppose by now that ¢ is even. Because of Theorem B.Il we then get:

—N,1 —N,
NYPE((f)*)(F)) = NYPPE(F(Z; ..., Zp")
= NIPE(F(ZN',...,ZN9)

3

N,1 N,
NPE(F(Zpt o, Zp D ppegs2) -

~Y
N—4oc0

As is the number of ways of partitioning [¢] into ¢/2 couples, we get

g
24/2(q/2)!

|
q/2 N\Oq ~ q/2 q: N,1 N,q
NYZE((np)PU(F)) N N 72q/2(q/2)!E(F(ZT o Zp)1g) .

Noticing that L((ZNY, ..., ZND|G) = L(ZN1, ..., ZND)|G), we get:

| ~ ~
q/2 N\Oq ~ q/2 q- N,1 N,gyq _
NR(F)OUE) N [ROFZY 2
—N,1 —N,
+E(F(Zy ..., Zp D1 a1ae)

_E(F(Z;“,...,Z;V’qnﬂgc)} .

Notice that, knowing Kr, for i # j, the number of loops between C* and C7 on [0,t] is a

non-homogeneous Poisson process of intensity (Afv(—f_jl(g) . Notice also that, knowing
0<t<T
K, for i # j, the number of loops between C* and C7 on [0, t] is a non-homogeneous Poisson
process of intensity (%ﬂt) . So we have:
0<t<T
T o
; ; AK!KJ
P( no loop between C* and C’|Kr) = exp < N £ 15 ds | =:afi,j),
0 _
T
- ~ AK!K! .
P( no loop between C* and C’|Kr) = exp < ﬁds =:a(i, j) -
0 _
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We set

B = {at least one loop between C' and C*} N ...
.- N {at least one loop between C?~ ! and C?} .
We have
P(A[Kr) = P(B|Kr) — P(B\A|KT) , (4.3)
P( at least two loops between C* and C?|Kr) < (1 — a(1,2))? ,
and
B B
1<j<q/2
1 2j—17.-2j
S oo H (TAKF'KZ)
1<j<q/2
1 2517525
< R H (TAK}'K2) . (4.4)
1<j<q/2
So, we have:
NYZR((F(Zp .. ZN D)1 alge|)
< N92||F||oE(E(1alce|Kr))
= NV2||F|| o E(E(1 4| K1)E(Lg<|K7))
. 2j—1 1-2j
(using (@2), @3), @) < N2||F||E ( N (TAKF " K7)
1<]<q/2
ANKT)?*T
1— ik St 0l
( exp ( N1
. 22051 7525
(using Lemma ET]) < N92||F|| o E ( a7 (TAKF'K)
1<]<q/2

X (1 — exp <7A§\If(i)iT>>> )

For a fixed w,

. (4.5)

and

1 ~oi 1~ A(Kr1)2T
/2~ I I 2j—1 7725 _ _Alar)tL
0 < N e (tAK KT)><<1 exp< —1 ))

1<5<q/2

IN

202 T] (ARZR2)

1<j<q/2
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which is of finite expectation by (B3] and Lemma 1l So, by dominated convergence:

NIY2R((F(Z)' .. ZN D)1 a16e)) N0

We can show in the same way :

NY2E(|(F(Zk, ..., Z8)1 11g:]) — 0.

N—+oo
We have:
NY2B(F(Z%, ..., Z8)015) = EE(F(Z,...,Z8)|Kr, A)NV?P(A|Kr)) ,
We set
B = {at least one loop between C' and C?} N ...

.-~ {at least one loop between C?~! and C} .

We decompose

P(A|Cy) = P(B|Kr) — P(B\A|Kr) .

We have
NP(BIKr) = N7 I (-a@i-1,2j)
1<j<q/2
T ~ ~
a.s. 2i—1 7721
e H /OAKS K%ds .
1<i<q/2

We also get, computing very roughly:

PB\AKr) < > > I[I (-aei-12))7°
1<r<q/21<i1,...i,<q/2 [j€{i1,....,ir}
< ] (-2 -1,2))
ji{ilv“'aiT}
s 4~ i\ 2 e 4~y
< X o 1 |(ramy&E) v ARy R
1<r<q/2 1<j<q/2
1
><(N,l)q/zﬂ

24/2

~ ~o\ 2 ~o ~o
27—11-2 25—11-2
< wope [] [(TAKTJ KY¥) v (TARY KTJ)] ,

1<j<a/2
so N9/2P(B\A|Kr) Ni‘—i:oo 0. And so:
q/2 A a.s T 1-2i—1 1-2i
NYIP(AIKr) - =5 1<£[q/2/0 AKYIK% s

and again by dominated convergence, we get the result.
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For I

: (RY)? — R, we define

1
(F)sym (@1, 20) = = > F(a(1), - Ta(g)) -
T 0ES,

We denote by Z, the set of partitions of [g] into pairs.

Corollary 4.4. For F € By""(q) of the form (f1 ® -+ ® fq)sym and q even,

N9E((n)©U(F)) N T S I EVEE 1)
I4€Zq {i,j}el,

with .
VE (1) = BUEZDHZRIAKD x | AR RZds
0
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