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On the Use of Automatic Cuts Algorithm
for T0−T−Φ Formulation in Nondestructive
Testing by Eddy Current

Anh-Tuan Phung, Patrice Labie, Olivier Chadebec, Yann Le Floch,
and Gérard Meunier

Abstract In this paper, an application of the automatic cut algorithm applied to non-
destructive testing (NDT) is proposed. The T0 −T −Φ finite elements formulation
based on the scalar magnetic potential is used in our application. This formulation
requires the creation of cut in order to compute the eddy current density in multiply
connected conducting region. However, the generation of these cuts can be difficult
for the user, particularly in the case of complex geometries. In order to improve
robustness of NDT modeling, we proposed an algorithm generating these cuts auto-
matically.

1 Introduction

Eddy current inspection is a NDT technique using the induced alternating current
generated by a emitting coil. Changes in the flow of eddy currents caused by cracks,
dimensional variations, or changes in the material’s conductivity can be detected by
a receiving coil. Let us notice that is some applications, these both coils can be the
same. EC-NDT is particularly sensitive to detect small and near surface defects.

This technique has been widely used in inspection and maintenance in the power
generation and aircraft industries. Because of the high cost and fault consequences,
electromagnetic simulations are intensively used to improve the robustness of NDT
device.

In finite elements method, two main formulations can be used to solve eddy cur-
rents problems: A–V formulation and T− T0 −Φ formulation [1, 2]. This paper
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deals with T−T0 −Φ formulation which is known as powerful one in term of com-
putation cost and memory requirement. However, its utilization needs some slight
precautions. More precisely, in order to compute current distribution in conducting
media around a crossing crack, an artificial cut needs to be created. The automatic
cut generation algorithm introduced in this paper avoids users to define these cuts
manually. Hence it makes the T−T0 −Φ formulation easier to use and the evalua-
tion more reliable.

2 T0-T-Φ Formulation for EC-NDT

We consider a typical example in Fig. 1. In magnetic part (Ω1) without current
source (Js = 0), the Maxwell–Ampère equation is written as:

rot H = 0. (1)

It means that the magnetic field can be derived from gradient of a scalar potential Φ:

H = −grad(Φ). (2)

To describe the current source JS, a special source potential T0 is introduced
such that:

rot T0 = JS. (3)

Hence, the magnetic field in air (Ω0) is called reduced to this T0:

H = T0 −grad(Φ). (4)

The T0 calculation must be done in region ΩTo that encloses excitation coils, to
respect Ampere’s law. In order to represent induced current in the conductive part
(Ωc), from the current conservation law div J = 0, we have J = rot T. The field
expression is then written as H = T− grad(Φ). Edge elements are used because
their good physical representation of the phenomena. As a result, Maxwell–Ampere
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Fig. 1 a Typical EC-NDT problem. b Typical schematic problem



equation is naturally respected. We have to solve the weak form of Maxwell–Gauss
and Maxwell–Faraday equations:

div(−µ1 grad(Φ)) = 0 in Ω1, (5)

div(µ0T0 −µ0 grad (Φ)) = 0 in Ω0, (6)

div(µCT−µC grad (Φ)) = 0 in ΩC, (7)

and rot
(

1
σ

rotT
)

+
∂
∂ t

(µC(T− grad (Φ))) = 0 in ΩC. (8)

If the conductive parts contain crossing holes, eddy current IC will develop around
them. The conductive parts will become multiply connected or closed solid conduc-
tors. Hence, the above formulation must be modified in order to take into account
this latter induced current IC. If we call j0C an arbitrary current density of a pre-
scribed net current circulating around holes and t0C a special vector potential which
verifies j0C = rot t0C and t0C × n = 0 on a domain Ω0C surrounding ΩC. Thus, we
can choose Ω0C as the union between Ω0 and ΩC. The magnetic field expression in
(Ωc) is written as:

H = ICt0C +T−grad(Φ). (9)

The current density expression is:

J = rot(T+ ICt0C). (10)

In air region (Ω0), the field expression is reduced to this induced current:

H = ICt0C +T0 −grad(Φ). (11)

Let us have a look to the Ampere’s theorem. Along any closed path C1 which is
entirely in the air and going through the hole, we suppose there is no source current
going through surface enclosed by C1. We have in this case:∫

C1

Hdl =
∫
C1

(ICt0C +T0 −grad(Φ))dl = IC. (12)

The second term in the right-hand side is equal to zero due to the above condition;
the third one vanishes thanks to nature of scalar potential. Finally, Ampere’s theorem
is verified.

If there are k holes, the presented formulation can be generalized to take into
account the k currents circulating around holes. In that case:

H =∑
k

ICkt0Ck +T−grad(Φ) in conducting region(Ωc), (13)

J = rot(T+∑
k

ICktC0k), (14)

H =∑
k

ICkt0Ck +T0 −grad(Φ) in air region(Ω0). (15)



Analyzing the field expression in this formulation, we have to clarify some points.
Firstly, the induced current ICk is an unknown and must be linked to the total current
in the solid conductor by an additional relation [3, 4]. Secondly, the computation
of t0ck could be carried out thanks pre-processing computations. Firstly, an elec-
trokinetic’s computation is provided. This could be achieved by imposing electric
potential differences on a virtual cut in the multiply connected conductor and then
compute the current density j0k. Secondly, computation of t0CK can be achieved
using the relation between j0k and t0k mentioned above. Once this information is
known, the general solution can be carried out without further consideration of the
cut. Interested readers are referred to more detailed literature in [4, 5]. We will here
concentrate on the automatic generation and specific treatment of this cut.

This cut is an artificial handle in order to compute the current density j0C. In elec-
tromagnetic simulation, asking users to manually cut their multi-connected conduc-
tor during the modeling process is not consistent. Moreover, if users do not know
how to create the right cuts, the obtained results could be completely incorrect. This
could arise from complicated conductor’s configurations with more than one hole
for instance. Hence it is evident that we must automate the creation of these cuts and
the linked current density j0C computation.

3 Automatic Cut Algorithm – Application in NDT

The basic idea of creating the cut automatically is modeling the inflation of a virtual
balloon in a hollow torus. The balloon is kept simply connected by increasing con-
tinuously its volume. This process is bounded because the torus volume is limited.
This means at the final phase of the process, joining part of the balloon’s boundary
must form the required cuts [6].

Cuts are modeled by shell elements with double nodes having the same coordi-
nates. Electric scalar potential are imposed on both sides of cuts to create the current
distribution. Values of electric potential can be chosen arbitrarily and scaled to lead
to a global unit current.

The algorithm is implemented and tested in a standard the finite elements code
Flux [7] and lead to excellent results in some cases. In other applications, for exam-
ple in NDT problems, this algorithm reveals a major drawback. In fact, NDT geome-
tries contain one or more very thin cracks – crossing or not. When applying inflating
balloon algorithm to these geometries, it can lead to “T-shaped” cuts (see Fig. 2).

This situation occurs because we did not implement any control on the inflating
direction in the algorithm. Hence, balloon’s boundaries developed themselves freely
in all directions and they could meet each other. From a topological point of view,
these crossing cuts cause any trouble because they effectively divide the multiply
connected volume into simply connected one. All holes are linked to outward by
these cuts.

But from a modeling point of view, these cuts are not straightforward to work
with. In fact, on the junction of more than one branch of cuts, values of electric



Fig. 2 Crossing automatic cuts
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Fig. 3 “T-shaped” cut and protection wall around existing cut redirects future cut to exterior

potential can not be simply affected in existing formulations. Currently, these kinds
of “T shaped” cuts leads to a failure j0C computation.

This problem can be solved by modifying the numerical implementation of
shell elements allowing the management of scalar potential value on nodes located
in “T-shaped” area. Potential jumps must be attributed depending on number of
branches at each junction. However, this solution is difficult to implement and we
prefer to control the number of cuts created after inflating process and force the
algorithm to create a separated cut for each hole.

This solution has been implemented with the following strategy. First of all,
“T-shaped” cuts are considered and an extra branch is eliminated for each T to get
simple cuts. The procedure is repeated until no more “T-shaped” will be found. At
the end of this step, cuts are missing in comparison with the number of holes. In the
following, 2D model and previous notations are used to facilitate the comprehen-
sion.

Inflating algorithm is the applied one more time but existing cuts have to be
protected to prevent new cuts to join the old ones. If we call Ω the whole domain
and CK any existing cut, we form a special bounded sub-domain ΩK for each CK. If a
future cut plugs into these ΩK, they will be redirected to exterior or holes (see Fig. 3)
hence preventing formation of crossing cuts. This is repeated until the number of
cuts is equal to the number of holes.
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Fig. 5 Automatic cuts after treatment

One can observe that ΣΩK �= Ω, or Ω/ΣΩK �= Ø. This means in some cases,
linked protected zones can divide the great domain into separated sub-domains
ΩSSub. Hence inflating algorithm will have some difficulties to generate correct
number of cuts. This situation is occurring when dealing with low-meshed geome-
tries in which sub-domains ΩK have more chances to touch each other (see Fig. 4).
To get rid of this problem, initialization phase of inflating algorithm must be care-
fully prepared. It must permit initial element having random walk onto ΩSSub so
that all positions could be scanned by the algorithm. This technique has been imple-
mented in our work and gives interesting results (see Fig. 5).

We present here some computation results on a NDT test case with six crossing-
cracks on a 1 mm thick plate (conductivity 59.6× 106 siemens). The probe is an
air-core type one and is located at 5 mm above the plate. It is fed with a current
source at 100 kHz. To demonstrate the robustness of the automatic cut algorithm,
we will compute the global inductance value in both cases of manual cut and the
automatic one.

Figure 6 shows vector field of induced current in the conductive plate. Crossing
cuts detected on Fig. 2 are replaced automatically with separated ones. All holes are
linked to outside. Eddy current circulation is properly computed.



Fig. 6 Eddy current vector field on the conductive plate with automatic cuts

Table 1 Computation comparison

Result in case of Manual cuts Automatic cuts Relative error

Losses in the plate 57.42µW 55.62µW 3.13%
Coil inductance 46.69µH 45.58µH 2.37%

In Table 1, we presents losses and coil inductance in both cases. A slight differ-
ence between two results can be observed. This must be principally due to the mesh
variation between two cases.

4 Conclusion

The application of automatic cuts algorithm with some adapted treatments for EC-
NDT geometries leads to an easier use of T0 −T−Φ formulation. Computation
result is comparable between manual and automatic cut. The creation of cuts is
user-free and contributes to the enhancement of T−T0 −Φ.

References

1. Biro O., Preis K., Renhart W., Vrisk G., Richter K.R., Computation of 3-D current driven
skin effect problems using a current vector potential, IEEE Transactions on Magnetics, 29(2),
pp. 1325–1328, Mar. 1993.

2. Bouissou S., Piriou F., Kieny C., and Tanneau G., A numerical simulation of a power trans-
former using 3-D finite element method coupled to circuit equation, IEEE Transactions on
Magnetics, 30(5), pp. 3224–3227, Sep. 1994.



3. Bedrosian G., Magnetostatic cancellation error revisited, IEEE Transactions on Magnetics,
27(5), pp. 4181–4184, Sep. 1991.

4. Meunier G., Luong H.T., and Marechal Y., Computation of coupled problem of 3D eddy current
and electrical circuit by using T0−T−ϕ formulation, IEEE Transactions on Magnetics, 34(5),
Part 1, pp. 3074–3077, Sept. 1998.

5. LeFloch Y., Meunier G., Guerin C., Labie P., Brunotte X., and Boudaud D., Coupled problem
computation of 3-D multiply connected magnetic circuits and electrical circuits, IEEE Trans-
actions on Magnetics, 39(3), Part 1, pp. 1725–1728, May 2003.

6. Phung A.T., Chadebec O., Labie P., Le Floch Y., and Meunier G., Automatic cuts for magnetic
scalar potential formulations, IEEE Magnetics Transactions, 41(5), pp. 1668–1671, May 2005.

7. Flux Software (http://www.cedrat.com)




