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Renormalized perturbation theory à la BPHZ can be founded on causality as ana-
lyzed by H. Epstein and V. Glaser in the seventies.

Here, we list and discuss a number of additional constraints of algebraic character
some of which have to be considered as parts of the core of the BPHZ framework.
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1. Introduction

Why a talk on Renormalized Perturbation Theory (RPT) in 2008? The consensus

established in the 70’s under the acronym BPHZa is part of elementary particle

physicists’ theoretical equipment.

Yet, the corresponding literature is hard to penetrate for a mind endowned

with good logical connections - typically that of a professional mathematician. This

state of affairs may be assigned, in parts, to some fuzziness about the connection

between the operator version and the functional version (à la Feynman) of quantum

mechanics, in this context.

In standard textbooks[5], the latter are both usually described in formal terms

which are most of the time not subject to any mathematical formalization b.

Parallel to the establishment of BPHZ, and following the path indicated

by E.C.G. Stueckelberg[6][7], N.N. Bogoliubov[1] and coworkers, H. Epstein and

∗CERN, Theory Division, 1211 Genève 23
†Laboratoire d’Annecy-le-Vieux de Physique Théorique, UMR5108, 9 chemin de Bellevue, BP
110, F-74941 ANNECY-LE-VIEUX Cedex, France
aBPHZ: Bogoliubov, Parasiuk, Hepp, Zimmermann, see [1], [2], [3], [4].
be.g. equal time commutation relations for interacting fields, writing down sharp-time time ordered
products.
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V. Glaser [8] have opened the road -also in the 70’s- to such a mathematization.

This path has been scarcely followed for the main following two reasons, as it seems:

• BPHZ has been found tight enough within the physics community mostly

concerned with a large variety of interesting topics.

• E.G.’s constructions have remained beyond a fence which keeps their work

isolated form concrete application of BPHZ, which rely on the algebraic

structure of RPT mostly studied by Z and coworkers[3][9][10][11].

The potentialities of EG have however been tested on classes of popular models

-mostly gauge theories, abelian and non abelian- by G. Scharf (Univ. fo Zürich)

and coworkers[12][13].

¿From the philosophical point of view, EG as well as Z (and K. Symanzik

1970) formulate RPT in a way that does not require the use -and removal- of

regularizations, in much the same spirit as was adopted, in concrete cases, to derive

properly substracted dispersion relations[14].

One of the heroic founders of RPT, J. Schwinger[15], was obviously attracted

by such an approach which he baptized ”source theory” -without realizing that EG

had at least settled the question to all orders of RPT -as a means of curing the

trauma caused by (ultra-violet UV) infinities.

To try and cut a long story short, this program has diffused away from Zürich

(where G. Scharf has retired) to Hamburg and Göttingen, under the joined leader-

ship of Michael Dütsch (abandoned by Zürich) and Klaus Fredenhagen, coworkers

and students[16][17][18][19][20][21].

The road between EG and BPHZ has proved longer than expected.

I will try to summarize some of what has been achieved for RPT on Minkowski

space (which if a very small part of the whole).

2. Free fields

It is customary to start from fields whose equations of motion derive from a La-

grangian.

We will refrain from doing so a priori, because of the famous example of the free

Maxwell field, linear in the creation and annihilation operators for photons with

two helicity states, as derived form Wigner’s representation of the Poincaré group

for zero mass, helicity ±1.

The free Maxwell equations

∂µFµν = ∂µF̃µν = 0(F̃µν =
1

2
ǫµνρσFρσ) (1)

do not derive form a Lagrangian.

For algebraic reasons which will become manifest as we go along we shall however

land very close to this restricted class of free fields.

For what concerns us, these are Wightman fields[22][23][24]. We shall however

give up the assumption that the Fock space under consideration has a positive
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definite Hilbert space metric -allowing for fields which have proven useful in the

framework of gauge theories-. The connection between spin and statistics can then

be jeopardized.

Given a finite set of free fields ϕ̂, the (Z2 graded-) commutative algebra Ŵ of

local Wick polynomials of the field and their derivatives offers a quantum analog

for the space of local interactions[23].

”As is well known”[20],

Ŵ ∼ P/J(E) (2)

where P is the algebra of local polynomials of similarly labelled classical fields

and J(E) the ideal generated by the equations of motion fulfilled by ϕ̂.

This ”well known” fact has however to be taken with a grain of salt because,

if ϕ̂ is to take values in a representation space of SL2C × SL2C- with regard to

Lorentz covariance- or some ”internal” compact global symmetry group G, P it-

self comes as a quotient of P
L

(free algebra generated by monomials ≡ [EG]’s

supermultiquadriindices) by an ideal of relations fulfilled by monomials

J (SL2C × SL2C) (resp J (G)). (3)

For instance J (SL2C × SL2C) is generated by the relations which express the

linear dependence of three vectors in 2-dimensional space[25][26][27][28]

0 = υ1 ∧ υ2 ∧ υ3 = υ1(υ2υ3) + υ2(υ3υ1) + υ3(υ1υ2) (4)

where (υiυj) = υα
i εαβ υβ

j , εαβ = −εβα, ε12 = +1.

This caveat will take its strength from linearity, resp. multilinearity, require-

ments we shall be inclined to enforce on the following constructions.

Regarding the quotient by J (E)(resp J
L

(E)), we shall only consider the sim-

plest situation where

P = [W ]
⊕
J (E)

resp P
L

= [W ]
L

⊕
J

L

(E) (5)

which is almost as strong as requiring that the fields derive from a non degener-

ate Lagrangian. Fields fulfilling such a strong requirement will be baptized regular

fields.

Fields which are solutions of a hyperbolic system for which there are uncon-

strained Cauchy data on fixed time hypersurfaces are regular.

This is as broad as we could find a substitute for the usual canonical formalism.

(N.B.: Restriction at fixed time is legal for distribution solution of a hyperbolic

equation).

In view of these delicacies we have to leave the operator framework for a func-

tional set up where[18]

ϕ̂→ ϕ similarly labelled classical field
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: m̂α(ϕ̂, Dϕ̂) : → mα(ϕ, Dϕ) classical monomial

: : m̂α1 : (ϕ̂, Dϕ̂)(x1) . . . : m̂αn : (ϕ, Dϕ)(xn) : → mα1(ϕ, Dϕ)(x1) . . . mαn(ϕ, Dϕ)(xn)

operator product ordinary product

: F̂ (ϕ̃) :: G̃(ϕ̃) : → F (ϕ) ∗G(ϕ)

= F (ϕ)exp

[
i~

∫
dxdy

←−
δ

δϕ(x)
∆+(x− y)

−→
δ

δϕ
(y)

]
G(ϕ)

(Ω, ϕ̂(x)ϕ̂(y)Ω) = i~∆+(x− y)

(Ω, F̂ (ϕ̂)Ω) ⇒ 〈F (ϕ)〉 = F (ϕ) |ϕ=0

Ω : vacuum state in Fock space (6)

ϕ will be taken among smooth functions. Its growth properties become impor-

tant in the discussion of the so called adiabatic limit which will not be touched

upon here.

F will be taken form the space of functionals of ϕ.

Functionals with arguments from P
L

read:

F =
∑

n

∫
dx1 . . . dxn Fα1...αn

(x1, . . . xn)mα1(ϕ)(x1) . . . mαn(ϕ)(xn) (7)

where the F[α]’s are distribution kernels.

3. EG’s causality condition

In view of the algebraic delicacies we have mentioned, we shall work within P
L

and

functionals thereof. The effect of interactions is described by a scattering operator

in Fock space. The corresponding functional will be constructed as a formal power

series in a set of smooth coupling functions {gα} associated with a monomial basis

{mα(ϕ, Dϕ)} of P
L

.

Following tradition, we shall write

S(g, ϕ) =

∞∑

n=0

Sn(g, ϕ)

= 1 +
i

~

∫

Mτ

d4x
∑

α

gα(x)mα(ϕ, Dϕ)(x)

+
∑

h>2

(
i

~

)n
1

n!

∫

M×n
4

dx1 . . . dxngα1(x1) . . . gαn
(xn)

· T (mαi(ϕ, Dϕ)(x1) . . .mαn(ϕ, Dϕ)(xn)) (1)

the coefficients of which will be determined recursively.

By construction, they are symmetric in their arguments (which reflects the

commutativity of space time M4, here, Minkowski space).

The g’s are chosen with compact support or in S. This is partly a technical

convenience, some of the physical content of the construction being concerned with

the limit gα(x)→ gα (cst) for some α’s, (the so called adiabatic limit).
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In order to conform with usage, we have kept ~ (”Planck’s constant”) as a formal

variable to which are attached some combinatorial properties of the construction.

The causality requirement is

S(g1 + g2, ϕ) = S(g1, ϕ) ∗ S(g2, ϕ) (2)

for suppg1, & suppg2

≡ suppg1

⋂
suppg2 + V̄− = Ø) where V̄ − is the closed past light cone). This is

called causal factorization.

 

 Supp g1 

    Supp g2 

This is turned by EG into the double recursion hypothesis:

1) T α[n](Xn) = T α[I](XI) ∗ T α[I′](XI′)

XI & XI′

2) [T α[n](Xn) ∗ T α[n′](Yn′)] = 0

Xn ∼ Yn′

n < N, n′ < N (3)

[Notation:

(1, . . . n) = [n]

Xn = (x1, . . . xn) ; xi ∈M4

α[n] = (α1 . . . αn) (4)

I ⊂ [n], I ′ ⊂ [n], I ∪ I ′ = [n] I 6= ∅ I ′ 6= ∅ I ∩ I ′ = ∅

XI & XI′ ≡ {xi & xi′ i ∈ I i′ ∈ I ′}
Xn ∼ Yn′ ≡ {Xn & Yn′ and Yn′ & Xn} . (5)

At order N , one constructs

T
α[N ]

I (XN ) = T α[I](XI) ∗ T α[I′](XI′), I ∪ I ′ = [N ] (6)
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whose existence is guaranteed by E.G.’s th0 (which states that Wick polynomials

of free fields can be multiplied by translation invariant distributions).

Using (1) and (2), one proves

T
α[N ]

I (XN ) = T
α[N ]

J (XN ) inCI ∩ CJ (7)

where

CI = {XI & XI′} . (8)

¿From geometry

⋃

I

CI = M×N
4 \DN (9)

where DN is the diagonal {x1 = . . . = xn}.
Using (K. Fredenhagen) a partition of unity {αI} subordinated to the covering

{CI} of M×N
4 \DN , one defines there[29]

T̃ α[N ](XN ) =
∑

I

αI(XN ) T
α[N ]

I (XN ) (10)

which, by 1) and 2), is shown to be independent of the choice of {αI}.
Renormalization consists of extending T̃ α[N ](XN ) to all of M×N

4 [30][31].

This involves several steps which constitute the hard core of EG.

(i) reducing to scalars : one looks for solutions which fulfill the Wick Taylor ex-

pansion formula:

T (mα1(ϕ, Dϕ)(x1) . . . mαn(ϕ, Dϕ)(xn)) =
∑

β∪γ=α

〈T mβ1(ϕ, Dϕ)(x1) . . . mβn(ϕ, Dϕ)(xn)〉

× mγ1(ϕ, Dϕ)(x1) . . . mγn(ϕ, Dϕ)(xn) (11)

(ii) Reduce T to T c (c for ”connected” through a ”log” algorithm)

(iii) Enforce translation invariance, by construction.

(iv) Show that 〈T c〉 can be extended (one way is to use regularizations and renor-

malization).

(v) Classify the ambiguity of the extensions. They have support DN . In the oper-

ator formalism there is a theorem ([8], [32]) which guarantees that it is of the

form

∆T α[N ](X) =
∑

β

P
α[N ]

β (∂)δ(x1 − xN ) . . . δ(xN−1 . . . xN )mβ(ϕ, Dϕ)(xN ) (12)

where P (∂) is a differential operator with constant coefficients.

In the off shell formalism, one decides to restrict oneself to such ambiguities.
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(vi) Power counting theory.

One can restrict the ambiguities so that

deg P
α[N ]

β ≥
[

N∑

i=1

(ωαi − 4)

]
− (ωβ − 4) (13)

where the power counting index

ωα = ω(mα) = ω
(
ΠiD

αiϕi
)

=
∑

i

[
ω(ϕi) + |αi|

]
(14)

ω(ϕi) is computable form ∆+ij ωi + ωj − 4 = naive scaling dimension of

∆̃+ij(p).

Remark: (Dütsch Fredenhagen[16]) if one imposes the Wick Taylor expansion

formula to hold then the ambiguity ∆T αN has the above form.

This summarizes a very small (although already quite sizeable!) part of EG.

4. Further constraints

We have already seen one constraint one may wish to impose on T products (besides

symmetry, translation covariance). One needs more before the space of ambiguities

reaches a manageable size, but one has to be aware of the fact that the constraints

one may wish to impose have to be shown compatible.

Among those which seem to be part of the game and have not found so far any

replacement, are the following.

4.1. Multilinearity (K. Fredenhagen)c

The T ’s are multilinear in their arguments (e.g., relating T 2mα . . . with T (mα . . .).

This seems to be an ”obvious” requirement to make, but it is absolutely not inno-

cent. It is in particular this requirement which has lead us to go off shell (and even

to P
L

).

Going back to the operator formalism in Fock space (Dütsch Boas)[20] then

requires showing that one can construct T products in the functional formalism

which belong to FJ (E) the ∗ ideal in the ∗ algebra of functionals) whenever one

argument belongs to J (E).
One can do this in the particular case where one can write

P⊕ = J ⊕(E)⊕ [W ] (1)

cK. Fredenhagen. Many of the notions used here, besides multilinearity, are due to him, in writing
or otherwise:

• identifying the product of functionals as a ∗ product,

• identifying AWI as a sufficient condition for the main theorem of renormalization to produce
an unambiguous answer,

• identifying the Wick Taylor expansion formula as the solution of a Ward identity.
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for some representative [W ] of W , in particular, in the case of ”regular” fields

(introduced for this purpose).

On the other hand we have at the moment nothing to say about the quotient

by J (SL2C × SL2C) when Lorentz covariance is required.

4.2. The Action Ward Identity (AWI)

∂x
µT (mα(ϕDϕ(x) . . .) = T∂x

µmα(ϕ, Dϕ)(x) . . . (2)

This has several names within BPHZ : solving the routing problem (W. Zimmer-

mann), energy momentum conservation at each vertex of a renormalized Feynman

Graph), S(g) only depends on S1(g) not on the Lagrangian density ...

It can be imposed in the functional formalism (Dütsch Fredenhagen[16]), much

less so in the operator formalism, the problem there being to find what subset of

AWI is compatible with the quotient by J (E).
A representative P⊕

bal of P⊕ \Pol+(∂)P⊕ (polynomials without term constants)

can be found, e.g. by going to Fourier transform, for each monomial and perform the

change of variables (p1 . . . pn → p1 + . . . pn, p1, . . . pn−1) for a monomial involving

n 6= fields and, for identical fields, express symmetric polynomials in p1 . . . pn in

terms of the symmetric functions (
∑

pi,
∑

i6=j pi ⊗ pj + pj ⊗ pi, . . .).

Then one can prove

P⊕ = Pbal ⊕ Pol+(∂)Pbal. (3)

Take then an arbitrary solution for T , restrict it to arguments from Pbal, and

define it on Pol+(∂)Pbal by using AWI. Check this is a solution, which fulfills AWI,

by construction. This has a very desirable consequence (Dütsch Fredenhagen[16]):

in order to pass from one solution SI(g, ϕ), to another SII(g, ϕ), one can recur-

sively absorb the ambiguities by which they differ at each order, into counterterms:

S1(g, ϕ)→ S1(g, ϕ) + (∆I,IIS1(g, ϕ). This operation is in general not unique (due

to the possibility to perform partial integrations).

It does become unique if the T ’s are restricted by AWI.

Then the corresponding S’s can be written as functionals of gbal and ϕ (and

does not depend on the choice of gbal) and the ambiguity which allow one to go

from SI to SII acquires a natural group structure (the Stueckelberg Peterman

renormalization group. M. Dütsch, K. Fredenhagen[16])

SI
(
GI II

bal (gbal), ϕ
)

= SII (gbal, ϕ) (4)

where GI II is a formal power series, local in gbal).

One has

GI III
bal = GI II

bal ◦GII III
bal

GI II
bal ◦GII I(gbal) = gbal. (5)

Where ◦ is the composition of formal power series.
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N.B.: Power counting restrictions are essential for this to make sense (cf. Bour-

baki Alg. Ch IV [33]).

The recursively defined ambiguities necessary at each order to have SI match

with SII , collected into one formal power series local in gbal, ∆
I II
gbal

(= O(g2
bal))

provide a parametrization

GI II
bal (gbal) = gbal + ∆I II

bal ◦GI II
bal (gbal). (6)

This is N. Bogoliubov’s recursion relation[1]. It is solved by W. Zimmermann’s

forest formula[3] (cf. FM. Boas[17])

N.B.: This is an equation of the type y = x + f(y) which, since Lagrange and

Laplace has prompted a vast amount of literature [e.g. M. Haiman, W. Schmitt,

Jour. Combin. Th. 50, 172-185 (1989)[34]. [Thanks to S. Lazzarini for this refer-

ence].

The particular case of RPT has been closely scrutinized by A. Connes, D.

Kreimer)[35].

Actually AWI is not only sufficient but necessary if one wants the ambiguities

to be endowned with a group structure.

This is however not yet the renormalization group of BPHZ for which one has

to reduce P(⊕) to W⊕ and gbal to gphys
bal (the ”physical” coupling constants to be

defined).

This has been done in the case of regular fields.

4.3. The Wick Taylor expansion formula

already mentioned, optional.

4.4. Connectedness and the ~ expansion d

Connectedness has also has been used in the construction of a solution.

A combinatorial property of the Wick Taylor expansion formula is that the

connected T c’s are formal power series in
√

~ - and their vacuum expectation values

formal power series in ~- at the heuristic unrenormalized Feynman graph level or

at the level of the Wightman functions.

One may impose this as M. Dütsch, K. Fredenhagen, F. Brennecke do. Or,

one may derive [38] it from a naturalness assumption according to which, within

equivalence classes of free fields, isomorphisms should give rise to one to one corre-

spondences between the corresponding T products. Here, apply this to ϕ and ϕ
√

~,

and ϕ→ −ϕ.

Combined with multilinearity, this puts constraints on ambiguities allowed by

power counting.

dThe combinatorics of the connected can be done either as in [36] or using Ruelle’s ∗ product [37]
which is the dual of the commutative coproduct standard for tensor algebras [33].
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Naturalness also applies to Lorentz covariance and covariance under compact

internal symmetry groups which may be parts of the attributes of the free fields.

5. General properties of R.P.T.

5.1. Local insertions and the renormalized action principle

Much of the combinatorial structure of RPT is connected with the renormalization

group structure of the ambiguities.

The corresponding Lie algebra is the Lie algebra of ”local insertions”

∆ =

∫
dgx

∑

α

∆α(g, Dg)(x)
δ

δgα(x)
(1)

(where g means gbal), where the ∆α’s are local and constrained by power counting.

They are compatible with the causal factorization property

(∆S)(g1 + g2, ϕ) = (∆S)(g1, ϕ) ∗ S(g2, ϕ) + S(g1, ϕ) ∗ (∆S)(g2, ϕ) (2)

suppg1 & suppg2, as a consequence of the locality of ∆α and the commutativity of

∆ with the ∗ product.

As a result, S + ∆S fulfills causal factorization up to O(∆2).

Any ∆ with this property therefore provides a ∆S which is an infinitesimal

ambiguity, and therefore has the above form.

The totality of such ∆’s (local derivations of the ∗ algebra of functionals) is

not known. Some particular cases give rise to the so called ”renormalized action

principles” (Lowenstein[10], Lam[11], Breitenlohner, Maison[9], Dütsch[19]). For in-

stance:

∆ϕ =

∫
d4x ∆i(g, Dg)(x)

δ

δϕi(x)

∆tϕ =

∫
d4x ∆(g, Dg)(tϕ)i δ

δϕi(x)
if [t, ∆+] = 0

∆Eϕ =

∫
d4x ∆(g, Dg)(x) E(∂) ϕ(x)

δ

δϕ(x)
if E(∂)∆+ = 0 (3)

The RAP’s are usually presented within the framework of the Lagrangian for-

malism, for functionals introduced in that framework, in the adiabatic limit which

we have not touched upon. Here, we shall limit ourselves to what we think is a key

step in this direction, namely isolating the role of the free field equations of motion.

Assume one can find Pbal such that

Pbal = Pphys ⊕ PJ (E) (all elements ∈ J (E))
gbal = (gphys, gE) (4)

This can be done (with some efforts for regular (⊃ Lagrangian) fields. One can

find
∑

c(gphys, gE , ϕ) such that

δΣc

δgE
⊂ FJ (E) (5)
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the ideal generated by J (E) in the space of functionals.

This can be proved by recursion. Then, one has

Sc (gphys, gE , ϕ) = Σc (Gphys(gphys, gE) GE(gphys, gE), ϕ) (6)

Differentiating with respect to gE and taking vacuum expectation values, which

annihilates terms belonging to FJ (E), one gets
〈

δSc

δgE

〉
=

δGphys

δgE

(
δGphys

δgphys

)−1 〈
δSc

δgphys

〉
(7)

In other words, equations of motion multiplied by composite operators are ex-

pressible in terms of physical couplings. This contains RAP for the usual Zc(g, J).

(see section 5.3).

5.2. Models

Models are defined by submanifolds in the space of coupling functions which are

stable under the action of the renormalization group.

This is an old idea (e.g., scalar electrodynamics has one more parameter than

spinor QED, namely a quartic self coupling of the scalar field). This has been revived

under the name ”reduction of coupling constants” by W. Zimmermann, R. Oehme,

K. Sibold and followers[3].

Most models are defined by a system of Ward identities in involution -modulo

the proof that they can be fulfilled ”without anomalies”-, besides AWI. Ex. gα = 0

ωα > 4 (renormalized models).

5.3. Contact with the conventional functional formalism

Separating g and j. the coupling function of the field itself one can show that, given

a ∆F ,

S (g, j = 0; ϕ + ∆F ∗ j) e
i
~
〈j,ϕ〉+ i

2~
〈j,∆F ∗j〉 (8)

solves the causality program.

If the field derives from a Lagrangian
(
∆∗−1

F = Pol(∂)δ = Kδ
)
, the ∗ product

is expressible in terms of j. For ϕ = 0

Z(g, j) = S (g, j = 0, ∆F ∗ j) e
i

2~
〈j,∆∗

F j〉 (9)

fulfills causality with respect to g, j with

∗ = exp
i

~

∫
dxdy

δ

δ
←−
j (x)

←−
Kx∆+(x− y)

−→
Ky

δ

δ
−→
j (y)

. (10)

One then defines the IPI generator Γ(g, ϕ) by Legendre transform.

This can be done starting from Sc(g, o; ϕ) itself without the need of a Lagangian:

Sc(g, o; ϕ) = Γ′(g, φ)− 1

2

(
δΓ′

δφ′
, ∆F ∗

δΓ′

δφ

)
|
φ=ϕ+∆F ∗ δΓ′

δφ

(11)
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which is inverted by

Γ′(g, φ) = Sc(g, 0; ϕ) +
1

2

(
δSc

δϕ
, ∆F ∗

δSc

δϕ

)
|ϕ=φ−∆F∗ δSc

δϕ
(12)

(Γ′ is the interacting part of Γ, i.e. the ”effective interaction”).

It is customary, in view of the adiabatic limit to eliminate from both Z and Γ

the term independent of j, resp. ϕ, and to define Γ, as well as Γ′ in such a way

that it starts with terms quadratic in φ. Zc has a term linear in j with coefficient

F = ∆F ∗ δSc

δϕ
|ϕ=0 which can be absorbed in the Legendre transform formula: it

suffices to change φ into φ + F in the stationarity condition in order to have a Γ′

which starts quadratically in φ.

6. Conclusion and outlook

There are still many ”details” to be filled in, and, if possible, simplified in com-

parison with the existing proofs. There are also some ”terrae incognitae”. Here are

some, belonging to either species.

6.1. J (E)

Besides regular fields which may be slightly more general than those deriving from

a non degenerate Lagrangian, the only case which has been looked at is that of the

Maxwell field Fµν , which provides some understanding of the collection of exotic

fields used in the perturbative treatment of gauge theories. This has been started

by Michel Dubois-Violette who found a geometrical characterization of the Faddeev

Popov ghost (mostly unpublished because of difficulties with the tip of the light

cone). This has been continued (R.S. in ”Fifty years of Yang Mills” 2004) but is by

no means complete.

6.2. Extending distributions

It may be worthwhile studying 〈T̃ λ(x)〉 = 〈T̃ (λx)〉 for λ > 0 and its Mellin trans-

form (cf. M. Bergére and YMP Lam circa 1975). This may provide a substitute

for the dimensional complex parameter ǫ, without the group theoretical drawbacks

associated with

6.3. J (SL2C × SL2C)

6.4. Connexity and 1PI

There is some nice combinatorics associated with connexity (F. Patras, M. Schocker

2005[39], [40]). It would be nice to have a direct algebraic proof for the connexity

of the Ruelle Araki products (EGS 75)[36] and a streamlining of the proof of the

corresponding spectral properties. Same for 1PI.



January 22, 2009 9:11 WSPC/INSTRUCTION FILE
Contribution˙RStora.hyper17679

Renormalized perturbation theory 13

6.5. The adiabatic limit

If the distributions 〈T̃ (X)〉, 〈T (X)〉 are defined as temperate, (the coupling func-

tions belonging to S, it may be desirable to study 〈T̃ λ(X)〉 for λ → ∞ by lifting

them to a suitable compactification of M
×|X|
4 and view the adiabatic limit as an

extension problem on this compactification, to the compactification set (manifold).

The recursion procedure together with a characterization of the ambiguities may

lead to an infrared renormalization group.

6.6. From the off shell (functional) framework to the on shell

(operator) framework

The connection between the two set ups, which plagues quantum field theory de-

serves more care.
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Appendix A. More general perturbations

During the colloquium Manuel Asorey asked the tantalizing question: can one de-

scribe interactions among more general local fields, beyond free fields. This is not

only a natural question: it has been faced within the study of integrable perturba-

tions of conformal fields. A systematic renormalized perturbation theory does not

exist, however. We shall sketch out what seem to be the hardest obstructions to

such a construction.

So let ϕ̂ be some Wightman fields (characterized by Wightman functions

W (x1 . . . xn) = (Ω, ϕ̂(x1) . . . ϕ̂(xn)|0).

We need a space of interactions; it is natural to choose the Borchers class of ϕ̂.

If ϕ̂ is described by some renormalized perturbation theory, the Borchers class will

be labelled by local polynomials in ϕ̂ just as that of some corresponding free fields.

The model we have in mind is described in EG:

V (g, h) = S−1(g) S(g + h) (A.1)

fulfills causal factorization for all g’s, with respect to h if S(g) is perturbatively

defined with the latter causal property. We assume that the adiabatic limit g(x)→ g
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(cst) exists. Together with the corresponding field ϕ̂, we have the local monomials

m̂α(ϕ̂).

As in the free field case causal factorization allows to describe the recursive

construction (in powers of h) as an extension problem through the diagonal at the

level of functionals.

The construction gets stuck, with the present technology at the level of the

reduction to scalars:

The Wick Taylor formula can be generalized following a construction due to AS

Wightman and J. Challifour (1966 unpublished) modulo a slight generalization to

include all m̂α’s Wick products
... ·

... can be defined by the Wick Taylor formula:

m̂α1(x1) . . . m̂αn(xn) =
∑

βi∪γi=αi

(
Ω, m̂β1(x1) . . . m̂βn(xn)Ω

)

...m̂γ1(x1) . . . m̂γn(xn)
... (A.2)

with the convention m̂φ = 1, and there follows Wick’s theorem

... m̂[α](X)
... ·

... m̂[β](Y ) =
∑

C [α][β];[α′][β′](X ∪ Y ) m̂[α′′]∪[β′′](X ∪ Y )

[αj ∪ [α′′]] = [α]

[βj ∪ [β′′]] = [β] (A.3)

where the contraction symbol C [α][β];[α′][β′](X ∪ Y ) is given by

C [α][β];[α′][β′] =
∑

k

∏

κ

〈
m̂[α′

κ][β′

κ](X ∪ Y )
〉T

⋃

κ

[α′
κ] = [α′]

⋃

κ

[β′
κ] = [β′]

α′
n · β′

κ not simultaneously empty (A.4)

〈 〉T refers to the truncated expectation values.

The difficulties with these Wick prodcuts
... ·

... is that, in general

(1) they only fulfill local commutativity (not, necessarily, full commutativity as
...

...)

(2) they are insufficiently renormalized (only vacuum contributors to divergences

are substracted out), so that they do not fulfill theorem 0 of EG (multiplicability

by translation invariant distributions.

Note however that using

m̂α(x) =
... m̂α(x)

... (A.5)

(assuming 〈m̂α(x)〉 = 0).
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We can apply Wick’s theorem to deduce

〈m̂α1(x1) . . . m̂αn(xn)〉 = Cα1...αn(x1 . . . xn) (A.6)

where Cα1...αn(x1 . . . xn) is given by a sum of products of truncated functions which

can be associated with a graph involving not only oriented lines joining two different

vertices but also oriented circles joining larger subsets of points from (x1 . . . xn).

These expressions are well defined as distributions because of the spectral prop-

erties which imply that the WT ’s are boundary values of functions holomorphic in

tubes in the difference variables, which allows to multiply boundary values.

The problem is now to define the corresponding time ordered products recur-

sively. In the free field case, as already mentioned, there are two crucial properties:

(1) the Wick algebra is commutative

(2) it admits translation invariant distribution coefficients (THO)

Concerning 1) one may extend the above combinatorics to T products, which

looks somewhat circular since it involves
... T (·)

...’s for which there is no natu-

ral definition. 2) is even more problematic. In case of emergency, one may try to

renormalize the time ordered versions of the contraction symbols. The correspond-

ing combinatorics has been studied (excluding renormalization) in a recent article

which the authors kindly sent me upon return from this conference: C. Brouder, A.

Frabetti, F. Patras: ”Decomposition into one particle irreducible Green functions

in many body physics” : arXiv: 08033747, v.1 [cond-mat-str-el], 26 Mar 2008.
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