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Statistics for low-lying zeros of Hecke L-functions in the level aspect

Guillaume Ricotta

1. Introduction

We would like to provide evidence for the fact that zeros of L-functions seem
to behave statistically as eigenvalues of random matrices of large rank throughout
the instance of Hecke L-functions. First, we remind you of Iwaniec-Luo-Sarnak’s
results on one-level densities for low-lying zeros of Hecke L-functions (see [5]) and
Katz-Sarnak’s results on one-level densities for eigenvalues of orthogonal random
matrices (see [6]). Then, we explain that Hughes and Miller (see [1]) found a new
example of a very strange phenomenon discovered by Hughes and Rudnick (see
[2]) called mock-Gaussian behavior. These works were carried on by the author
and Royer in the context of low-lying zeros of symmetric power L-functions in the
level aspect (see [7]).

Acknowledgements. The author would like to thank Henri Cohen, Hendrik W.
Lenstra and Don B. Zagier for inviting him to the Mathematisches Forschungsin-
stitut Oberwolfach on the occasion of the workshop “Explicit Methods in Number
Theory”. His visit is financed by the ANR project “Aspects Arithmétiques des
Matrices Aléatoires et du Chaos Quantique”.

Notation. We write P for the set of prime numbers; the main parameter in this
paper is a prime number q, whose name is the level, which goes to infinity among
P. For any ν > 0, Sν(R) stands for the space of even Schwartz functions Φ whose
Fourier transform

Φ̂(ξ) :=

∫

R
Φ(x)e(−xξ) dx

is compactly supported in [−ν, +ν].

2. A quick walk in the world of L-functions

2.1. Hecke L-functions and their zeros. Let f be a primitive cusp form of
level q, even integer weight κ ≥ 2 and trivial character εq say f ∈ H∗

κ(q) (see
[3] for the automorphic background). If (λf (n))n≥1 are its (suitably normalised)
Hecke eigenvalues then we define

L(f, s) :=
∑

n≥1

λf (n)

ns
=

∏

p∈P

(
1 − λf (p)

ps
+

εq(p)

p2s

)−1

,

which is an absolutely convergent and non-vanishing Dirichlet series and Euler
product on $s > 1, and also L∞(f, s) := ΓR (s + (κ− 1)/2)ΓR (s + (κ + 1)/2)
where ΓR(s) := π−s/2 Γ (s/2) as usual. The function Λ(f, s) := qs/2L∞(f, s)L(f, s)
is a completed L-function in the sense that it satisfies the following nice analytic
properties, proved by E. Hecke:

• the function Λ(f, s) can be extended to a holomorphic function of order 1
on C;
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• the function Λ(f, s) satisfies a functional equation of the shape

Λ(f, s) = iκεf (q)Λ(f, 1 − s)

where εf(q) = −√
qλf (q) = ±1.

Let us recall some preliminary facts on zeros of Hecke L-functions, which can
be found in section 5.3 of [4]. If εf (q) = −1 then the functional equation of
L(Symr f, s) evaluated at the critical point s = 1/2 provides a trivial zero. The
Generalised Riemann Hypothesis is the main conjecture about the horizontal dis-
tribution of the zeros of Λ(Symr f, s) in the critical strip.

Hypothesis GRH. For any prime number q and any f in H∗
κ(q), all the zeros of

Λ(f, s) lie on the critical line {s ∈ C : $s = 1/2}.

Under hypothesis GRH, it can be shown that the spacing between two consec-
utive zeros with imaginary part in [0, 1] is roughly of size (2π)/ log (q). Thus, we
normalise the zeros by defining

ρ̂ :=
log (q)

2iπ

(
$ρ− 1

2
+ i&ρ

)

for any zero ρ of Λ(f, s). We aim at studying the local distribution of the zeros of
Λ(f, s) in a neighborhood of the real axis of size 1/ log q.

2.2. One-level density. Fix Φ ∈ Sν(R). Let us define the harmonic probability
measure on H∗

κ(q). If A is any subset of this space then its harmonic probability
measure is defined by

µh
q (A) :=

∑

f∈A

ωf (q)

where the harmonic weight associated to any f in H∗
κ(q) is given by

ωq(f) :=
Γ(κ− 1)

(4π)κ−1〈f, f〉q
and 〈f, f〉q stands for the Petersson scalar product. The random variable on(
H∗

κ(q), µh
q

)
defined by

∀f ∈ H∗
κ(q), D1,q[Φ](f) :=

∑

ρ,Λ(f,ρ)=0

Φ (ρ̂)

is the one-level density (relatively to Φ). Its harmonic expectation is

Eh
q (D1,q[Φ]) :=

∑

f∈H∗
κ(q)

ωq(f)D1,q[Φ](f)

and its m-th moments are

Mh
q,m (D1,q[Φ]) := Eh

q

((
D1,q[Φ] − Eh

q (D1,q[Φ])
)m

)

for any integer m ≥ 1. We may legitimately wonder if the previous sequences of
complex numbers converge as q goes to infinity among the primes. If yes, the fol-
lowing general notations will be used for their limits Eh

∞ (D1[Φ]) and Mh
∞,m (D1[Φ])
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for any integer m ≥ 1. Let ε = ±1. The signed harmonic expectation of the one-
level density is

Eh,ε
q (D1,q[Φ]) := 2

∑

f∈Hε
κ(q)

εf (q)=ε

ωq(f)D1,q[Φ](f)

and its signed m-th moments are

Mh,ε
q,m (D1,q[Φ]) := Eh,ε

q

((
D1,q[Φ] − Eh,ε

q (D1,q[Φ])
)m

)

for any integer m ≥ 1. The possible limits of these sequences will be denoted
Eh,ε
∞ (D1[Φ]) and Mh,ε

∞,m (D1[Φ]) for any integer m ≥ 1.

3. A very quick walk in the world of random matrices

3.1. On classical compact groups. Let N ≥ 1 be an integer. We define

UN := {A ∈ MN(C), AA∗ = 1N} ,

SON := {A ∈ UN ∩ MN(R), det(A) = +1}
where 1N is the identity matrix of size N . These compact groups are endowed with
normalised Haar measures dUN and dSON . We consider the following sequences of
probability spaces

O := ((SON , dSON ))N≥1 ,

SO+ := ((SO2N , dSO2N ))N≥1 ,

SO− :=
((

SO2N+1, dSO2N+1

))
N≥1

.

Note that the eigenvalues of any A ∈ UN can be writen as

exp (iθ1(A)), . . . , exp (iθN (A))

where 0 ≤ θ1(A)) ≤ . . . ≤ θN (A)) ≤ 2π. We define the normalised eigenangles by

∀i ∈ {1, . . . , N}, θ̂j(A) :=
N

2π
θi(A).

since the mean spacing between eigenangles is roughly (2π)/N .

3.2. One-level density. Fix Φ ∈ Sν(R). If KN ⊂ UN is one of the above compact
groups, then the random variable on (KN , dKN ) defined by

∀A ∈ KN , D1,KN [Φ](A) :=
N∑

j=1

Φ
(
θ̂j(A)

)

is the one-level density (relatively to Φ). Its expectation is

EN(D1,KN [Φ]) :=

∫

KN

D1,KN [Φ](A)dKN (A)

and its m-th moments are

MN,m(D1,KN [Φ]) := EN ((D1,KN [Φ] − EN (D1,KN [Φ]))m)
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for any integer m ≥ 1. The limits of the sequences of complex numbers

(EN (D1,KN [Φ]))N≥1 , (MN,m (D1,KN [Φ]))N≥1

as N goes to infinity will be denoted

E∞ (D1,K [Φ]) , M∞,m (D1,K [Φ])

for any integer m ≥ 1.

4. Iwaniec-Katz-Luo-Sarnak’s results on one-level densities

Katz and Sarnak (see [6]) proved the following result.

Theorem 1. If ν > 0 is any real number and Φ belongs to Sν(R) then

E∞ (D1,O[Φ]) = δ0(x) +
1

2
,

E∞

(
D1,SO+ [Φ]

)
= δ0(x) +

1

2
η(x),

E∞

(
D1,SO− [Φ]

)
= δ0(x) − 1

2
η(x) + 1,

where

η(x) :=






1 if |x| < 1,
1
2 if x = ±1,

0 otherwise.

Remark 2. It should be mentioned that if Φ belongs to Sν(R) with ν < 1 then the
three densities match:

E∞ (D1,O[Φ]) = E∞

(
D1,SO+ [Φ]

)
= E∞

(
D1,SO− [Φ]

)
.

A result similar in the world of L-functions was proved by Iwaniec and Luo and
Sarnak (see [5]).

Theorem 3. If ν < 2 and Φ is in Sν(R) then

Eh
∞ (D1[Φ]) = E∞ (D1,O[Φ]) ,

Eh,+1
∞ (D1[Φ]) = E∞

(
D1,SO+ [Φ]

)
,

Eh,−1
∞ (D1[Φ]) = E∞

(
D1,SO− [Φ]

)
.

Remark 4. The crucial fact is that the authors succeeded in breaking the natural
barrier ν = 1.

Remark 5. This result, which is believed to be true without any restriction on
the size of the support ν, suggests that zeros of Hecke L-functions behave like
eigenvalues of orthogonal random matrices of large rank. In addition, a trivial
vanishing at the critical point seems to have some effect on the behaviour of low-
lying zeros.
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5. Hughes-Miller’s results on mock-Gaussian behaviour

For any Φ ∈ Sν(R), one defines

σ2
Φ := 2

∫ +1

−1
|u|Φ̂2(u) du

and

Rm(Φ) := (−1)m−12m−1

(∫

R
Φ(x)m sin (2πx)

2πx
dx − 1

2
Φ(0)m

)

for any integer m ≥ 1. Hughes and Miller proved the following striking result (see
[2]).

Theorem 6. Let ε = ±1 and Φ ∈ Sν(R). We assume hypothesis GRH and the
Generalized Riemann hypothesis for all Dirichlet L-functions. If ν < 1

m−1 then

Mh
∞,m (D1[Φ]) = M∞,m (D1,0[Φ]) =

{
0 if m is odd,

2
∫

R|u|Φ̂
2(u) du × m!

2m/2(m
2 )!

otherwise.

and

Mh,ε
∞,m (D1[Φ]) = M∞,m (D1,S0ε [Φ]) =

{
ε× Rm(Φ) if m is odd,

ε× Rm(Φ) + 2
∫

R|u|Φ̂
2(u) du × m!

2m/2(m
2 )!

otherwise.

Remark 7. It may be checked that if ν < 1
m then Rm(Φ) = 0 while if ν < 1

m−1
then Rm(Φ) is not identically zero. As a consequence, the moments of the signed
one-level densities of low-lying zeros of Hecke L-functions and the moments of the
one-level densities attached to SO− and SO+ are Gaussian if ν < 1

m but cease to
be Gaussian as soon as the support exceeds 1

m . Such a phenomenon was observed
for the first time by Hughes and Rudnick (see [2]) in the particular case of Dirichlet
L-functions. In addition, the defect of being Gaussian is exactly balanced according
to the “sign”, which implies that the moments of the one-level density of low-lying
zeros of Hecke L-functions and the moments of the one-level density attached to
O are Gaussian if ν < 1

m .

Remark 8. Let us explain the different assumptions in the previous theorem.
Firstly, hypothesis GRH may be easily removed. Secondly, the Generalized Rie-
mann hypothesis for all Dirichlet L-functions is crucial for the following reason.
The Gaussian term comes from the diagonal term in Petersson’s trace formula
whereas the non-Gaussian term Rm(Φ) comes from an analysis of sums of Kloost-
erman sums on the prime numbers. Evaluating such sums comes down to evalu-
ating sums of characters over the prime numbers.
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Double zeta values and modular forms

Herbert Gangl

(joint work with Masanobu Kaneko and Don Zagier)

The double zeta values, which are defined for integers r ≥ 2, s ≥ 1, by

(1) ζ(r, s) =
∑

m>n>0

1

mrns
,

are subject to numerous relations. Already Euler found that when the weight
k = r + s is odd the double zeta values can be reduced to products of usual zeta
values. Furthermore, he gave the sum formula

(2)
k−1∑

r=2

ζ(r, k − r) = ζ(k) (k > 2).

The aims of the talk were to give other interesting relations among double zeta
values, and to indicate that the structure of the Q-vector space of all relations
among double zeta values of weight k is connected with the structure of the space
of modular forms Mk of weight k on the full modular group Γ1 = PSL(2, Z).

Double zeta values are a special case of multiple zeta values, defined by sums like
(1) but with longer decreasing sequences of integers, which are known to satisfy
a collection of relations called the double shuffle relations. The specialization of
these relations to the double zeta case is given by the following two sets of easily
proved relations:

(3)

ζ(r, s) + ζ(s, r) = ζ(r) ζ(s) − ζ(k) (r + s = k; r, s ≥ 2) ,

k−1∑

r=2

[(
r − 1

j − 1

)
+

(
r − 1

k − j − 1

)]
ζ(r, k − r) = ζ(j) ζ(k − j) (2 ≤ j ≤ k

2
) .

We wish to study the relations which can be deduced from (3). Since we want to do
this algebraically, it is useful to work, not with the double zeta values themselves,


