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We report on both numerical and experimental results showing the occurrence of band gaps for
Lamb waves propagating in phononic crystal plates. The structures are made of centered rectangular
and square arrays of holes drilled in a silicon plate. A supercell plane wave expansion method is
used to calculate the band structures and to predict the position and the magnitude of the gaps. The
band structures of phononic crystal slabs are then measured using a laser ultrasonic technique. Lamb
waves in the megahertz range and with wave vectors ranging over more than the first two reduced
Brillouin zones are investigated. © 2008 American Institute of Physics. �DOI: 10.1063/1.2970067�

I. INTRODUCTION

A phononic crystal �PC� is made of a periodic arrange-
ment of inclusions embedded into a matrix material with
contrasted elastic properties. As for the PCs, which are its
optical counterpart, the band structures of these composite
structures may present under certain conditions absolute
band gaps where the propagation of elastic waves is forbid-
den whatever the direction of propagation of the incident
wave.1 They have received a great deal of attention since the
beginning of the 1990s, owing to their potential applications
as sound insulators for wave filtering2 or waveguiding.3,4

While most of the works were initially devoted to bulk PC
i.e., composite materials of infinite extent along the three
spatial directions, slabs of PCs have been the subject of sev-
eral studies during the last few years. Indeed, these structures
are well suited to confine and to guide the elastic energy in
between the free surfaces of the slab. Moreover, frequency
gaps for both symmetric and antisymmetric Lamb modes
have been theoretically predicted5–9 and actually
observed10–13 in slabs of two-dimensional �2D� PCs. Note
that this geometry allows for a fine tuning of both the gap
magnitude and the central frequency through proper choices
of the material constituents and of the geometrical param-
eters such as the filling fraction f and the ratio h /a, where h
and a are the thickness of the slab and the lattice constant,
respectively.

In this work, we applied a numerical scheme based on a
plane wave expansion �PWE� of the equations of motion
along three orthogonal directions to calculate the band struc-
tures of silicon plates patterned with 2D air hole arrays. In-
deed, due to the huge contrast in the elastic properties of air
and of the solid matrix, the PWE methods developed to date
fail to compute accurately the band structures of such pat-
terned plates.5 This method overcomes these convergent con-

cerns and allows for an accurate computation of the disper-
sion curves whatever the lattice symmetry and the shape of
the holes.

Then, we have validated our approach by comparing the
numerical results to the experimental data. To this end, we
used a noncontact technique to measure the dispersion
curves of Lamb waves propagating in air/silicon PC slabs.
We have investigated PCs with two types of lattice symme-
try, namely, the square and the centered rectangular lattices.
In both cases, the horizontal component of the wave vector k
lies along more than the first two Brillouin zones. We have
also examined the influence of the filling factor on the results
derived from both approaches.

PWE methods are generally based on the assumption
that the 2D periodic lattice has infinite extents along two
directions, at least. Actually, the samples used in the experi-
ments always have finite sizes. This could be at the origin of
unwanted effects that we analyze in the last part of this pa-
per.

II. MODEL AND THEORETICAL RESULTS

In the course of the numerical calculations of the band
structures of air holes/silicon PC slabs, the slabs are assumed
to be of thickness h along the x3 axis of the Cartesian coor-
dinate system �0,x1 ,x2 ,x3� �e1, e2, and e3 are unit vectors
along the x1, x2, and x3 axes, respectively� and of the infinite
extent in the �x10x2� transverse plane. The holes of square
shape are drilled parallel to the x3 axis and placed periodi-
cally along a square array or a centered rectangular network
with various filling fractions. The origin 0 of the Cartesian
coordinate system is located at the center of an inclusion.
Due to the periodicity in the transverse plane, one may define
a 2D primitive unit cell in the plane perpendicular to the
holes where primitive vectors are depicted in Fig. 1. This
allows one to define a 2D reciprocal space for both arrays of
inclusions. For the square lattice of period a, the primitive
vectors of the 2D reciprocal space are given as b1 : �2� /a ,0�a�Electronic mail: bernard.bonello@insp.jussieu.fr.
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and b2 : �0,2� /a�. Thus, the irreducible Brillouin zone is of
triangular shape and the highest symmetry points are denoted
as �1, X1, and M1. The centered rectangular lattice is de-
duced from the square lattice by simply translating by a /2
along e1, one row of inclusions over two. This yields the
primitive vectors in the 2D reciprocal space b1 : �2� /a ,� /a�
and b2 : �−2� /a ,� /a�. In this case, the irreducible Brillouin
zone is tetragonal and the highest symmetry points are la-
beled �1, X1, J1, and M1.

The band structures were computed using a supercell
�SC�-PWE method. In this method, the PC plate is sand-
wiched between two slabs of thickness d made of a fictitious
low impedance material �LIM� with very low density and
very high speeds of sound modeling vacuum. This allows us
to define a three-dimensional SC whose basis in the �x10x2�
plane includes that of the 2D primitive unit cell of the array
of inclusions and whose height along the vertical axis of unit
vector e3 is l=h+2d. This SC is periodically repeated along
the three spatial directions, and the equations of propagation
are Fourier transformed. This implies to consider a third
component, along the e3 axis, of the primitive vectors of the
reciprocal space to be equal to 2� / l. Due to their very low
impedance in comparison to that of the phononic slabs, the
LIM forbids the interaction between the vibrational modes of
neighboring periodically repeated PC plates. As we showed
in previous papers,7 our SC-PWE method is an efficient and
reliable numerical tool for computing the band structures of
PC plates made of air holes drilled in a solid matrix. It was
also noticed that recently, another numerical work8 reported

a slightly different PWE method. It consists in considering
vacuum layers with zero mass density and elastic constants
as surrounding media. Both these corroborating methods do
not require writing explicitly the boundary conditions on the
free surfaces, therefore alleviating some numerical difficul-
ties such as the computation of pseudomodes without physi-
cal meaning.5

The SC-PWE results for a 200 �m thick silicon plate,
patterned with a centered rectangular and a square array of
air holes displayed in Figs. 2�a� and 2�b� and Fig. 2�c�, re-
spectively. In the calculations, the lattice constants and the
filling fractions were those of the samples we used in the
experiments described below, i.e., h /a=0.2, f =0.21, or f
=0.56, for the centered rectangular symmetry and f =0.56 for
the square symmetry. For a direct comparison between the
computed band structures and the experimental dispersion
curves, we have calculated the band structures for k vectors
lying along more than the second reduced Brillouin zone.
More specifically we considered the k vectors of components
k1 and k2 in the transverse plane with k1 larger than 2� /a
and k2=0. The component k3 of the wave vector along the x3

axis has been fixed equal to 0. It was shown5 that another
value of k3 at the range of �0,� / l� does not significantly
modify the numerical results.

We show in Fig. 2 the results for propagation along the
path �1-X1-M2-J2 in the centered rectangular lattice and
along �1-X1-�2-X2 in the square array. Note that the vibra-
tional modes in the second Brillouin zone �X1-M2 and M2-J2

for the centered rectangular lattice; X1-�2 and �2-X2 for the
square lattice� could be brought back to the first Brillouin
zone through simple translations by vectors b2 �centered
rectangular� and −b1 �square�.

One notes that these band structures do not exhibit ab-
solute band gaps but only local gaps especially for the lower
order antisymmetric Lamb mode A0 �see Table I�. Absolute
band gaps in such air holes/solid PC plates would require
thicker plate and higher filling fractions.7,9

III. EXPERIMENTS

Three silicon plates ��200 �m thick� were patterned by
anisotropic chemical etching, with air hole arrays drilled
throughout �see Fig. 1�. In each case, the rows of inclusions
were parallel to the crystallographic directions �100� and
�010� of silicon with a ratio h /a=0.2. We used a laser ultra-
sonic setup to measure the band structures of these PCs.12

Our experimental technique is based on the laser generation
and detection of acoustic pulses with a broad spectrum.
Broadband acoustic pulses were generated at the surface of
the sample by focusing light pulses issued from a frequency-
doubled �532 nm� Q-switched neodymium doped yttrium
aluminum garnet through a cylindrical lens. The line shaped
spot was about 5 mm long and 70 �m across. In all the
experiments described in this article, the excitation zone was
located a few millimeters ahead of the PC itself, in a region
of the sample free from any air inclusion. The time depen-
dence of the surface displacements was recorded at regularly
spaced distances from the acoustic source using a Michelson
interferometer whose light source was a He–Ne laser. One

FIG. 1. �Color online� Left panel: images of the three phononic structures
under study defined by the primitive vectors in real space �arrows�. Centered
rectangular arrays with f =0.21 �a� and f =0.56 �b� and a square array with
f =0.56 �c�. Right panel: schematic representation of the first �red lines� and
of the irreducible �shaded area� Brillouin zones defined by primitive vectors
in the reciprocal space �arrows�. The coordinates of points �1, X1, M2, and
J2 for the centered rectangular lattice are, respectively, �0,0�, �5� /4a ,0�,
�2� /a ,0�, and �11� /4a ,0�. Coordinates of points �1, X1, �2, and X2 in the
square lattice are �0,0�, �� /a ,0�, �2� /a ,0�, and �3� /a ,0�, respectively.
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beam of the interferometer was focused on the sample �act-
ing as one of the mirrors of the interferometer�, whose spot
size was �15 �m, whereas the reference beam was reflected
by an actively stabilized mirror. The interference pattern was
collected by a high-speed photodiode and then digitized at

100 Msamples s−1 by a digital oscilloscope. Both the cylin-
drical lens and the sample were mounted on translation
stages in such a way that the probe beam could be scanned
across the sample with a precision of about 1 �m. This non-
contact technique allowed us to record the displacement field
at any point at the surface of the sample and to hence resolve
fine details of the interaction of the acoustic waves with the
PC. Note that this interferometric method is only sensitive to
the normal component of the displacements but not to the
in-plane components.

We deduced the dispersion curves of the PC slabs by
performing a time-space Fourier transform of the data. We
were able to investigate Lamb waves with wave numbers
ranging from 0 �� in the reciprocal space� to 7000 m−1,
beyond the critical point M2 in the reciprocal space of the
centered rectangular array or beyond the point �2 in the re-
ciprocal space of the square network �Fig. 1�. The Fourier
magnitudes were resolved with accuracies of ��
=0.05 MHz for the frequency and �k=300 m−1 for the
wave number. The results are displayed in Figs. 3�a� and 3�b�
�centered rectangular lattice� and Fig. 3�c� �square lattice�.
Since our detection scheme is based on a Michelson interfer-
ometer, it is only sensitive to the out-of-plane component of
the ultrasonic waveform. This is the reason why we could
only detect the lower order antisymmetric mode A0, which
has a large out-of-plane component and can therefore be eas-
ily observed by the current laser ultrasonic setup. On the
contrary, the symmetric mode S0, while actually excited as
well as A0, cannot be detected. Indeed, in the vicinity of �
�i.e., at low k and low frequency�, S0 is longitudinally polar-
ized.

We have reported the experimental results in Fig. 3
where the amplitudes of the time-space Fourier transforms
appear in a logarithmic color scale. Band gaps clearly open
in the antisymmetric branch A0 for k=5� /4a and k=2� /a
�centered rectangular �Figs. 3�a� and 3�b��� or k=� /a and
k=2� /a �square lattice �Fig. 3�c���. We have also reported,
as white dots in Fig. 3, the dispersion curves of A0 deduced
from the calculations described above �Figs. 2�a�–2�c��. The
agreement is excellent for both geometries and whatever the
filling fraction is �f =0.21 or f =0.56�, showing that our nu-
merical approach is well suited to predict the elastic behavior
of PC slabs with finite thickness.

One can note, in the investigated area �Figs. 3�b� and
3�c��, the large deviation of the dispersion curve A0 of the PC
plates with f =0.56 from one of the homogeneous silicon slab

FIG. 2. Band structures of patterned silicon plates �h /a=0.2� for the cen-
tered rectangular array with f =0.21 �a� and f =0.56 �b� and the square array
with f =0.56 �c� of air holes. The open circles represent the lower order
antisymmetric mode A0. The quantities on the top are for the modulus of the
wave vector along the e1 axis.

TABLE I. Numerical and experimental values for both position � and mag-
nitude �� of the gaps at the edges of the first and second Brillouin zones for
the different cases studied here: centered rectangular array �f =0.21 and f
=0.56� and square array �f =0.56�.

�1 ��1 �2 ��2

CR �0.21� N 1.03 0.30 2.24 0.21
E 1.05 0.20 2.25 0.25

CR �0.56� N 0.92 0.61 1.99 0.26
E 0.90 0.50 1.95 0.3

S �0.56� N 0.50 0.16 1.67 0.43
E 0.50 0.15 1.65 0.5
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�full line� with the same thickness �h=200 �m�. This is due
to the high filling fraction of the slab decreasing significantly
its effective elastic constants and consequently the wave ve-

locity in the PC. On the contrary, the dispersion curve over-
lays quite well for the lattice owing to a low filling fraction
�f =0.21�. It is also interesting to notice that, in the case of
the centered rectangular symmetry, the midfrequency �1 of
the first band gap is about the same whatever the filling
fraction is �see Table I�.

In addition to the dispersion curves of mode A0, a branch
with a negative slope is clearly observable at the range
�0,� /a� in Fig. 3�c� �i.e., along �1-X1�. To understand the
nature of this mode, one should remember that our broad-
band excitation scheme allows for both the excitation and the
detection of elastic waves with wave vectors outside the first
reduced Brillouin zone. Therefore, folded modes are not ex-
pected to appear in the 2D Fourier transforms of the dis-
placement fields; we rather attribute this branch to the signa-
ture of elastic waves reflected by the edges of the sample
propagating backwards. This is further supported by the
measured amplitude of this mode which is about two orders
of magnitude less than the one measured along the branch at
the range �� /a ,2� /a� �i.e., X1-�2� with the same frequen-
cies. Indeed, these backward waves are detected after they
have traveled over a distance twice as long as the forward
waves and have therefore undergone a strong attenuation
through diffusion by the air hole inclusions.

IV. SUMMARY

We have presented a combined theoretical and experi-
mental study of Lamb waves in 2D PC plates made of square
holes drilled in silicon. We have analyzed the effects of the
geometry of the array of holes and of the filling factor on the
lower order antisymmetric A0 Lamb mode. The results de-
rived from both approaches are in remarkable agreement and
show that local gaps occur for the A0 mode. Considering the
same filling factor, the centered rectangular array leads to
larger gaps than the square network. Using the same reliable
tools, an investigation of localized modes associated with the
existence of structural defects such as rectilinear waveguides
or cavities should be the subject of future works.
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FIG. 3. �Color online� Experimental dispersion curves along �1-X1 of the
phononic plates deduced through the 2D fast Fourier transform from the
measured displacement fields. The color scale is logarithmic. Filling frac-
tions are f =0.21 �a� and f =0.56 �b� for the centered rectangular array; f
=0.56 for the square array �c�. The white dots refer to the numerical band
structures shown in Fig. 2. The solid lines are for the calculated Lamb mode
A0 propagating along the crystallographic axis �100� of a 200 �m thick
silicon homogeneous plate.
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