
HAL Id: hal-00354916
https://hal.science/hal-00354916v1

Submitted on 21 Jan 2009 (v1), last revised 29 Jul 2009 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

MOnKey - A Portable Middleware On Key
Jérémie Albert, Jérôme Castang, Serge Chaumette

To cite this version:
Jérémie Albert, Jérôme Castang, Serge Chaumette. MOnKey - A Portable Middleware On Key. The
20th IASTED International Conference on Parallel and Distributed Computing and Systems (PDCS),
Nov 2008, Orlando, FL, USA, France. �hal-00354916v1�

https://hal.science/hal-00354916v1
https://hal.archives-ouvertes.fr


MONKEY - A PORTABLE MIDDLEWARE ON KEY

Jérémie Albert
LaBRI

University of Bordeaux
351 cours de la Libération

33405 Talence, France
email: jeremie.albert@labri.fr

Jérôme Castang
LaBRI

University of Bordeaux
351 cours de la Libération

33405 Talence, France
email: jerome.castang@labri.fr

Serge Chaumette
LaBRI

University of Bordeaux
351 cours de la Libération

33405 Talence, France
email: serge.chaumette@labri.fr

ABSTRACT
More and more computing resources are available every-
where. They are also more and more connected. The draw-
back is that these resources and network connections are
volatile and heterogeneous. To cope with these problems
we propose a portable middleware that supports the char-
acteristics of these versatile and unstable configurations. It
is called MOnKey and it is the topic of this paper. This
work is partly supported by the French Agence Nationale
de la Recherche under contract ANR-05-SSIA-0002-01.

KEY WORDS
Mobile ad hoc networks, middleware, portable applica-
tions.

1 Introduction and rationale for a middle-
ware on key

In the last decade the number of computers has increased
significantly, and there is hardly any place you can go
where you will not be able to get access to either a com-
puter or a mobile terminal. Furthermore, these resources
are most likely to be equipped with a communication tech-
nology (WiFi [1], Bluetooth [2], etc.). This is a good news
because you can access a number of services from any-
where, but it also raises a number of problems.

Applications must be available everywhere. For a sin-
gle user, having to deal with several computers implies
being faced with several different software configurations.
This means that it may be the case that part of his software
environment is not available or working differently depend-
ing on which computer he is using. To avoid these prob-
lems, portable applications have been created. Portable ap-
plications are applications that are designed and compiled
so as to remain insulated within a portable device, such
as a USB key. It basically consists in making so that ev-
ery file access refers to the portable device itself and that
the applications are statically linked. Furthermore, dedi-
cated pieces of hardware have been designed for these ap-
plications, such as the U3 USB memory keys. These keys
provide an autorun mechanism that usually starts a mini-
mum desktop-like environment so that no interaction at all

is required with the host computer. Many software suites
now offer releases that are compliant with this approach
(Firefox, Thunderbird, GIMP, OpenOffice, etc.). There
are also a number of companies or organizations that pro-
vide compilations of portable applications (Framakey [3],
Liberkey [4]). Thanks to this approach, a user can always
carry with him the different pieces of software he is used
to work with, in the precise configuration he is accustomed
to, and that will run on any binary compatible computer1.

Heterogeneity of devices must be supported.The price
to pay for this wide availability of computing resources is
heterogeneity. The capabilities of these devices (PC, PDA,
mobile phones, sensor nodes, etc.) can be really different.
This is true at the hardware level (battery capacity, etc.),at
the level of the operating system (Linux, Windows, Sym-
bian [5], etc.) and at the level of the supported communica-
tion technologies (Ethernet, WiFi, Bluetooth, ZigBee [6],
etc). The portable applications as described above solve
the problem of having them available at many places, but
this only works provided the machine features remain the
same. We believe that such a limitation is not realistic in
today constellation of mobile terminals: it should be possi-
ble to run the applications everywhere. This thus requires
the support of an underlying middleware that will hide the
differences between the different platforms. This middle-
ware is then portable, the term “portable” referring to the
“portable applications” as described above.

The instability of the communication links must be
dealt with. In this constantly evolving context (users are
moving, machines are moving, new users are joining or
leaving the community), it is impossible to assume stable
communication links. At any given time, any communica-
tion link between two nodes in the network may be broken
because of some external, unpredictable event (some noise
or interferences for a wireless connection, a device in a car
entering a tunnel that thus loses the network, a physical link
failure for a wired connection, etc.). When dealing with
stable networks, it is possible to install a service at some
given node, being sure that it will remain available during

1It should also be noted that this makes it possible to avoid installing a
large number of software on all computers to fulfill the needsof all users.



a reasonable amount of time. For instance this is a basic
assumption in a PKI [7] that makes it possible to setup a
certification authority. In the real mobile and unstable con-
text in which we are working, peer-to-peer is the only ap-
proach that makes sens. This is the approach that has to be
implemented in the portable middleware described above if
we want to be effective in a versatile network.

To summarize our contribution, we have designed a
portable middleware on top of which it is possible to
develop applications that will be supported on any de-
vice with any communication technology. We call this
middleware MOnKey, that stands for Middleware On
Key.

The price we have to pay to reach this goal is that the re-
sulting middleware can only provide low level primitives
that it will be possible to support on any platform and that
will make sens whatever the context. This also leads to lim-
ited communication capacities and broadcast is thus the ba-
sic communication primitive. Nevertheless we have shown
in [8] that it is still possible to develop realistic applica-
tions. An example is the topic of section 3 of this paper.

The rest of this paper is organized as follows. In section 2,
we motivate and show the relevance of our work based on
the context described above an on a description of some of
the significant look-alike existing systems. We then present
the MOnKey middleware itself. Thereafter, so as to illus-
trate our work, we show in section 3 a proof of concept ap-
plication and, in section 4, our first results. We eventually
conclude in section 5 and introduce some future research
directions.

2 Middleware On Key - MOnKey

In this section we present MOnKey, the portable middle-
ware that we have designed.

Let us recall that we are in the particular context of ad hoc
networks. We do not make any assumption about the un-
derlying network and the device used. These could be PC,
PDA or even mobile phones. We also consider that links
between nodes, when they exist, are not permanent. A link
failure can occur at any time for several reasons: a device
can move out of range, the key where the MOnKey mid-
dleware is installed can be untimely removed, etc. We as-
sume that each device has an unique identity and at least
one network interface. We do not make any other assump-
tion about devices capabilities and network characteristics.
Note that the security problems are out of the scope of this
paper but are one of our major research directions (see “Fu-
ture work” in section 5).

Related work. Most of the middleware designed for this
kind of networks hide the mobility of the nodes (figure 1).
They claim they deal with the dynamic aspect of the nodes
and communication links, but they allow an application to

Figure 1. Usual approaches

Figure 2. Our view

be supported as if it were in a static environment. They rely
on routing algorithms such as AODV [9] or OLSR [10].
We claim that in a really unstable network, where any
node and/or communication link can appear/disappear at
any time, no routing can be achieved. It can even be the
case that the network is splitted.

Our approach. Contrary to other the approaches, we nei-
ther provide routing between the nodes of the system nore
hide the volatility of the underlying system. We rather al-
low a program to be aware of the dynamic aspect of the
underlying network and then to take it into account, by pro-
viding contextual information based on a callback mecha-
nism.

For example, to deal with the volatility of nodes, a MOn-
Key node announces itself thanks to a beacon mechanism.
It collects the beacons coming from its neighbours and re-
ports the presence of these neighbours to the application by
means of two callbacks which areonNodeDeclaredPresent
andonNodeDeclaredMissing.

MOnKey also offers two primitives to send/receive a packet
to/from the network interface(s). The arrival of a message
causeswhenReceivedto be invoked. Emission is supported
by means of a one-way broadcast primitive nameddrop.

The main objective of MOnKey is to provide a minimal and
universal set of primitives that we call Neighbourhood and
Context Interaction Primitives (NCIPs) [8].

Implementation choices and current prototype. We
have developed a prototype of MOnKey that is written in
Java2. We have chosen this language because it is available

2Java and all Java-based marks are trademarks or registered trademarks
of Sun Microsystems, Inc. in the United States and other countries. The



on most of the devices that we are considering. Even on
the smallest of them, such as sensor nodes (SunSpot [11]),
mobile phones or smart cards, light versions of Java are
provided.

Till now, the prototype implementation focuses on PCs. In
this context, so as to avoid to make any assumption about
the availability of a Java Virtual Machine on each node of
the network, we use the compilerExcelsior JET[12] that
produces binary code.

As of writing, MOnKey supports several communication
technologies such as Ethernet, WiFi (over UDP/IP) and
Bluetooth.

3 Proof of concept - A portable P2P Applica-
tion

To emphasize the usability and usefulness of our middle-
ware MOnKey, we have designed a peer-to-peer applica-
tion, the goal of which is to allow users to share/send files.

Goals. This application enables a user to send a file to his
direct neighbours. We call direct neighbour a node acces-
sible in one hop (single broadcast), whatever the network
technology3. The file is transferred using the “best” tech-
nology available between the two nodes. The selection of
the best communication technology depends on several cri-
teria such as power availability and network characteristics
(bandwidth, latency, range of radio technology, etc). From
these criteria, it is possible to create policies to automati-
cally select the best technology to use for a given transfer.
As of writing, the only criteria that is taken into account is
bandwidth.

Furthermore, since a node can appear/disappear at any
time, we have to handle a resume mechanism.

Scenario. In the scenario described in figure 3, we as-
sume the peer-to-peer application is installed on a USB key
plugged in a PC, and on a memory card inserted inside a
PDA. One of the users initiates a transfer (figure 3, top) and
then moves out of range of the other user/device. The trans-
fer resumes automatically (figure 3, bottom) when they are
once again direct neighbours. Also note that MOnKey pro-
vides an abstraction of the network layer so that a transfer
can be initiated and started using Bluetooth and then com-
pleted using WiFi or vice versa.

Neighbourhood awareness. Let us recall that we do not
make any assumption about the network topology or the
mobility of users. We thus need to handle neighbourhood

authors are independent of Sun Microsystems, Inc. All othermarks are
the property of their respective owners.

3In case of a wired network, this thus does not necessarily mean a
direct link.

Figure 3. Mobility scenario

evolution. Therefore, we use the MOnKey API and more
precisely the functionsonNodeDeclaredPresentandonN-
odeDeclaredMissingto manage a set ofsupposedlyacces-
sible direct neighbours. Again, we call direct neighbour a
node that can be reached in one hop, whatever the network
technology. These direct neighbours aresupposedlyacces-
sible because in the context of mobile ad hoc networks, we
cannot guaranty that the presence information, even though
it is true when collected, is still true when it reaches the
user level. A node detected as gone can be back when the
information reaches the top level of the middleware.

IO operations. To reach direct neighbours, we use the
drop primitive provided by the MOnKey API. This prim-
itive broadcasts a packet and there is no guarantee about
its delivery. Symmetrically, thewhenReceivedcallback is
called when a packet is received. This callback function has
to be implemented by the application. Algorithm 1 shows
how received packets are managed depending on their type
in our peer-to-peer application.

Prototype. As explained in section 2, we have a proto-
type running. It has been implemented in Java and we have
usedExcelsior JET[12] that supports static linking and bi-
nary code generation. We have run the middleware and the
application in several different configurations and this has



Algorithme 1 : whenReceived(byte[] b)
Input : byte[] b: data received
Global : The transfer session set
SideEffect: A new transfer session can be

created; Packets can be dropped
begin

switch type of bdo
case“TSInitPacket”

create a new transfer session;
drop all packets of this transfer session
on the network;

case“TSDataPacket”
save data from this packet in a
persistent memory;
get the transfer session corresponding
to this packet;
add the received packet identifier to
the received packet identifier set;
if all expected packets have been
receivedthen

write the file in persistent memory;
remove this transfer session from
the current transfer sessions set;
notify application that the transfer
succeeded;

case“TSRedropPacket”
get the transfer session corresponding
to this packet;
if transfer session does not existthen

create a new transfer session;
get the packet asked for;
drop this packet on the network;

end

Figure 4. Data structure

shown that it is working properly. We have not done effi-
ciency measurements to date, but we are currently setting
up such an experiment. Furthermore, we are also preparing
a large scale simulation using the Madhoc [13, 14] engine.

Data structure. Figure 4 shows how the transfer man-
agement is implemented. Each receiving node stores the
set of transfer sessions which are not completed. This al-
lows the receiving node to ask again for a file for which
it misses packets until the transfer completes. A transfer
(Transfer Sessionfield) has an identifier (Transfer Identi-
fier field) that makes it possible to have several transfers at
the same time with an identical file name (stored in theFile
Namefield).

4 First results and a first possible improve-
ment direction

We have a prototype running. We have developed a
prototype of our middleware on key that provides an API
which contains some of the Neighbourhood and Con-
text Interaction Primitives (NCIPs) defined in [8]. More
precisely, it provides the functionsonNodeDeclaredPre-
sent, onNodeDeclaredMissing, whenReceivedand drop
discussed in section 2.

We have also developed a peer-to-peer application on top
of the MOnKey middleware as a proof of concept. It al-
lows users to share/send files between each other. The time
necessary to transfer a file obviously depends on its size
and on the communication technology4.

The transfer resume process also works, whatever the com-
munication technology, that is to say that a transfer can be-

4Let us recall some bandwidths: Ethernet is 100/1000 Mbps, WiFi
802.11g is 54 Mbps, Bluetooth v1.2 is 1 Mbps, v2.0+EDR is 2.1 Mbps,
and v3, coming soon, would be 480 Mbps.



gin with a first communication technology, can be stopped
(because the node can become unreachable, because the ap-
plication is stopped or because the communication technol-
ogy used is no more available) and then could be resumed
using another communication technology in a transparent
way.

When MOnKey is running on top of Bluetooth, it is af-
fected by the limitations of its neighborhood discovery.
Bluetooth technology raises several problems in term of
neighborhood discovery. First of all, when a Bluetooth de-
vice is discovering its neighborhood, it is not discoverable
itself. Furthermore, a neighborhood discovery lasts more
than 10 seconds. Then, to identify services, a node has to
ask each discovered neighbour, one by one, for the services
it provides.

This is why neighbourhood (and services) discovery is in-
efficient in Bluetooth. Furthermore, to optimize the number
of discovered neighbours, it is necessary to leave some time
between each discovery request because if all the nodes
wanted to discover their neighbours all the time, they would
all keep on listening for beacons (not sending any), what
would make the process ineffective. This is an obstacle to
implement a responsive transfer resume functionality.

Let us summarize here the successive steps that are re-
quired to resume a transfer using Bluetooth. First, we
wait a certain time (that depends on the number of present
neighbours, and we have no idea about for the first discov-
ery!). Thereafter, the optimum time interval between two
successive inquiries depends on the number of neighbours
and on the mobility of the nodes. Then, we perform a de-
vice discovery that requires at least 10 seconds [15]. To
finish, we query each discovered Bluetooth device one by
one in order to learn about the services that it provides.

We thus propose an optimization of the Bluetooth
neighbourhood discovery. The problems related to the
Bluetooth discovery process and its optimization have al-
ready been studied and discussed, for instance in [15, 16].
To deal with this problem, we propose to use an additional
communication technology: ZigBee [6]. We choose Zig-
Bee instead of WiFi because we think it is more convenient
for power-limited devices such as PDA and mobile phone.
Of course, if ZigBee technology is not present on the con-
sidered device, we apply the procedure described below us-
ing the WiFi technology.

ZigBee is a high level approach based on the IEEE 802.15.4
which is a standard that specifies its physical layer. It is
a low-cost, low-power and very low-bandwidth5 wireless
technology. Several new hardware items have already been
designed that integrate ZigBee, such as mobile phones and
(U)SIM cards. These last will allow every mobile phone
to use ZigBee, an important feature of which is to provide

5ZigBee bandwidth is 250 kbps.

very fast neighbourhood discovery and we thus propose to
use it in a bootstrap phase to exchange Bluetooth mac ad-
dresses. By doing so, we will bypass the Bluetooth discov-
ery process and gain in reactivity.

This is currently only a proposal that still needs to be ex-
perimented.

5 Conclusion and future work

In this paper we have presented the rationale for a middle-
ware built on a portable device that should deal with het-
erogeneous platforms and versatile networks. We have im-
plemented a prototype in the form of a middleware on key
called MOnKey. To illustrate the use of this prototype we
have developed a peer-to-peer file transfer application on
top of it. We have also discussed the problems raised by
this approach that we have faced (and are still facing for
some of them).

There are a number of directions/features that we want to
investigate further.

One of the current missing features of the system is secu-
rity. There is neither identity management, nore encryption
of communications. Based on our experience in the domain
of identity and security management in mobile ad hoc net-
works [17] we will provide some support for this aspect in
the near future. This will be built in the lowest layers of
our middleware so as to be integrated in the set of “univer-
sal” primitives[8] that can be provided on any platform (see
section 2).

We would also like to go further in the notion of portable
middleware by even suppressing the dedicated device that
the user has to carry along. Of course there is no magic in
that, there still remains a piece of hardware, but the idea is
to use one that most people carry along all the time: their
mobile phone. The concept is to put the middleware inside
the memory card of the mobile phone and to have a nearby
PC execute this code (today most phones are not powerful
enough to execute large codes themselves, and for some
codes, IOs are required that are not supported by mobile
phones - screen, real keyboard, etc.-).

MOnKey would then become a seamlessly portable
middleware.

References

[1] IEEE Standards Association. Ieee 802.11,2007 spec-
ification. Available at
http://standards.ieee.org/.

[2] Bluetooth Consortium.Bluetooth Core Specification
v2.0, november 2004.

[3] Framakey. Available at
http://www.framakey.org/.



[4] Liberkey. Available at
http://www.liberkey.com/en/.

[5] Symbian os. Available at
http://www.symbian.com/.

[6] Zigbee alliance. Available at
http://www.zigbee.org/.

[7] Karlo Berket, Abdelilah Essiari, and Artur Muratas.
Pki-based security for peer-to-peer information shar-
ing. In P2P ’04: Proceedings of the Fourth Interna-
tional Conference on Peer-to-Peer Computing, pages
45–52, Washington, DC, USA, 2004. IEEE Computer
Society.

[8] Jérémie Albert and Serge Chaumette. Rationale for
defining ncips (neighborhood and context interaction
primitives). In Ambient Intelligence Developments
(AmI.d’07), pages 144–153, Sophia Antipolis, French
Riviera, September 2007. Springer.

[9] C. Perkins, E. Belding-Royer, and S. Das. Ad hoc
On-Demand Distance Vector (AODV) Routing. RFC
3561 (Experimental), July 2003.

[10] T. Clausen and P. Jacquet. Optimized Link State
Routing Protocol (OLSR). RFC 3626 (Experimen-
tal), October 2003.

[11] Project sun spot. Available at
http://www.sunspotworld.com/.

[12] Excelsior jet. Available at
http://www.excelsior-usa.com/.

[13] Luc Hogie, Pascal Bouvry, and Frederic Guinand. An
overview of manets simulation. InMTCoord - Inter-
national Workshop on Methods and Tools for Coordi-
nating Concurrent, Distributed and Mobile Systems,
pages 81–101, 2006.

[14] Luc Hogie. Delay Tolerant Networks: Modelling,
Simulation and Broadcast-based Applications. PhD
thesis, Le Havre University (France) and Luxembourg
University (Luxembourg), april 2007.

[15] Ryan Woodings, Derek Joos, Trevor Clifton, and
Charles D. Knutson.Rapid Heterogeneous Connec-
tion Establishment: Accelerating Bluetooth Inquiry
Using IrDA. Brigham Young University Provo, Utah
84602.

[16] Igor Sedov, Stephan Preu, and Clemens Cap. Time
and energy efficient service discovery in bluetooth.
In in Proceedings of the 57th IEEE Vehicular Tech-
nology Conference (VTC), Jeju, Korea, 2003.

[17] Eve Atallah. Une solution pour l’́etablissement non
planifié de groupes śecuriśes permettant des commu-
nications ŝures dans les ŕeseaux MANets. PhD thesis.


