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Direct observation of the high magnetic field effect on the Jahn-Teller state in TbVO 4
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HAL is a

1 Phase transitions induced by quadrupolar interactions have recently received much attention, mostly due to their influence on the magnetic properties of the sample, e.g. in the giant-magneto-resistive effect of manganite compounds [START_REF] Dagotto | Nanoscale Phase Separation and Colossal Magnetoresistance: The Physics of Manganites and Re[END_REF] and the magneto-electric effect in multi-ferroic materials [2,3]. The cooperative Jahn-Teller (JT) effect arises from the same quadrupolar interactions [4], and may indeed be interpreted as ferro-quadrupolar order. In JT compounds, the balance between magnetic and quadrupolar effects can be tuned by varying the strength of an externally applied magnetic field. To date, however, only a small amount of experimental evidence has been reported [5], as the required magnetic fields tend to be rather large.

In this letter we present the first direct experimental evidence for the modification of the JT effect by a external magnetic field. This effect was predicted by both qualitative [6,7] and quantitative [8,9] theories, but previous experiments [5,9,10,11,12] observed only indirect signatures of this behavior.

Terbium ortho-vanadate, TbVO 4 , along with DyVO 4 , is a textbook example for a JT transition [4] induced by quadrupolar interactions between the Tb 4f moments, mediated through phonons. At high temperatures, TbVO 4 crystallizes in the tetragonal zircon structure with space group I4 1 /amd [13] The JT transition has been studied extensively, both experimentally and theoretically.

The early studies, however, focused on the sample's properties in the absence of applied magnetic fields [4]. The effect of large external magnetic fields on TbVO 4 was studied only recently. Quantitative mean-field calculations [8] found that the JT distortion is suppressed when fields above ≈ 29 T are applied along the c-axis of the sample, in good agreement with susceptibility measurements [9]. Diffraction experiments have so far not been carried out, as the required combination of high magnetic fields and X-ray diffraction equipment has only recently become available [14,15,16].

The experiments were performed on the DUBBLE CRG beamline, BM26B, at the ESRF [17], using the experimental configuration described in [16]. Flux-grown single crystals of TbVO 4 [18,19] were ground into a fine powder and embedded in low molecular weight polyvinylpyrolidone in order to prevent movement of the powder grains due to magnetic forces, while at the same time improving the thermal contact. The sample was then mounted in a pulsed magnet and cryostat assembly [16].

The data shown here were taken by accumulating ≈ 45 magnetic field pulses per spectrum.

For each field pulse a mechanical shutter exposed the image plate detector for 4.9 ms centered around the maximum field. Representative powder diffraction spectra are shown in Fig. 1.

The JT transition manifests itself as splitting of some, but not all, powder lines (see table I). For small distortions, ǫ δ ≪ 1, the orthorhombic lattice parameters can be approximated as

a o ≈ (1 + 1 2 ǫ δ )ā and b o ≈ (1 -1 2 ǫ δ )ā, where ā = 1 2 (a o + b o ) ≈ √ 2a t .
To first order in ǫ δ , the splitting of a pair of Bragg reflections (H, K, L) o and (K, H, L) o is then given by In samples with large magneto-crystalline (MC) anisotropy, such as TbVO 4 , the phase diagram depends not only on the magnitude of an applied magnetic field, but also on its orientation relative to the crystal symmetry axes. The grains in a powder sample are aligned randomly, so that for a macroscopic measurement, e.g. magnetic susceptibility, the direction of the field has to be averaged over the full solid angle of 4π.

δ(2θ) ≈ λ 2 ā2 K 2 -H 2 sin(2θ) ǫ δ = tan(θ) K 2 -H 2 H 2 + K 2 + ā2 2c 2 L 2 ǫ δ . (1) 
In a diffraction experiment, however, the orientation is constrained: Any grain contributing to the diffraction signal at the angle 2θ must be oriented such that the Bragg planes of the corresponding reflection (H, K, L) form the angle θ with the incident beam. The powder averaging must then be taken only over the azimuthal angle, ψ, i.e. rotation about the scattering vector Q = (H, K, L).

In our experiment the external field, µ 0 H, was aligned along the incident beam axis; the angle between the field and the Bragg planes is therefore the Bragg angle, θ.

For systems with substantial MC anisotropy any simulation of the powder diffraction spectrum must thus be carried out peak by peak: For each Bragg reflection the magnetic field direction and the corresponding influence on the phase diagram and the lattice parameters must be calculated as function of ψ, yielding, in this case the distortion ǫ δ (ψ), and the corresponding scattering angle, 2θ calc (HKL, ǫ δ (ψ)). The resulting diffraction patterns are then averaged over the azimuthal angle, taking into account the instrumental resolution.

In order to quantitatively describe the effect outlined above for TbVO 4 we have performed comprehensive mean field calculations of the magnetoelastic distortion of TbVO 4 as function of the strength and direction of the externally applied magnetic field. Our calculations closely follow those of [8] and [9] and will be published in full detail elsewhere. In particular, we have used crystal field parameter set 2 of [8], and a quadrupolar constant G δ = 130 mK.

The order parameter (OP), ǫ δ , is proportional to the expectation value of the quadrupole operator [START_REF][8, 9] we have defined the quadrupole operator P xy in the high-temperature, tetragonal coordinate system[END_REF],

Q xy = P xy , ǫ δ = B δ C δ 0 Q xy , (2) 
where P xy = 1 2 (J x J y + J y J x ). The coefficient B δ /C δ 0 = 13.9 • 10 -4 was determined from the zero-field, low temperature value of the spontaneous deformation, ǫ δ .

We first consider the influence of the applied magnetic field on the quadrupole moment Q xy . Two effects must be taken into account: Changes in the magnitude of the distortion will result in variations of the splitting between the pairs of peaks, whereas (for a given grain) the preferential population of domains with positive or negative distortion will lead to a magnetically induced texture that manifests itself in a shift of spectral weight from one partner to the other.

A magnetic field along the c axis leads to a non-vanishing expectation value of J z in competition with the OP. A magnetic field along a o or b o , on the other hand, will induce a magnetization J x ± J y along the corresponding axis. Above the JT transition a magnetostrictive orthorhombic distortion of δ-symmetry is induced. In the ordered state, T < T Q , however, one has to distinguish between a field applied along a o and b o : Along the two axes, the susceptibility will be of slightly different value, thus breaking the degeneracy of ±ǫ δ .

Crossing the phase boundary in the presence of such a magnetic field will then lead to the preferential population of one of these domains. Fields along the [110] o directions should lead to a distortion with γ-symmetry (B 1g -type), as observed in DyVO 4 [20,21]. Finally, if the external field is applied along an arbitrary direction, then both δ and γ strains are induced simultaneously, lowering the symmetry of the crystal to monoclinic. Fortunately, the γ magnetostrictive distortion in TbVO 4 is two orders of magnitude smaller than the δ distortion and can therefore be neglected.

Typical theoretical results for the (311) diffraction peak at T = 7.5 K and 39 K are shown in Fig. 2. The (311) partner of the (311)/(131) pair corresponds to a positive quadrupole moment, Q xy > 0 (see eq. 1).

At T = 39 K > T Q there is no spontaneous quadrupole moment at H = 0. For azimuthal angles ψ below ≈ 22 • a positive quadrupole moment is induced, whereas for larger azimuthal angles the induced quadrupole moment is negative, i.e. corresponding to the (131) partner.

We thus expect the magnetic field to induce a magnetoelastic splitting with unequal domain populations of ≈ 33% Q xy > 0 (contributing to the (311) diffraction peak) and ≈ 67% Left: T = 7.5 K. Right: T = 39 K. At T = 39 K and 30 T, the dotted curve (in red) corresponds to the calculations including the magnetocaloric effect, and the green line to the calculations with the coefficient B δ /C δ 0 reduced by 25%.

subject to pinning on defects, grain boundaries, surfaces, and elastic interactions between twinned domains [13].

The calculated dependences Q xy (H) for fixed T and different azimuthal angles ψ allow us to simulate the X-ray powder diffraction data. For the (202)/(022) pair the values were averaged over the interval 0 • < ψ < 180 • since the two-fold symmetry persists. For the (311)/(131) pair the averaging was performed over 0 • < ψ < 360 • . The parameters of the resolution function were fitted to the experimental data at T > T Q and H = 0. Different parameter sets were used for the (311)/(131) and ( 202)/(022) pairs, and the intensity parameter had to be adjusted to match the data at low temperature and high field. At T > T Q , calculations for the (202)/(022) pair adequately reproduce the almost symmetric splitting of the line by the magnetic field observed in the data (Fig. 3). The calculated magnitude of the splitting, however, is ≈ 25% larger than the experimental one (Fig. 4).

The origin of this discrepancy remains unclear. In particular, it does not seem to be related to the value of the interaction parameters used in the calculations since the value of the spontaneous splitting at H = 0 is correctly described (Fig. 4). Similar deviations between theory and experiment are observed at the (311)/(131) pair. Calculations describe the shape of the (311) line in different fields: the intensity ratio for two components of the split peak is about 1:2. But again the calculated value of the splitting is larger than the experimental one by about 25% (see Fig. 3). The OP may be decreased by sample heating, e.g. due to the magneto-caloric effect. A reasonable temperature increase of about 8-10 K, however, cannot fully explain the observed discrepancy.

The experimental observations at T > T Q and H = 30 T are well described by our calculations when the coefficient B δ /C δ 0 is reduced by 25%; this value, however, is too small for the spontaneous deformation. This may be interpreted as the variation of the quadrupolar constant G δ under high magnetic field, as was observed for the quadrupolar constant G γ of DyVO 4 and considered within an improved "compressible Ising model" [21,22]. However for TbVO 4 no dependence of G δ was observed when the OP increases as the temperature decreases, and its low field behavior is described adequately by the mean field theory [4].

For the quadrupole ordered phase the results of the numerical calculations for the (202) and (311) peaks are compared with the experimental data in Fig. 3. For both peaks the averaging were performed for two domains (ǫ δ and -ǫ δ ) for 0 < ψ < 360 • , in steps of ∆ψ = 5 • . For the (202)/(022) pair the calculations do not reveal a noticeable decrease of the splitting under external field of 30 T, while for the (311)/(131) pair a small shift is expected for the low-angle component.

We examined, and refuted, several possible explanations for the discrepancy between the theoretical and experimental results. Firstly we ascertained that various weak pair interactions (bilinear, quadrupole of γ-, α-and ǫ-symmetry) which were omitted in our calculations do not change the results noticeably. Then we estimated the effect of the sample heating due to the magnetocaloric effect in our experiment. In the adiabatic regime, the temperature change is large enough (about 25 K at 7.5 K) for the magnetic field orientation close to the easy magnetization axis. Additional studies are necessary to elucidate the influence of the magnetocaloric effect in our experiments.

In summary, we have directly observed for the first time the effect of magnetic fields on the Jahn-Teller distortion of TbVO 4 , and compared the experimental data to a detailed mean field theory. Due to the polycrystalline nature of the sample and its strong MC anisotropy the calculated spectra had to be averaged over all possible orientations of the powder grains relative to the applied magnetic field. The applied magnetic field was found to influence both the magnitude of the OP, as observed in the splitting of the (311)/(131) and (202)/(022) pairs of Bragg peaks, and the relative domain populations, reflected in the intensity ratio between the partners of a pair. Our theory is in qualitative agreement with the experimental results, even though small quantitative discrepancies persist. This new technique was found to be a powerful tool to study JT systems, and allows us to observe new aspects of magnetic behavior of the classical and well studied JT compound TbVO 4 . These high magnetic field data may be used both to revise known theoretical models and to develop new, improved ones.
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  , with lattice parameters a t = b t = 7.1831(3) Å and c = 6.3310(4) Å. Upon lowering the temperature through T Q ≈ 33 K, it undergoes a cooperative JT transition: The crystal spontaneously distorts along the [110] direction (B 2g strain, δ-symmetry distortion) to the orthorhombic space group F ddd with lattice parameters a o = 10.239(2) Å, b o = 10.029(2) Å, and c = 6.3154(13) Å at 22 K. The distortion is surprisingly large, reaching ǫ δ = 2(a o -b o )/(a o + b o ) = 2% at 22 K [13], and increasing further toward lower temperatures.

  Our experimental configuration, with photon energy E = 21 keV (λ = 0.59 Å), allowed us to observe scattering angles up to 2θ = 12.8 • , covering the reflections, in the orthorhombic notation, (111), (220), (311), (131), (202), and (022). Within this range, only the (311)/(131) and the (202)/(022) pairs are sensitive to the JT distortion.

FIG. 1 :

 1 FIG. 1: X-ray powder diffraction spectra of TbVO 4 . The inset shows the (311)/(131) and (202)/(022) pairs of reflections that are sensitive to the orthorhombic distortion, ǫ δ .

FIG. 2 :

 2 FIG. 2: Calculated dependence of the quadrupole moment Q xy on the external magnetic field for different azimuthal angles in the interval (0-100 • ) at the diffraction peak (311). Left: T = 7.5 K, Right: T = 39 K.

QFIG. 3 :

 3 FIG.3: Comparison between calculated and measured spectra for different temperatures and fields.

FIG. 4 :

 4 FIG. 4: Average order parameter as function of applied magnetic field for selected temperatures. Continuous lines: Experimental data. Dashed lines: Theory

TABLE I :

 I Bragg reflections of TbVO 4 , scattering angle at E = 21 keV, and the splitting due to the JT-effect. Values are based in the lattice parameters given in Ref. 13 for T = 22 K.

	(HKL) o	2θ	δ(2θ)/ǫ δ
		[deg]	[deg/%]
	(111)	7.14	0
	(220)	9.45	0
	(311)/(131) 11.78/11.94 0.076
	(202)/(022) 12.61/12.69 0.036
	(400)/(040) 13.24/13.52 0.134
	(222)	14.32	0
	(331)	15.19	0
	(113)	16.81	0
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