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Abstract. — Consider a nonlinear Klein-Gordon equation on the unit circle, with
smooth data of size ¢ — 0. A solution w which, for any x € N, may be extended
as a smooth solution on a time-interval | — ¢, ", c.e [ for some ¢, > 0 and for
0 < € < €, is called an almost global solution. It is known that when the nonlinearity
is a polynomial depending only on u, and vanishing at order at least 2 at the origin, any
smooth small Cauchy data generate, as soon as the mass parameter in the equation
stays outside a subset of zero measure of R , an almost global solution, whose Sobolev
norms of higher order stay uniformly bounded. The goal of this paper is to extend
this result to general Hamiltonian quasi-linear nonlinearities. These are the only
Hamiltonian non linearities that depend not only on u, but also on its space derivative.
To prove the main theorem, we develop a Birkhoff normal form method for quasi-linear
equations.



Résumé. — Considérons une équation de Klein-Gordon non-linéaire sur le cercle
unité, a données régulieres de taille € — 0. Appelons solution presque globale toute
solution u, qui se prolonge pour tout x € N sur un intervalle de temps | —c,e ™%, c e[
pour un certain ¢, > 0 et 0 < € < €. Il est connu que de telles solutions existent, et
restent uniformément bornées dans des espaces de Sobolev d’ordre élevé, lorsque la
non-linéarité de I’équation est un polynéme en u nul & 'ordre 2 a l'origine, et lorsque
le parametre de masse de 1’équation reste en dehors d’un sous-ensemble de mesure
nulle de R%. Le but de cet article est d’étendre ce résultat a des non-linéarités
quasi-linéaires Hamiltoniennes générales. Il s’agit en effet des seules non-linéarités
Hamiltoniennes qui puissent dépendre non seulement de u, mais aussi de sa dérivée
en espace. Nous devons, pour obtenir le théoreme principal, développer une méthode
de formes normales de Birkhoff pour des équations quasi-linéaires.
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CHAPTER 0

INTRODUCTION

The main objective of this paper is the construction of a Birkhoff normal forms
method, applying to quasi-linear Hamiltonian equations. We use this method to
obtain almost global solutions for quasi-linear Hamiltonian Klein-Gordon equations,
with small Cauchy data, on the circle S*.

Let us first present the general framework we are interested in. Let A be the
Laplace-Beltrami operator on R? or on a compact manifold, and consider the evolution
equation

(02 — A +m*)v = F(v,0v, 0,0, 0;0,v, 0%v)
(0.0.1) V|t=0 = €vg

atU|t:0 = €1,

where vg,v; are smooth functions, € > 0 is small, F' is a polynomial non-linearity
with affine dependence in (9;0,v,9%v), so that the equation is quasi-linear. We are
interested in finding a solution defined on the largest possible time-interval when
e — 0+. If F' vanishes at order a + 1 at the origin, local existence theory implies
that the solution exists at least over an interval | —ce=®, ce= @[, if vg € H**1, vy € H®
with s large enough, and that ||v(¢, )| gs+1 + ||Opv(t, )| ms stays bounded on such
an interval. The problem we are interested in is the construction of almost global
solutions, i.e. solutions defined on | — ¢,e™", ¢,.e” "] for any k.

This problem is well understood when one can make use of dispersion, e.g. when one
studies (0.0.1) on R?, with vg, v; smooth and quickly decaying at infinity (for instance
vo,v1 € C§°(RY)). When dimension d is larger or equal to three, Klainerman [15]
and Shatah [19] proved independently global existence for small enough € > 0. Their
methods were quite different: the main ingredient of Klainerman’s proof was the use
of vector fields commuting to the linear part of the equation. On the other hand,
Shatah introduced in the subject normal form methods, which are classical tools
in ordinary differential equations. Both approaches have been combined by Ozawa,
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Tsutaya and Tsutsumi [18] to prove global existence for the same equation in two
space dimensions. We also refer to [9] and references therein for the case of dimension
1.

A second line of investigation concerns equation (0.0.1) on a compact manifold. In
this case, no dispersion is available. Nevertheless, two trails may be used to obtain
solutions, defined on time-intervals larger than the one given by local existence theory,
and whose higher order Sobolev norms are uniformly bounded. The first one is to
consider special Cauchy data giving rise to periodic or quasi-periodic (hence global)
solutions. A lot of work has been devoted to these questions in dimension one, i.e. for
x € S', when the non-linearity in (0.0.1) depends only on v. We refer to the work of
Kuksin [16, 17|, Craig and Wayne [8], Wayne [20], and for a state of the art around
2000, to the book of Craig [7] and references therein. More recent results may be
found in the book of Bourgain [6].

The second approach concerns the construction of almost global H?*-small solutions
for the Cauchy problem (0.0.1) on S!, when the non-linearity depends only on v. In
this case, small H! Cauchy data give rise to global solutions, and the question is to
keep uniform control of the H*-norm of the solution, over time-intervals of length
e ", for any k and large enough s. This has been initiated by Bourgain [5], who
stated a result of almost global existence and uniform control for (87 — 92 + m?)v =
F(v) on S!, when m stays outside a subset of zero measure, and the Cauchy data
are small and smooth enough. A complete proof has been given by Bambusi [1],
Bambusi-Grébert [3] (see also Grébert [14]). It relies on the use of a Birkhoff normal
form method, exploiting the fact that when the non-linearity depends only on v, the
equation may be written as a Hamiltonian system.

Let us mention that some of the results we described so far admit extensions to
higher dimensions. Actually, constructions of periodic or quasi-periodic solutions for
equations of type (id; — A)v = F(v) or (87 — A +m?)v = F(v) have been performed
by Eliasson-Kuksin [13] and Bourgain [6] on higher dimensional tori. Almost global
solutions for the Cauchy problem on spheres and Zoll manifolds have been obtained
by Bambusi, Delort, Grébert and Szeftel [2] for almost all values of m.

We are interested here in the Cauchy problem when the non-linearity is a function
not only of v, but also of derivatives of v. Some results have been proved by Delort
and Szeftel [11, 12] for semi-linear non-linearities of the form F(v,d;v,d,v) on S¢ or
on Zoll manifolds. For instance, it has been proved that if F' is homogeneous of even
order a + 1, then the solution exists over an interval of length e2%, when the mass
m stays outside a subset of zero measure. Similar statements have been obtained
in one space dimension for quasi-linear equations in [10]. Nevertheless, no result of
almost global existence was known up to now, for non-linearities depending on the
derivatives. This is related to the fact that, in contrast with the case of non-linearities
F(v), the normal form method used to pass from a time-length e~ (corresponding to
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local existence theory) to €2 cannot be easily iterated. Actually, for non-linearities
depending only on v, the iteration may be performed using a Birkhoff normal forms
approach permitted by the Hamiltonian structure. To try to obtain almost global
existence for equations involving derivatives in their right hand side, it is thus natural
to limit oneself to systems of the form of (0.0.1) for which the non-linearity is Hamil-
tonian. This obliges one to consider quasi-linear equations, as the only semi-linear
non-linearities enjoying the Hamiltonian structure of theorem 1.1.1 below are those
depending only on v.

The main result of this paper asserts that the quasi-linear Klein-Gordon equa-
tion on S!, with Hamiltonian non-linearity, admits almost global solutions for small
enough, smooth enough Cauchy data, when the mass is outside a subset of zero
measure (see section 1.1 for a more precise statement). The main novelty in this pa-
per, compared with the semi-linear setting, is the introduction of a Birkhoff method
adapted to quasi-linear equations. We shall describe below the idea of the method
on a model case, which can be used as a road-map for the more technical approach
that will be followed in the bulk of the paper. Roughly speaking, the idea is to
combine the usual Birkhoff normal forms method with the strategy used to obtain
quasi-linear energy inequalities (namely (para)diagonalization of the nonlinear prin-
cipal symbol of the operator). The latter was used in [10] in the non-Hamiltonian
framework. Here, as we need to preserve the Hamiltonian structure of our problem,
such a diagonalization will have to be performed respecting the underlying symplectic
form.

Let us describe the organization of the paper and the idea of the proof on a model
problem. Chapter one is devoted to the statement of the main theorem and to the
introduction of the symplectic framework. In this presentation, let us consider the
symplectic form on the Sobolev space H*(S';C) (s > 0)

wole,d)=2Im [ c(x)d(x)dx.
Sl
If F,G are two C! functions defined on an open subset of H*(S';C), whose gradients
belong to L2, we define the Poisson bracket

For a given C! Hamiltonian G on H*(S!; C), the associated evolution equation defined
by its symplectic gradient is

(0.0.2) 0= iVaG(u, w).

Let us study as a model the case when

(0.0.3) G(u, @) = /

st

(Apu)udx + Re /

o (a(u, ﬂ)Amu)ﬂdx—ﬁ-Re/ (b(u, ) Apu)udz

St
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where a, b are polynomials in (u, @) and A, = /—02 + m2. The associated evolution
equation is

21; iApu+ = [aA + Analu+ - [bA + A0l
Oa _ oa _
(0.0.4) +- 5 <8u) (Apu)a + 3 (8u> (Apa)u

3 (G) s 5 (50
This equation is, if a(0) = b(0) = 0 and if u is small enough, a small perturbation of
the linear hyperbolic equation %’; = iA,,u. Moreover, since the non-linearity involves
first order derivatives, this is a quasi-linear equation.
To prove that (0.0.4), with a Cauchy data u|;—o = eug with ug € H*(S';C), has
a solution defined on an interval | — ce ", ce"[ for any given x € N, it is enough to
prove an a priori bound ©%(u(t,-)) < Ce? when [t| < ce™*, where

(0.0.5) 00(u) = %(Afnu,Afnu)

is equivalent to the square of the Sobolev norm of u. Let us recall how such a uniform
control may be obtained in the case of semi-linear equations (i.e. when the last
two terms in (0.0.3) are replaced by Re [, a(u, w)utidz + Re [, b(u, w)uudz). One
introduces an auxiliary C'-function F and solves the Hamiltonian equation

(0.0.6) (t,u) = Xp(®(t,u)), ®0,u) =u

where Xp is the Hamiltonian vector field associated to F. Then xp(u) = ®(1,u)
is a canonical transformation, defined on a neighborhood of zero in H*(S!,C), with
x(0) = 0, and one wants to choose F so that ©,(u) = Yo yr(u) satisfies, for a given
arbitrary x,

d
—0O,(u(t,)) = O(||u otz
007 £0,(u(t,) = Olflu(t, )

105 (u) — ©%(w)| = O([[u(t, )1 F)-
These two equalities imply that, for small enough Cauchy data, ||u(t,-)|| - stays
bounded by Ce over an interval of time of length ce™". One wants to apply a Birkhoff

method. Since by (0.0.2) @ = X (u(t,-)), one has

008) 560 xr(ult, ) = {690 X, GHu(t, ) = (6% G o xz Hxr(u(t, ),

and one would like to choose F so that {09 G o x'}(u) vanishes at order x + 2
when v — 0. If F' satisfies convenient smoothness assumptions, one may deduce from
Taylor expansion that
k—1 k
Ad"F 1
(0.0.9) Goxz'(u) = T-G(u)+
k=0 ’

o / (1-7) " (Ad"F-G)(®(~7,u))dr,
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where AdF - G = {F,G}. When considering semi-linear equations, one looks for
F= Z'Z;ll Fy(u, @), with F; homogeneous of degree ¢ + 2, such that

(0.0.10) (00, SUd AL Gy = O([lult, ) [52), u— 0.

Decomposing the second argument of the above Poisson bracket in terms of increasing
degree of homogeneity, one gets

Go+ > ({Fi, Go} + Hy),

>1

where Go(u) =[5 (Amu)tde and where H, is homogeneous of degree £ + 2, and
depends on the homogeneous component Gy, of degree k of G, for k =1,...,¢ and on
Fy,...,F;_1. In that way, (0.0.10) can be reduced to

(0.0.11) {0 {F),Go} + Hy} =0, £=1,...,k— 1.

This homological equation can easily be solved in the semi-linear case, as soon as the
parameter m in A, = y/—0% + m? is taken outside a subset of zero measure, to avoid
resonarnces.

Let us examine now the quasi-linear case, i.e. the case when G is given by (0.0.3).
Equation (0.0.11) for £ = 1 may be written

(0.0.12) {60, {F1,Go} +G1} =0,
where
(0.0.13) G (u, @) = Re [ /S (@ (u, W) Au)ids + /S (o1, @) A u)ude ],

with a1, b; homogeneous of degree 1 in u,w. Let us look for F given by
(0.0.14) Re / (A1 (u, @)u)adz + Re / (B (u, @)u)udz,

st st
where A;, By are operators depending on u,u to be determined. We have

{ for (Ax (u, B)u)tida, Go }= i / (A1 (uy @) A, — A As (u, @)]u) ada

(0.0.15) s
—H'/ ([au/il(u, @) - Apu — Oy A4 (u, @) - Amﬂ]u)ﬁdx
Sl
and
{fsl (B1(u, )u)udz, Go }= z/ ([B1(u, @) A + Ay By (u, @)]u)uda
(0.0.16) s

‘H/ ([8uBl (u, 1) - Apu — 5aB1(u, @) - A aju)ude.
St
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Let us try to solve (0.0.12) finding F; such that {F1,Go} + G1 = 0. It would be
enough to determine Aj, By such that, according to (0.0.13), (0.0.15), (0.0.16),
(0.0.17)
i[AL, Ap] + 100 A1 (u, @) - (Au) — 05 A1 (u, @) - (A @) = —as1 (u, @) A,
i[BiAm + A B1] + 90, By (u, @) - (Anu) — i05 By (u, @) - (Am@t) = —by (u, @) Ay,

Note that if A (resp. Bj) is an operator of order « (resp. (3), then 9, A; (u, @)- (Apu),
DuAy(u, ) - (Ap@t) (vesp. OuBi(u, @) - (Apmu), 9By (u,@) - (A,@)) is also of order o
(resp. [3), since the loss of one derivative coming from A,, affects the smoothness of
the coefficients, and not the order of the operator. On the other hand [;11, Ay] (resp.
[BiA,, + A Bi)) is of order o (resp. 8+ 1). Since the right hand sides on (0.0.17)
are operators of order 1, we may expect, if we can solve (0.0.17), to find A; of order
1 and By of order zero. This would give F; by expression (0.0.14). Let us switch to
(0.0.11) for ¢ = 2. Then H, will contain, because of (0.0.10), a contribution of form
{F1,G1}. Denote to simplify notations

A= %(al(u,ﬂ)Am + Amar (u, @), B (u,a) = by (u, @) Ay,

Let us compute the Poisson brackets (0.0.15), (0.0.16) with G replaced by Gy:
(0.0.18)
{fg1 (Al (uv ﬂ)u)ﬁdm, fSl (Al (U, ﬁ)u)ﬂdm + %fgl (Bl (’LL, ﬂ)u)udm + %fgl (Bl (u7 ﬂ)ﬂ)ﬂdm}

— i/Sl([Al,Al](u, a)u)udz + 3 /s1 (A1(By + 'By) (u, 0)a)udz

f% / ((By + 'B1)A; (u, @)u)udz + other terms
St

and
(0.0.19)

{f31 (Bi (u, @)u)udz, Joi (Ar (u, w)w)adz + %fgl (B (u, @)u)udz + %fsl (B1(u, u)u)uds }
= Z/ ([(B1A; + YAy By)(u, @)u)udz + %/ ((B1 +'B1)(*By + By)(u, @)u)udz

St st
+ other terms.

Note that since A; and By are of order 1, the right hand side of (0.0.18) has a structure
similar to G1, except that the expressions which are bilinear in u or in @ are now of
order 2. In other words, if we solve (0.0.12) for a quasi-linear Hamiltonian, we get in
(0.0.11) with £ = 2 a contribution to Hs which loses two derivatives, instead of just
one. Obviously, if we repeat the process, we shall loose one new derivative at each
step, which apparently ruins the method. Observe nevertheless that we can avoid such
losses if, in a first attempt, we choose Fy in order to eliminate in (0.0.10) only those
terms homogeneous of degree 1,2,...,x — 1 coming from the second contribution on
the right hand side of (0.0.13). In other words, we look for F given by (0.0.14) with
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Ay =0, and want to solve only the second equation in (0.0.17). As already noticed,
we shall find an operator By of order zero. If we look at the contribution induced by
this By at the following step, we have to consider (0.0.19), whose right hand side may
be written essentially

/(Ag(u, ﬂ)u)ﬂdw—i—/ (B (u, @)u)udz 4+ other terms
st st

where Ay = (B, +'B1)(*B; + By) and By = By A; +'A; B, are of order 1. We obtain
again an expression of type (0.0.14), without any loss of derivatives, and a gain on
the degree of homogeneity. Of course, we have completed only part of our objective,
since the by contribution to (0.0.13) has been removed, but not the a; one. In other
words, the best we may expect is to choose F' in such a way that in (0.0.10)

k—1 k k—1
(0.0.20) A(]iilF -G(u) = Z G (u) + Ry (u),

k=0 k=0
with G = Go and G} (u) = Re [, (A} (u, w)u)adz, with A} operator of order 1,
homogeneous of degree k in (u, ). The remainder R, will be of type

(0.0.21) Re /Sl(A;(u,u)u)udx + Re /S1 (B! (u, u)u)udz,

with A/, Bl. of order 1, homogeneous of degree k. The reduction to such a form, for
the true problem we study, will be performed in section 5.2 of the paper.

The next step is to eliminate in (0.0.21) the B/ contribution. We cannot repeat
the preceding method, as it would induce another remainder of the same type, with
an higher degree of homogeneity. Instead, we shall use a diagonalization process.
When one wants to obtain an energy inequality for an equation of type (0.0.4), the b-
contributions of the right hand side already cause trouble. Actually, if one multiplies
(0.0.4) by A%%4, integrates on S' and takes the real part, the contributions coming
from the a-term is controlled by some power of ||u||g-, since it may be written in
terms of the commutator [a 4+ @, Ay,]. On the other hand, the contribution coming
from b cannot be expressed in such a way, and loses one derivative. The way to
avoid such a difficulty is well-known: one writes the system in (u, %) corresponding
to equation (0.0.4), diagonalizes the principal symbol of the right hand side, and
performs the energy method on the diagonalized system. We adapt here a similar
strategy to the Hamiltonian framework: We look for a change of variable close to zero
in H°, (v,7) — (u=(v), 7 = 1¥(v)), to transform (0.0.21) into

(0.0.22) Re /sl (A (v, v)v)vde,

where A/ is an operator of order 1. This is done looking for ¥ (v) = (Id + R(v,?))v,
where R is some operator, determined by a symbol diagonalizing the principal symbol
of the Hamiltonian equation associated to (0.0.20). Since we need to preserve the
Hamiltonian structure, i.e. to construct ¢ as an (almost) canonical transformation,
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this diagonalization has to be performed in an (almost) symplectic way. The argument
is given in section 5.3, using the results obtained in chapter 4 concerning symplectic
reductions. To exploit this, we shall consider instead of ©4(u) = ©%0x () in (0.0.7),
(0.0.8) a quantity O4(u) = O o)™ o xp(u), for some O} that will be chosen later
on. Then (0.0.10) has to be replaced by

(0.0.23) {Olow !, ST AL G Y= O(||ull552).
Because of (0.0.20), this is equivalent to
{O oy, 57520 Gi(w) + Re(u) }= O([lull55),
and since v is canonical, this is also equlvalent to
(0.0.24) {OL, Y520 GL(¥(v)) + Ru(9(v) b= O(||vll5:2).
The remainder R, (¥(v)) is given by (0.0.22). Since ©! will be constructed under the
form [(Q(v,v)v)vdz, where  is a self-adjoint operator of order 2s, {©}, R.(¢(v))}

will be seen to be controlled by the right hand side of (0.0.24) (again, the structure
of ©! and of (0.0.22) allows one to express the Poisson bracket from a commutator

[, A'] of order 2s, vanishing at order x at v = 0). Similar statements hold for
G (¥(v)) — G}.(v), so that (0.0.24) is equivalent to

(0.0.25) {61, 3420 Gi(v) }= O(lIvll52)-

We are reduced to finding ©1(v), equivalent to |[v[|%. for small v’s, such that (0.0.25)
holds when all G} are of type Re [, (4} (v, 0)v)vdz. If we look for O} = O o xu,
for some auxiliary function H, we get formally by (0.0.9), (0.0.10), that (0.0.25) is
equivalent to

(0.0.26) {09, STy ALE. 6= O(Jlu]l552).
with G' =S¢5 G4.(v). As in (0.0.11), (0.0.12), this equality may be reduced to a

family of homological equations, the first one being
(0.0.27) {0% {H,,Gy} + G} =

The gain in comparison to (0.0.12), (0.0.13), is that G is given by Re [, (4 (v, v)v)vdz,
i.e. does not contain any component in fSl (B} (v,0)v)vdz. If one looks for some
H; of type Re fsl (A’l(v,@)v)@dx, with 1[1’1 of order 1, all Poisson brackets involved
n (0.0.27) may be expressed from commutators, so that the overall order never

increases. In particular, the second homolog‘ical equation may be written

where G is given in terms of G% and of the Poisson brackets of Hy, Gy, and so is still
of the form Re [y, (A5 (v, D)v)vdx with Ay of order 1. In other words, the reduction
performed in the first two steps of the proof made disappear the terms of higher order
n (0.0.18). In that way, one determines recursively Hy, Ha,.. ., all of these functions
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being expressed from quantities Re [¢, (A’ (v, 7)v)vde with A’ of order 1. There is
nevertheless a technical difficulty in the implementation of this strategy: it turns out
that one cannot define the canonical transformation x g from some Hamiltonian H, as
the value at time 1 of the solution of (0.0.6) (with F' replaced by H). Actually, since H
is given in terms of quantities [, (A’ (v, 0)v)odz, with A’ an operator of order 1, X (v)
is given by an operator of order 1 acting on v, so that ®(t,v) = Xg(®(t,v)) is no
longer an ordinary differential equation. We get around this difficulty in section 5.3,
defining a substitute to x g in terms of expressions involving finitely many Poisson
brackets, which allows us to proceed as described above, without constructing the
flow of Xg.

Let us conclude this introduction with some more technical details. As explained
above, our quasi-linear Birkhoff normal forms method uses Hamiltonians given by
expressions of form [, (A(u, @)u)udz, [y (B(u,@)u)uds, where A, B are operators
depending on u, u. Chapters 2 and 3 are devoted to the construction of the classes of
operators that we need. These are para-differential operators on S', whose symbols
depend multilinearly on u,@. Such classes have been already introduced in [10] (see
also [11]). We have to modify here their definition for the following technical reason.
When one uses a Birkhoff normal form method in the semi-linear case, one does not
need to know much about the structure of the remainder given by the integral in
(0.0.9). On the other hand, for quasi-linear problems, we need to be able to write
for the remainder a quite explicit expression, of the form of (0.0.21). It is not clear
how to do so from the integral expression in (0.0.9), as it involves the flow ® of
Xp. To overcome this difficulty, we use instead of (0.0.9) a full Taylor expansion of
G o xp'. The remainder is then 3,7 Af}jF - G(u), and we need estimates to make
converge the series. Since F,G are expressed in terms of para-differential operators,
we have to introduce classes of symbols a(u,@;x,n), which vanish at order k at

u = 0, and are controlled by C*K!||u||%.. Each ay is itself an infinite sum of the type
ik ai (u,@; x,n), where ai is homogeneous of degree j in (u, %) and satisfies bounds
of the form B’k! (For technical reasons, the actual (j, k)-dependence of our bounds
will be more involved than that). The construction of these classes of symbols, the
study of their symbolic calculus and of the Poisson brackets of functions defined in
terms of the associated operators, occupies chapters 2 and 3 of this paper.

Finally, let us mention that an index of notations is provided at the end of the

paper.






CHAPTER 1

ALMOST GLOBAL EXISTENCE

1.1. Statement of the main theorem

Let H(z,X,Y) be a polynomial in (X,Y") with real coefficients which are smooth
functions of € S*. Assume that (X,Y) — H(x, X,Y) vanishes at least at order 3 at
zero. Let m €]0,+oco[. For s a large enough real number, (vg,v1) an element of the
unit ball of H*+2 (S';R) x H*~2 (S;R), € €]0, 1], consider the solution (¢, z) — v(t,z)
defined on [T, 7] x S* for some T > 0 of the equation

0 10H 0H
2 _ g2 2y, _ _
(07 — 07+ m v o [(‘3Y (z,v, 8951))} X (z,v,0,v)
(1.1.1) Dlp = €t

Opv|i=o = €vy.

The right hand side of the first equation in (1.1.1) is a quasi-linear non-linearity. Its
special form will allow us to write (1.1.1) as a Hamiltonian equation in section 1.2
below. Note that the only semi-linear non-linearities of the form of the right hand
side of (1.1.1) are those depending only on v. Our main result is:

Theorem 1.1.1. — There is a subset N C|0,+oo| of zero measure and, for any H
as in (1.1.1), for any m €]0,+oo[—N, for any k € N, there is sg € N such that for
any integer s > sq, there are €y €]0,1[, ¢ > 0, satisfying the following:

For any € €]0,e, for any pair (vo,v1) in the unit ball of H*T2(SL;R) x
H“"_%(Sl;R), equation (1.1.1) has a unique solution v, defined on ] — T., T.[xS* with
T. > ce™ ", and belonging to the space

CY(] — T, T.[, H 3 (SY;R)) x C}(] — T., T.], H*~% (S R))

(where C} (] — T., T.[, E) denotes the space of C7 functions on the interval | — T, T.|
with values in the space E, whose derivatives up to order j are bounded in E uniformly
on]—Te,T|).
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Remarks. — As pointed out in the introduction, when g—{f = 0 theorem 1.1.1 is
well-known. It is stated in Bourgain [5] and a complete proof has been given by
Bambusi [1], Bambusi-Grébert [3] (see also the lectures of Grébert [14]).

— Results involving a semi-linear non-linearity depending also on first order deriva-
tives (i.e. equation (1.1.1) in which the right hand side is replaced by f(v, 9w, d,v))
have been obtained by Delort and Szeftel [11, 12], included for equations on S¢, (d >
1) instead of S*. One obtains then a lower bound for the existence time in terms of
some non-negative power of € — better (when convenient assumptions are satisfied)
than the one given by local existence theory — depending on the order of vanishing of
the non-linearity at zero. In particular, one does not get almost global solutions for
such non-linearities. For some examples of polynomial non-linearities depending on
v and its first order derivatives, the lower bound of the existence time given by local

® when v vanishes at order a + 1 at zero) is even

existence theory (namely T, > ce™
optimal.

— In the same way, for more general quasi-linear equations than (1.1.1), it is shown
in [10] that the existence time is bounded from below by ce~2* when the non-linearity
vanishes at some even order a + 1 at zero.

— The proofs of the almost global existence results of Bourgain, Bambusi,
Bambusi-Grébert refered to above rely in an essential way on the fact that the
equation under consideration may be written as a Hamiltonian system. This is
also the key to extend these lower bounds on the time of existence of solutions to
the case of equations on S¢, as in Bambusi, Delort, Grébert and Szeftel [2]. In
our problem (1.1.1), we shall use the special form of the non-linearity to write the
equation as a Hamiltonian system.

1.2. Hamiltonian formulation

We shall describe here the Hamiltonian formulation of our problem. Let us intro-
duce some notation. Set

0 -1
1.2.1 =
o =P
and if Z, Z’ are two L2-functions on S! with values in R?, define

(1.2.2) wo(2,2") = (1J2,2"y = (2,0 Z')

where (-,-) stands for the L?(S!; R?) scalar product. Let s > 0, U be an open subset
of H*(S;R?) and F : U — R be a C! map. Assume that for any v € U, dF(u)
extends as a bounded linear map on L?(S*; R?). We define then Xz (u) as the unique
element of L2(S'; R?) such that for any Z € L?(S';R?)

(1.2.3) wo(Xr(u),Z) =dF(u) - Z.
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In an equivalent way

(1.2.4) Xr(u) = JVF(u).

If G : U — R is another function of the same type, we set
(1.2.5) {F,G} =dF(u) - Xg(u) = dF(u)JVG(u).
Let us rewrite equation (1.1.1) as a Hamiltonian system. Set
(1.2.6) Ap =V —=A+m?on Sh.

If v solves (1.1.1), define

A%Q’U

(1.2.7) u(t,z) = {A;lmat”} = {“1} .

For u € H*(S'; R?) with s > 1 set
1

(1.2.8) G(u) = 5 (Amu, u) + A H(x, A2, 0,A,%u?)d.
By (1.2.7), (1.2.8), equation (1.1.1) is equivalent to
ou= Xg(u
(1.2.9) ' (®)
Ult=0 = €ug
A_1/2'U1
where ug(t,x) = { 7711/2 } is in H*(S';R?). To prove theorem 1.1.1, it is enough to
m Vo

get a priori uniform bounds for the Sobolev norm ||u(t,-)|| 7= when s is large enough.
We shall do that designing a Birkhoff normal forms method adapted to quasi-linear
Hamiltonian equations.

Let us end this section writing equation (1.2.9) in complex coordinates. We identify
H*(SY;R?) to H*(SY; C) through the map

(1.2.10) u = Bl} —w= ?[ b du?).

More precisely, we identify H*(S';R?) to the submanifold {w; = Wy} inside the
product H*(S'; C) x H*(S!;C) through

(1.2.11) = {Z;} - {“’ = ﬁ{ui j“‘i” .

w =

[See

If we set for a real C! function F' defined on an open subset U of H*(S!;R?)

3 3
dyF = g(dulF —idyF), duF = g(dulF +idyF)

2 2
V,F = g(vulF —iV,2F), VgF = g(vulF + iV F)

(1.2.12)
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VwF

Vol

we see that the identification (1.2.11) sends V., F' to { _v.F

} and Xp(u) tod { VwF}

/
If Z = {j and Z' = t/} are two vector fields tangent to {ws = w;} in H*(S';C) x

H*(S'; C), the symplectic form coming from wy through (1.2.11), computed at (Z, Z'),
is given by

(1.2.13) wo(Z,2")y =2Im [ c(s)c!(z)dz.
Sl

Moreover, if F'and G are two C'! functions on U, whose differentials extend to bounded

linear maps on L?(S'; R?), we have
iVsG
F.GY = [dyF dgF] | *"
R0y = | {NMG}
= i(dwF - ViG — dgF - V,,G).

(1.2.14)

Finally, if G is a C! function on U, the Hamiltonian equation = X (u) may be
written in complex coordinates

(1.2.15) W = iVepG(w,W).



CHAPTER 2

SYMBOLIC CALCULUS

We shall introduce in this chapter classes of symbols of para-differential operators
in the sense of Bony [4]. These symbols will be formal power series of multilinear
functions on C°°(S!;R?), the general term of theses series obeying analytic estimates
that will ensure convergence on a neighborhood of zero in a convenient Sobolev space.

2.1. Multilinear para-differential symbols and operators

Let us introduce some notations. If a : Z — C is a function, we define the finite
difference operator

(2.1.1) Ona(n) =a(n) —a(n—1),n € Z.
Its adjoint, for the scalar product 32/°° _ a(n)b(n), is
(2.1.2) Ora(n) = —(O0ha)(n+1) = —=7_1 0 dpa(n)
where for j,n € Z we set 7;b(n) = b(n — j). We have
O la(—n)] = (Opa)(—n

(2.1.3) § Zgn [al))} = E@na;l() + ()Tla)((“)nb).
Let us remark that the second formula above may be written

Onfab] = (Ona)b + a(0nb) — (Ona)(Ond).

We generalize this expression to higher order derivatives in order to obtain a Leibniz
formula.

Lemma 2.1.1. — For any integer § € N, there are real constants 551 8,8, Indezed
by integers (1, B2, B3 satisfying 1 + B2 = (6,0 < B3 < (3, such that for any functions
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a,b from Z to C, any (8 € N*
92[ab) = (9Za)b + a(02b)
(2.1.4) + Y Ch sl =m)®00 ] [0720).
B£1>0,82>0

B1+p2=p5
0<Bs<pB

Proof. — For g € N, 51 < (32 denote by C’gl’ﬁQ the value at X = —1 of
o (XPOR)(X%20R)
B1!Ba!
B1,82 _ ~P2,61
When (; > s, set Cﬂ = Cﬂ . Let us show that
olabl = > N (00 a)(97D).
8120 B22>0

Since by definition Cgl’ﬁz = 0 when (1 + B2 < B and when 31 > (3 or B2 > (3, the
sum in the above expression is actually for G < 81 + (2,01 < 5,082 < 8. By (2.1.1),
Id — 9,, = 71, so that

dPlab] = [Id — 71]° (ab)

N o L AV
=3 () = 3 () e
4=0

(2.1.5) (-1) [(1+ X)7).

B’'=0

whence

Y SN[\ (9

5‘5[ab] = Z Z Z (,1)5 +B1+82 (5/> (ﬁ ) (ﬁ >(a£1a)(ag2b)
(2.1.6) B/=0 B1=0 B2=0 1 2
= 3 (0 a)(B372D)

B1 B2

with

051752 — (_1)ﬁ1+[32 Z (_1)5,<ﬂ/) (6/) (6/)
’ max(81,682)<B'<B 6 ﬁl 52

Since X#29%2[(1 + X)P] = S s<p<p (g,)(ﬁ%gz)!Xﬁl, this coefficient is the value at
X = —1of (2.1.5). In (2.1.6), we have 0 < 31 < 8, 0 < B2 < 3,01 + B2 > . When

081+ B2 > (B, we write
071ad?b = ([(Id — ) +P2=P98=F2]4) (957 b)

which shows that the corresponding contributions to (2.1.6) may be written as one of
the terms on (2.1.4), up to a change of notations. When g1 + 82 = 3, we get the first
two terms of the right hand side of (2.1.4) when £ = 0 or #; = 0 and contributions
to the sum in that formula. This concludes the proof. O
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For n € Z, we denote by 6, (x) the function on S defined by

inx

e
2.1.7 0, (z) =
(2.7 @)=
and for o € Z and x # 0 mod 27 we put

O ()
2.1. Onalr) = ——F—.
(218) @)= T

When «a € Z, 8 € N we have
(2.1.9) aﬁen,a = en,a—ﬁ-

If u € L?(SY;R) (resp. u € L?(S;R?)) we set @u(n) = [, e~ u(z) dz and

o

inx

e
2T

>

= [ ul)-u )it () = i(n)

the orthonormal projection on the subspace of L?(S!;C) (resp. L?(S';C?)) spanned
by 6, (resp. O, H and 0, m ).

Let us introduce some notations and definitions. Let (x,n) — a(x,n),(z,n) —
b(z,n) be two C* functions on S! x Z. By formula (2.1.4) and the usual Leib-
niz formula for O,-derivatives, there are real constants Cg,’%,ﬁ indexed by «a,( €
N,o,8,7yeNwith0<a' <o, 03 <6,0<v<3,0<d+0 <a+fsuch
that for any a, b as above, any a, 5 € N
(2.1.10)

9208 [ab(z,n)] = (9205a)b + a(02050b)

Y G alad )@y o a0y o).
0<a’'<a
0<p'<3
0<~y<p
0<a’+8' <a+3
We shall fix some C§°(R) functions x, x, x1 with 0 < x, %, x1 < 1, with small enough
supports, identically equal to one close to zero. We denote by C.(x1) a sequence of
positive constants such that for any n € Z, any A € R, any v € N
A _
ona ()| < Coa)m .
(gl
Moreover, we define from y the kernel
1 X k
2.1.11 Ko(z) = — *ox ()
(21.11) @5 3 (g
with z € S' identified with [—m,7]. We denote by C. (x) a sequence of positive
constants such that for any v, M € N for any n € Z, z € [—m, 7]

(2.1.12) 07K (2)] < Coar ()Y (1 + (m)|2]) =M.
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Definition 2.1.2. — Let T, M € R be given. We say that a sequence (D,)pen
of positive constants is a “(T, M)-conveniently increasing sequence” if (D,)pen is
an increasing sequence of real numbers with Dy > 1, satisfying the following three
inequalities:

For any p € N, for any «, f € N with a + § = p,

(2.1.13) 2 3 |G| )M Dariy Dy < Dy,
0<a’<a
0<B'<pB
0<y<pB
0<a’+8'<p
(21.14) S (6| O () Dy < D,
0<B'<p
0<~<p
(2.1.15) > |C68 @) ICor2(0) + Co 2(0)Dp-p < Dy
0<B'<pB
0<y<p

Note that since the left hand side of the above three equations depends only on
Dy, ..., Dp_1, we may always construct a conveniently increasing sequence whose
terms dominate those of a given sequence.

We shall use several times that if j/, 7/, k', k" are in N*,

(k” +j, _ 1)! (k” +j// _ 1)! - (k/ +E _|_j/ +j" _ 2>!

org OO @ADL S GG NG D
T - 1 (k/+k//+jl+]//_1)'
STFNGED G
We set for j € N, ¢;(j) = ﬁﬁ, so that for any j € Z,c1*¢1(j) < e1(4). For Ko
a constant that will be chosen later on large enough, we put ¢(j) = Kglcl (j). Then
for any j € Z
(2.1.17) cxc(j) < Ky'te(j).

Definition 2.1.3. — Let de R,v e Ry, ( e Ry, e Rwitho >v+(+2,4,k €
N*,j > k,No € N,B € R, D. = (Dyp)pen a (v+]|d|40, No+1)-conveniently increasing
sequence. We denote by Y% (0,¢, B, D.) the set of all maps

(k7j)7ND
(u1,...,uj) = ((x,n) — aluq,...,u;;z,n))
(2.1.18) 1 o 1
C>®(S";R*)? — C=(S' x Z;C)
which are j-linear and symmetric in (u1,...,u;), such that there is a constant C' > 0

so that for any wi,...,u; € C>(S';R?), any ny...,nj €7Z,

1
(2.1.19) a(Ilp ug, ... Iy ug;2,n) = 0 if max |ng| > Z|n\7
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and for any p € N, any o’ € [v+ ( +2,0], any (z,n) € S x Z

sup [0205a(Mp, us,. ..,y uj;z,m)|

a+pB=p
(2.1.20) Loy i
+7 - 1 ' . j - a+v —o’ o’
< C’#c(])DpBﬂn}d B+(at+v+NoB—o') 4 H (ne)” |, ue 22,
G+t et
and forany £ =1,...,j
(2.1.21)
o (/{7 +j — 1)' . ; d—B+a+v+NoB+o’
sup (070, a(ln v, ... iy, uj52,n)| < Co———=c(j) Dp B’ (n)
a+p=p ) (.] + 1)
<((TL )™ I ) )~ ML
1<U'<j
040
The best constant C' > 0 in (2.1.20), (2.1.21) will be denoted by
(2.1.22) m?,;fj)’No (0,¢, B, D.;a).
Remarks. — We extend systematically our multilinear maps of form (2.1.18) to C-

multilinear maps on C*°(S*; C?)7 to be able to compute them at complex arguments.
— By definition for a > 0, 0 > v+ (+ a + 2,
(2.1.23) S8 (0,6 B, D) CIGE (0,¢, B, D.).

— When Ny = 0, the above inequalities define a class of para-differential sym-
bols: by (2.1.20), if wg,...,u; belong to some Sobolev space H*®, then the symbol
a(ui, ..., u;;x,n) obeys estimates of pseudo-differential symbols as long as the num-
ber of z-derivatives is smaller than s — % — v. For higher order derivatives, one loses
a power of (n). Moreover (2.1.21) shows that if one of the u, is in a Sobolev space of
negative index H %, one gets estimates of symbols of order essentially d + s, with a

loss of one extra power for each J,-derivative.

(k+j—1)!
(G+1!

The important fact is that these quantities are bounded by k! (times a power k + j

of some fixed constant). For u € H®, with s large enough and |||z small enough,
this will allow us to make converge the sum in j > k of such quantities, and to obtain
bounds in C*k!||u||%,. i.e. bounds verified by the derivatives at zero of an analytic
function defined on a neighborhood of zero.

in the above definitions is not essential.

— The precise form of the factors

We shall define below other classes of symbols given by infinite series whose general
terms will be given from elements of E?,’:j) No (0,(,B,D.). We shall need precise
dependence of the constants in (2.1.20), (2.1.21) in j, k to obtain convergence of these

series. But we shall also use polynomial symbols, defined as finite sums, for which
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explicit dependence of the constants is useless. Because of that we introduce another
notation.

Definition 2.1.4. — Let d € R,v,¢ € Ry, Ny € N,j € N. We denote by % (¢)

(4);No
the space of j-linear maps (u1,...,u;) — ((z,n) — a(uq,...,u;;2z,n)) defined on
C>(S';R?)7 with values in C*°(S! x Z; C) satisfying the following conditions:

e For any ny,...,n;,n with max |ng| > i\n|, for any uq,...,u; in C(S'; R?),
(2.1.24) a(Ilp,ut, ... Iy ug;2,m) = 0.

e For any «, 8 € N, any 0 > v+ ( + 2, there is a constant C' > 0 such that for any
Ni,...,nj,n € Z, any x € S', any uq,...,u; in C°(S;R),
(2.1.25)

J
10208 a (I, un, . .. Ty ugsa,m)| < O () O ENI= TT (0 )L, g 2,
=1

and forany £ =1,...,j
(2.1.26)

0208 a(IL,, ur, . .., L, uj; 2, n)| <C(n)*ProtviNofte

< ((TT tme) I o) )™ T el 2
1<e'<j
0#0

Let us now define from the preceding classes symbols depending only on one argu-
ment u.

Definition 2.1.5. — Let d € R,v,( € Ry,Ng € Njo € Riog > v+ (+ 2,k €
N*'B > 0,D. a (v + |d| + 0, Ng + 1)-conveniently increasing sequence. We denote
by S(d,;)” no(0,¢, B, D.) the set of formal series depending on u € C* (St,R?), (z,n) €
St x R,

2.1.27 alu;x,n def ai(u,...,u;x,n
( i
c ———
ik j
where a; € E‘(i,;"j) No (0,¢, B, D.) are such that
(2.1.28) NG (0.6 B, Dsa) = anp NGy wo (0:€, B, Dsa5) < 400,
i>

Note that if so > v+ + 3 and if u stays in By, (R), the ball of center 0 and radius
R in H*0(S!,R?), each a; extends as a bounded multilinear map on H**(S', R?) and
by (2.1.20), one has estimates

k+j—1)! S ae _ .
10005 a;(u, ... ,u;z,n)| < Ca’ﬁwc(j)Bj <n>d Bt Nof=2)+ pj.
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so that if 2BR < 1 the sum in j > k of the preceding quantities converges, and is
bounded by C(4RB)*(k — 1)!.
We introduce a similar definition for polynomial symbols.

Definition 2.1.6. — Letd €e R,v,{ € R, Ng € N, k € N*. WedenotebySk)N ©)
the space of finite sums

(2.1.29) a(uyz,n) = E a;(u,...,u;x,n)
¢ ———
>k ’
finite J

wd,v
where a; € E(j),No(O'
Quantization of symbols

Definition 2.1.7. — Eet x € C§°(] — 1,1]), x even. Let a; € E‘(i]:jj)7N0(O—7C’B’D')
(resp. a =Y > a; € S(,;')/’NO(U,C,B,D.)). We define

D
g (s .o ug;,m) = X(@)aj(ul,-..,uj;z,n)

(2.1.30)
u Z, TL E a; , U3, N
JX )

j>k

Let us remark that a;, (resp. ay) still belongs to E(,” ,(0,(,B,D.) (resp.

Szik)VN (0,¢,B,D.)) and that

d,v . d,v .
N iyv (056, B Dsajy) < CoMNiiy v (0,¢,B,D.;a;)

m‘j” (0,¢, B, D;ay) < CoM&”  (0,¢, B, D.;a)

for a constant Cy depending only on x. Actually, if K,(z) is the kernel de-
fined by (2.1.11), and if we set U’ = (w1,...,u;), ' = (n1,...,n;), LU =
(I, ut,y - o Il uy), we have

(2.1.31)
(k),No

D
aj (I, U's2,n) = X(@) [a; (1L, U';z,n)
= K, xa;(Il,,U";-,n)
where the convolution is made with respect to the x-variable on S'. By (2.1.10), we
may write
(2.1.32)
0008 a; (M, U's2,n) = 0P Ky, % 0%a; (M Uy 2,n) + K, % 02020, (1L, U'; x,m)
+ Y Cop =)0l K+ (92007 a4y (I U's v, m)).

0<B'<B
0<~y<B
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We may write
|(Id—7‘1)78£/Kn| < Z <V,>|8S’7'17/Kn|'
0<y<y \T
Using (2.1.12) with M = 2, we bound for v < p, 3 <p
’ Y 1-3 _
(2.1.33) |(Id —71)70] Ku| < Caralx) > ( ,) (n =) (14 (0 — 7)) 2
0<~'<v v

Note that

(2.1.34)

20 (n) < (n—9") <2(y'){n)

so that the L!(dz) norm of (2.1.33) is smaller than
(21.35) 2C 2 () (4(p))"(m) "

If we plug this in (2.1.32), use (2.1.20) or (2.1.21) to estimate |9292~% a;| and remind

that we assume that 53;,7 satisfies (2.1.15), we obtain for 020%a; , estimates of type

(2.1.20), (2.1.21) with the constant C replaced by CyC, for some uniform Cy > 6.
Let us quantize our symbols.

Definition 2.1.8. — Let x € C5°(] — 1,1),0 < x < 1, x even, x = 1 close to zero.

T 404
If a; € z‘g’,;fj),NO (0,¢, B, D.) we define for uy,...,ujy; € C®(S',R?)
“+oo
1 inx ~
(2.1.36) Opla(uq, ..., uj; )ujy(z) = by Z e aluy, ..., u;;2,n)jy1(n).

If @ =} ;> a; belongs to sy

(%),No (0,(,B,D.) we define Opla(u;-)] as the formal

series of operators

(2.1.37) > Oplay(

Jjzk

Uy ooy U e)]e
W—/
j
Finally, we define Op, [a;(u1, . .., u;;-)] (vesp. Op,[a(u;-)]) replacing in (2.1.36) (resp.
(2.1.37)) a; by a; (resp. a by a,).

Let us study the L2-action of the above operators.

Proposition 2.1.9. — Letd €e Ry, e Ry,0o e Rilo >v+(+2,Ny € N jk €
N* j>k,B>0,D. a(v+|d|+0, No+1)-conveniently increasing sequence. There is a

universal constant Cy such that for any a € Z‘(i,’cl”j)’NO (0,¢,B,D.), any ng,...,njq41 €
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Z, any u,...,u; € C°(SY;R?), any N € N, any o’ € [v+ ( + 2,0,

”Hnoopx[a(nnlulv cee 7H7LJ Ujs ’)]Hn_ﬁ-l ||£(L2)
(k+j—1)

< CoDNNG) . (0,¢, B, Dsa)~— c(j)B’
(.3), (G + 1)

(2138) d+(v+N—-o')+

. w TT (ne)” 1T, e 12
/=1

<Tl0 — 71j+1

X

X1{|”0—"j+1|<%<nj+1>7max(|"1\=~~7|nj\)S%\nnll}
and for any £ =1,...,7,

||Hno Opx[a(H”lul? s 7H7Ljuj; ')]Hnj+1 ||L(L2)
(k+j— 1)

< CoDyME” B,D.;
>~ Vo N (Ua<7 ) 7a) (]+1)‘

(k7). No c(j)B’

(2.1.39) nipq ottt , .
X<J+>>N( T ) Tl 22 ) )™ [T ]
1</ <j
vt

<n0 — ’/lj+1

x 1{|n0*nj+1|<%(nj+1>amax(|"1\wy|nj|)S%\nj+1|}'

Proof. — We denote U’ = (ui,...,u;), n’ = (ni,...,n;), and set I, U =
(M, uy, ..., Iy uy). By definition 2.1.8, the Fourier transform of Op, [a(I1, U’; -)]u; 41
evaluated at ng may be written

1 _ N

% aX(Hn/U’; no —Nj41, njH)u(njH).
N1

By (2.1.30), ay(IL,/U’;k,nj41) is supported for [k| < %(nji11) and by (2.1.19) it

is supported in max(|ni|,...,|n;|) < f|nj4+1|. Moreover integrations by parts and

estimates (2.1.20) show that

(k+j—1)!

@ (Mo U's k)] < CoMGi5 (01, B, Des @) = sp=c()) B Dy

(k,5),No
d+(N ’ N ! 4
x ()T oy TN TT () (1T, ] 2
=1

for some universal constant Cy. This gives inequality (2.1.38). Estimate (2.1.39)
follows in the same way from (2.1.21). O

We shall use some remainder operators that we now define.

Definition 2.1.10. — Let v, € R;,d € Ry, 0 € Ry, 0 > v+2+max((,%),B >
0,7,k € N*/j > k. One denotes by A?];Vj)(U,C,B) the set of j-linear maps M from
C>(SY;R?)7 to L(L?(S';R?)), the space of bounded linear operators on L?(S';R?),



24 CHAPTER 2. SYMBOLIC CALCULUS

such that there is a constant C' > 0 and for any ui,...,u; € C®(S';R?), any
no,...,Mj41 € L, any £ =0,...,5+1,any o’ € [V—|—2—i—max(c,%),U]7

||Hn0M(Hn1u1, ey Hnj Uj)Hnj+1 HL‘(LZ)

(2.1.40) k+ o vid T 1 0 T
<c(<il>) e()B (ne) " L )™ TL el
=1

The best constant C' > 0 in the above estimate will be denoted by kv

(k,j )(UvgaB;M)'

We also define operators depending on a sole argument.

Definition 2.1.11. — Let v,( € R;,d € Ry, 0 € Ry, 0 > v+2+max((,%),B >
0,k € N*. One denotes by E?,;’;(U,C,B) the space of formal series of elements of
L(L?*(S*;R?)) depending on u € C*°(S*; R?)

(2.1.41) Mu) =Y Mju,...,u
ey \jf_z
where M, € /1dk'j])(a7 ¢, B), such that
(2.1.42) NG (0,¢, B; M) = supm‘(ik” (0,¢, B; M;) < +00.

Let us give an example of an operator belonging to the preceding classes. Consider
an element a; € E?;:j) NO(U,{,B,D.) for some d > 0, some ¢ € R;. Let x be as in
definition 2.1.8 and take x1 € C§°(] — 1,1[), x1 =1 close to zero. Define

a;1(ur,. .., u5z,n) =(1— X1)<<§>>[aj(ula oozl

Then it follows from (2.1.20) that a;; satisfies estimates of the same form, with (d, v)
replaced by (d —v,v + ) for any v > 0, any o’ € [v + ( + 2,0]. We thus get for the
operator
M(ui,...,uj) = Opx[ajvl(ul, co )]
bounds of type (2.1.38) with N =0
||HnOM(Hn1’LL1, e ,Hnju]‘)Hnj+l ||L'(L2)

(2.1.43) coBHI=D g, i ﬁ

11,
S (]+1)' ” eufHL2

for any ¢’ € [v 4+ ( + 2,0]. Take v = ¢/ — v and assume ¢’ > v + 2 + max((, %) We
get a bound of type
Jj+1

() B (njp1) "2 T ng) 7 H ne) HHHWW'HB
gl

=1

(k+j— 1)
C G
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Since by (2.1.38), (ng) ~ (n;41), this gives an estimate of form (2.1.40) for £ = 0 and

¢ = j+1. To obtain the same estimate when ¢ € {1, ..., j} we remind that because of

the cut-off in (2.1.38), we may assume (n,41) > c(ng), £ =1,...,j which shows that

in any case we obtain estimates of an element of A‘(i,’:j) (0,¢, B) since =3¢’ +v+d < 0.
We also define the polynomial counterpart of the preceding remainder classes.

Definition 2.1.12. — Let v,( € R,,d € Ry,j,k € N*. We define /]‘(1]')/(() to be

the space of j-linear maps from C°°(S';R?)7 to L(L?*(S';R?)) satisfying for any

o' > v+ 2+ max((, %) estimates of form (2.1.40) with an arbitrary constant in-

stead of (lg(;fiz)ll)!c(j)Bj. We denote by Z?kl)’(g) the space of finite sums M(u) =
yd,v

Yok Mj(u, ... u) where M; € A Q).

We have defined operators as formal series in (2.1.37), (2.1.41). Let us show that
for u in a small enough ball of a convenient Sobolev space, these series do converge.

Proposition 2.1.13. — Letd e Ry, e Ry, 0 e Ry, 0 >v+(+2,B>0,Ny €
N, D. a (|d| + v + 0, Ng + 1)-conveniently increasing sequence, k € N*.

(i) Let § > 0 be a small positive number. There are constants r > 0,C > 0,
depending only on B, v, (, 8, such that if u € H*T¢+3+9(SLR2) and ||uHHV+H%+5 <r,
Op, [a(u;-)] defines a bounded linear map from H*(S';R?) to H*~4(S*;R?) for any
s € R, and one has the estimate
(2.1.44)

A d,v .

”Opx [a(u; ')]”L(HS,HS*d) < C(S)(CB)k(k - 1)'m k),No (07 Cv Ba D'7 a)Hu”];_Iqu(Jrngs
for some constant C(s). The same estimate holds for ||Op, [Oua(u;-) - V]| z(ms, me—ay
. a1 . -
ifV € HVHCH3+0 ith, ||u||’;y+c+%+6 replaced by |ul ];IuiugHHVHHWH%H‘

(i) Let o' € [v+(+ 2,0 — %[ and § > 0 such that o’ + 3 + 6 < 0. There
are C > 0,7 > 0 depending only on o',8, B such that for any u € Ho'+3+5 with
lull jorygss < 7, any V € H~7"*3%9  the operator Op, [Oua(u;-) - V] defines for
any s € R a bounded linear map from H*(S';R?) to H*~(d+v+o'+2)(SL.R2) with an
esttmate

(2.1.45)

10D [Bua(u; ) - VIl gare pro-casvorvary < C()(CB)* (k — 1)1

(k;),NO(U7C7BaD-;a)

k—
Xl IVl o e

Moreover, for any § > 0, there are C’,po > 0 depending on 6,v, B, such that for any
u € HYHCH3+8 with ull vrcegs < po, any s > v+ (+ 3, any V € H %S4 R?),
Op, [Oua(u;-) - V] defines a bounded linear map from H® to H~4v=5=0 with an
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estimate
(2.1.46)
10 [0ua(uss ) - VIl . gy-amv-g-s) < C(8)(CB)" (ki — NG v (0.¢, B, Dsa)
k—1
X Hu||HV+C+%+5 ||V||H75'

(iii) Assume d >0, 0 > v+ 2 +max((,2). Let o' € [v+2+max((, %), 0 — [ and
0 > 0 such that o’ + % +08 < 0. There are C > 0,7 > 0 depending only on o’,8, B,
such that for any uw € H 240 with lull yorsgvs <7, any M € E?,’Cl)'(a,c,B), the
operator M (u) defines a bounded linear map from HO' 4340 go {20/ —v=3—0—d yip,
the estimate
(2.1.47)
||M(u)||£(HU’+%+5,H20’7V7%757d) < C(U/)(CB)k(k - 1)!cﬁ(yk) (0’, ¢, B; M)HUHI;I

a’+%+5'

In addition, for anyV € H" +2%5 9, M(u)-V is a bounded linear map from H® +2+0
to H2o' —v=3=0=d gnd jts operator norm is smaller than the right hand side of (2.1.47)
with [ul ., ., reploced by [ul 1,y V] oy

Moreover, for any s €lv +d + 2,0 satisfying s > v + 3 + max((, %), there are
C,po > 0 depending on s,v, B such that for any v € H® satisfying lu|lgs < po, the
linear maps M(u) and V' — (0, M (u) - V)u belong to L(H %, H=2Tv+4)) and satisfy

1M (u) - V| gr—2-v-a + [[((OuM (u)) - V)ul gr-2-v-a

(2.1.48) - ) .
< C(CB)*(k — 1)) (0, ¢, Bs M) [[ul Fre V] -+

Proof. — (i) We write a = 3,5 a; with a; € E?];l:jLNO(a,C,B,D.). We ap-
ply (2.1.38) with ¢/ = v+ ( + 2,N = 2 and estimate <ng>gl||Hneue||Lz by
(712)7%76%@||uz||HV+H%+(S for a sequence (cp,)n, in the unit ball of 2. Summing
(2.1.38) in nyq,...,n; we obtain

[T1,,, Op, laj(u, ... u; )|y, w2

d,v j— j ]
S CODQ(),I(]CJ')’NO (07 Cz B7 Dv aj)2k+j 1(k - 1)'8] (C(/)Hu||HV+C+%+6)J

d -2
X||Hn]‘+1wHL2<nj+1> <n0 _n]+1> 1\n0—nj+1\<i(nj+1>
for some uniform constant Cjj. We deduce from this and (2.1.28) that

10py laCus Mo,y < Cls)25(k = DINEY (0., B, Ds)

x Z(2Bc(l)||“”Hu+c+%+6)j
izk

which gives the first conclusion of (i). The second one is obtained in the same way.

(ii) We decompose again a = 3~ ;~ a;, and write dya;(u,-) -V as a sum of j terms

(2.1.49) a;(u,...,u,Vyu,...,u;z,n).
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We apply estimate (2.1.39) with N = 2, the special index ¢ corresponding to the
’ 1
place where is located V. We bound |IL,,, ul[z2(ne)” < ¢y, <n4/>7575||fLLH1LF,,+%+57

ITL,, V| L2 <ng>70/ < ¢p, <7’Lg>7%76HV||Hﬁ,/+%+5, for sequences (¢, )n, in the unit ball
of 2. Summing (2.1.39) in n1,...,n; and taking into account the fact that we have
J terms of form (2.1.49), we get

[T, Op, [Ouaj(u, ... u;-) - VI, 222
< CoDaNG) , (0,6 B, D)2k — DB lull? 4 (Cp)

(k,4),No o/+i+4s

d+v+o'+2 -2
(no —nj11) llno—nj+1|<i<n_7’+1)

X ||V||H—o’+%+6 (nj+1)
for some uniform constant C}. Summing in j > k when ||u||H(,, +3+s is small enough,
we get estimate (2.1.45).

To obtain (2.1.46), we apply again (2.1.39) with ¢/ = v + (+ 2, N = 2, the
special index being located on the V' term. We bound for ¢’ # ¢ (nﬂo, 1Ly, wer || 2 <

_1_
Cny (npr) 2 6||u||HU/+%+5 and
o ! 1 _1_
(ne) ™7 T, Vlza < en, (ne) =7 T2V s (ng) 7277

with ¢2 sequences (¢, )n,, (Cn, )n, - Using that (ng) < (nj41), we get summing (2.1.39)
inng,...,n;

||HnDOpX [Oua;(u, ... u;-) - VI, 22

i . . . .
< CoDaMGYy) (0,0, B, Dosay)28 = (k= DB flull? 0y (CoY?

d+u+s+%+5<

—2
X[Vl -5 (nj+1) 10 = 1541) Ljngnyiy|< i)

We sum next in j > k for ||1L||HV+H%M small enough. We obtain the bound of (2.1.46)
for the £(H*, H=%"~3~%)-norm of Op, [Oua(u;-) - V].

(iii) We decompose M = "~ M; with M; /6 A?l;l"j)(a, 1C,B). We apply estimate
(2.1.40) with ¢ = 0, bounding ||IL,,,, us || 2 (ne)” by <ng/>_5_5||w/||Hg/+%+5cn€, for a

sequence (Cy,, )n,, in the unit ball of /2. Summing in nq,...,n; we get
(2.1.50)
Mg M; ()L ey < (= 1)12EF 1 ng) 727 F 0, )7

x m?k,j)(o" ¢ B; Mj)(c(l)llu||Ha/+%+5 )ij

for some constant C{,. If we make act the resulting operator on some w in H o' +3+0
and sum in n;4, and in j > k, we get that

IM s gsorsmy—s-a) < CLo" ) (0, B MYCBY (= 1)!ful],

o/+i+4s
if ||ull o+ 345 <7 small enough.
To estimate 0, M (u) - V', we have to study expressions of form (2.1.50), with one

of the arguments u replaced by V. The rest of the computation is identical.
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We still have to prove (2.1.48). We write again M = 3., M; and use estimate
(2.1.40), taking for n, the index for which |ng| > |ne|, ¢ =0,...,j + 1. We obtain if
we take in (2.1.40) o/ = s — & — 6 for some § > 0 small enough
(2.1.51)

L0 M (T s - ooy T )T, V|2 < Ok — 1)!2’“+j—1md’”(a ¢,B; M)B’
J

A
x(T1 ned ™70, ) (ngn) cz:j1H||ue/HHsHV||H-

=1
% <n0>57%75<nj+1> 7%75<ne>738+§+35+lj+d
where (cfl;,)ng, ¢ =1,...,5+ 1 are £2 sequences. We obtain a bound in terms of a
constant times 2% (k — D)!(2B) [T{||ue ||+ |V || =N (0, ¢, B; M) times
= 15 v 2 1-6 3s+35+36 d
(TI (e ™2k, Yty o) gy~ ¥4 35054,
=1

Because of the choice of ng, and since s > d +v + 5 3 the factor between brackets is

bounded by (no) ™ 2T < (ng)? +35+V+d~n0 with an £2-sequence (¢, )n,- Summing

in ng,...,n;j41 we obtain

1M (1) - V| gr=v-2ma < CNE (0, By M)2Bl[ul| o) |V || 11+ (k — 1)12%.

(k)
Summing in j > k when |lu||gs is small enough, we get the wanted upper bound.
To estimate in the same way (0, M (u) - V)u, we remark that we have to estimate j
expressions of form (2.1.51), except that the argument V replaces now one of the u;,
so that in the right hand side of (2.1.51) we have to exchange the roles of (n;11) and
of one of the (ny). The rest of the proof is identical. O

2.2. Substitution in symbols

In this section, we shall study the effect of substituting a multi-linear map to one
or several arguments inside a multi-linear symbol.

Let us fix some notations. Let B > 0,v,{ € Ry, 0 > 1/+§+2 deR,NgeN,D. a
(|d| + v 4 o, Ng + 1)-conveniently increasing sequence. Let b € S (m):No (0,¢,B,D.) for
some k € N*. According to definition 2.1.5, we decompose

b(u; x,n) Zb uacn)

J>K j
with b; € Z‘(’l:j) Ny (0,¢, B, D.). For ui, ... ,uj11 € C*> (S, R?) we set
(2.2.1) Vi(u, .. ujpn) = Opy by (un, - wys ) ]ujan
or

(2.2.2) Vi(u, ... ujq1) = Op, [by(ur, ... ugs)]ujpa



2.2. SUBSTITUTION IN SYMBOLS 29

where y € C§°(] — 1, 1[), x even, x = 1 close to zero.

Let us apply inequalities (2.1.38) and (2.1.39) with N = 2. There is a sequence
(Qn)n in the unit ball of /! and for any s € R a constant K, > 1, depending only on
s and Ds, such that for any ¢’ € [v + ¢ + 2, 0] one has estimates

s—d
<n0> ”Hno‘/j(nnluh e 7Hnj+1uj+1)||L2

(r+j = 1)

< Kg‘ﬁd’” (07<7B7D~;bj) (]+ 1)| .c(j)Banofnj+1

(K’j)vND
(2.2.3)

j ’
% (TT ne)”" T, well 22 ) 1) T, 51 122
{=1

X Ljng—nyp1]<d nypn) max(inaln; <3 fny ]}
and for any £ =1,...,j
—d
<nO>6 HHnij(Hmul"" 7Hnj+1uj+1)HL2
d,v . (K’ +J - 1)' . 7
S K2m(li,j),N0 (U, C, B, D., b])wc(])B Qnofanrl
2.2.4 o o’
(224) x (TT e WMo el ) ()™ T el 22)
1<0'<j
O£
< (1) TR g e
Set now when d =0, =0, Ng =0,k = ko > 1
(2.2.5) Viw=u+ Y Viu,... u)
j=>ko

Jj+1

as a formal series of homogeneous terms. Note that by (2.2.3) with ¢/ = v + 2, we
have if u € H**310 0 H* for some § > 0 that |V (u)||gs < Clul’, 2B ||| g+,
so that (2.2.5) is actually converging in H? if ||ul|

u+%+é(

g ges is small enough relatively to
1/B.
Proposition 2.2.1. — Let d € R,v, € Ry, k € N*,a € SGJ (0,¢, B, D.). Define
(2.2.6) c(u;z,n) = a(V(uw);z,n).
Assume that the constant Ko in (2.1.17) is large enough with respect to o, Ds and
0,v .
‘ﬁ(l),o(a,O,B7D,,b).
Then c € S(déj_ko_l)vo(o, ¢,B,D.). Moreover
d,v . d,v . 0,v .
(2.2.7) m(k+ko_1)70(U,C,B,D.,C) < C"ﬁ(k),o(a,g,B,D.,a)‘ﬁ(ko),o(o,O,B,D.,b)

with a constant C' depending only on ‘ﬁ?&o(a, 0,B,D.;b).
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Proof. — We decompose a(u;z,n) = 35y ai(u, ..., u;z,n) so that ¢ is by definition
the formal series )~ ¢j(u,...,u;x,n) where

J
(2.2.8) cj(ul,...7uj;:v,n)zz Z a; (V;, (U), ..., V;,(U%);2,n) g

i=k jitoti=j—i

where we used the following notations:
If =0, Vo(u) = u. If j, > 0, we have set

(229) U‘H = (Uj1+.,.+j£71+g7 PN 7’u’j1+"'+j£+€)’ {= 17 ceeyl
and S in (2.2.8) denotes symmetrization in (ug,...,u;). To further simplify notations
set

A ) . .
(2.2.10) = (0. ng) € 2T

with nff = N4 djp_1+0+q—1; 1< q < je +1

and
(2.2.11) T30 U7 = (T30t 50 1 <g<jo 41
We shall estimate ¢;(u1,...,u;j;2,n) — a;j(ui,...,u;;z,n), which is given by (2.2.8)

where the (j1,...,J;) sum is taken only for j; +--- + j; > 0. Then, for a + 8 = p,
(2.2.12) 9208((cj — aj) My, un, . .., Iy, uj; 2, )]

will be given by the sum
(2 2 13)

Z Z Z Z 8Q8ﬁaz nl nlt Viy (th Ujl)v T ’anf Vlz( nii U’ ) )

i=k 0<j1+--+ji=j5—1 31

where we no longer write symmetrization. We apply (2.1.20) to a; and (2.2.3) with
s = ¢’ to Vj, to bound the modulus of the general term of (2.2.13) by the product of

mdu

i 0(0:¢, B, D)

(1) 0(07 07 Bv Da b)i_lm(()];Z)70(o-7 07 Ba D’ b)D

(where 7 is the number of j; # 0, so that 1 <7 <+) and of

(kO + jl - 1)' (k +i— 1)' () f[ 1 (][)B]Kg <n>d—5+(a+v—al)+

- : : c
Ja! (t+1)! et 1)
(2.2.14) - )
<T1 @ (H 7 T, el ).
=1 =1
(We have considered V}, as defined in terms of a symbol of valuation kg and Vj,, ..., V,

as defined by symbols of valuation 1 or 0, assuming that j; > 0). We sum in
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nd,...,n}. We use also that by (2.1.16)
1 1
, T < -
((+D[1Ge+1) ~7+1
(ko+j1—1)!(k—|—i—l)! < (k+(l€0—1)+i+j1—1)! < (k+k0—1+]—1)'
Ji! il - (J1 +4)! B J!
to bound (2.2.13) by M%Y (0,¢, B, D.;a) times

(k)O

(2.2.15)

(k+ (ko —1)+j—1)!
7+ 1)

D,B’ Zmax (1L, (0,0, B, D)9, (0,0, B, D.;b)

J

(k3> o) TT iy o ) Tl 12 )

Jitetji=j—i £=1 =1

with a new value of Ky. By (2.1.17), the inner sum in (2.2.15) is bounded by M.

0
If we assume that K is large enough so that

Ky max[l ‘ﬂ (O' 0,B,D.; b)} < Ky

(1),0

we obtain the bounds (2.1.20) for a symbol in E(}’;krl )No (0,¢,B,D.).

Let us get bounds of type (2.1.21) for (2.2.13), when for instance the special index
¢ corresponds to one of the arguments of U7t. We apply to a; estimate (2.1.21) with
¢ = 1. This obliges us to bound <n61>_0 ||Hn61 Vi, (IL,,5, U71)|| 2. We control this
expression using (2.2.3) (resp. (2.2.4)) with s = —¢’ if we want to make appear the
power (nﬂﬂ_n with £ = j; + 1 (resp. 1 < ¢ < j;). We obtain a bound of type
(2.2.14), except that the power of (n) is now (n)* "7 and that one of the
(ne)? ||IT,, we| 2 is replaced by (ng)~7 ||IL,,,ue||L2. We conclude as before.

We still have to check that the support property (2.1.19) holds. Remark that
in (2 2.13) we have |nff| < 1In| by (2.1.19) for a, and Inje| < 4|th3+1| g=1,...,7s
Jesa| < 20| because of the cut-off in (2.2.3). This implies that (2.2.12) is supported
for [ne| < %|n|, £=1,...,j as wanted. O

[n

Our next goal is to study quantities of form 9,a(u;x,n) - V(u) where a belongs to
some Szik}l)' ~,(0,¢, B, D.) and V is defined by a formula of type (2.2.5).

Proposition 2.2.2. — Let d',d”" € R,d" > 0,d = d' +d",. = min(1,d"),v,{ €
Ry,o0>t+v+(+2,K, k" e N NyeN,B>0,D. a(v+|d|+|d'|+0,No+1)-
conveniently increasing sequence. Define

(2.2.16) Viw = > Vilu,...,u)

11> et
">k JES
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(as a formal series), where Vji is deﬁned by (2.2.1) from the components of a symbol
b = 3 s bjr satisfying b € Sk,, (O’ (,B,D.). Let also a be an element of

S&Y v, (0.¢. B.D.). Then

(2.2.17) c(uyz,n) = Oya(u;z,n) - V(u)
defines an element of S?k,jr:j/m (0,(,B,D.).
Proof. — We decompose a(u;,n) =Y ;15 ajr(u, ..., u;x,n). Since

8Uaj’(u7 cen W T n) : V(u) = j/aj’(V(u)vua S U T, n),
we may write with k = k' + k”

(2.2.18)
c(u,: z,n) E ¢i(u,...,u;z,n)
j>k
. — U .
c]'(ulv"'7uj7'r7n) - § J aj’(‘G”(”la“'7U'j"+1)auj”+2a"'aujvxvn)s

T
Jti=

j/Zk)/7j//Zk//

where S stands again for symmetrization. Write
5§6£cj(ﬂmu1, ooy M ugs z,m)

as
(2.2.19)

Z Z /(‘30‘(‘35% HnOV”(Hnl Uy .- - ,Hnj,,+1uj//+1),

no=—00j'+j"=j
Hnj,,+2uju+2, e ,Hnjuj; Z, n)s.
We estimate the general term of the above sum. We apply (2.1.20) to aj with o’
replaced by ¢’ — ¢ > v+ (42, and (2.2.3) to V}» with s = ¢’. We get for (2.2.19) a
bound given by the product of

(2.2.20) N i (0 = L,C,B,D.;aj/)‘ﬁ(k”’/ oy (0,6, B, D5 b

times

) k//+j// ) (k/+j 71) )

K I( Bg " ne—n

2. 2 e S R P Y ()el")Qno=n s
J

X<n>d*L7ﬁ+(a+V+L+Noﬁfff ) H (ne)° |, e 2

using that (no)? 7 < (n)% "“(ne)* 7 because of (2.1.19). Using (2.1.16) and
(2.1.17) with Ky > K», we obtain an estimate of type (2.1.20) for (2.1.26).

We also need to prove bounds of form (2.1.21). Consider first the case when the
special index £ in (2.1.21) is between j” + 2 and j, for instance £ = j. We apply
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(2.1.21) to aj and (2.2.3) to Vj», taking s = ¢’ + d”. We get a bound given by
‘ﬁd ’V-/ (07 Ca B, Da aj’)m((ik/’/;u)’]\ro (07 Cv B,D; bj”) times

(K’,3"),No
(2.2.22)
k“‘i’j”*)(k/#’j*l) )

Z Z K2 // -/ Bj ( ) (.]”)Qno—'llj/url
no j'+j"=j +1)! (7" + !
j—1

d — a+v+ N o’ d"’ o' —o'

x (n)d TRt L DT T (o) M, e 2 ()~ 1T, | 2

=1

Moreover, by the cut-off in (2.2.3)”<nju+1> < 2(ng) and by (2.1.19) for a;/, |ne| < 1|n|.
Since d” > 0, we bound (nju+1>d by (2(n))¢". Using then as in (2.2.21) inequalities
(2.1.16) and (2.1.17), we get a bound of type (2.1.21) for a symbol belonging to
d—u, v+t

E(M,j, 1~ (0:¢, B, D).

Consider now the case when the special index £ of (2.1.21) is between 1 and j” + 1.
If £ = 37" +1, we apply (2.1.21) to a; taking the negative power —o’ on (ng), and
(2.2.3) with s = —o’ +d” to Vj». Since (ng) ~ (n;»41), we get a bound of form
(2.2.22) with (njry1)7 T (resp. (n;)™7) replaced by (njr1) "7 T (resp. (n;)7)
and conclude as above. If the special index ¢ is between 1 and j”, we apply (2.1.21)
to a;s (taking the negative power —o’ on (ng)) and (2.2.4) with s = —¢’ +d"”. We
obtain the upper bound

S gt +g — DN E T =Dl s ) e () Qg

//
P +0t G+ D!
d — N, ’ / o
x (ny @ OOt ENBR e T () [T, e[| 2 () ™7 ([T | 2
1<0'<j
O#5"+1
V4L
dl/
X(”j//+1>u+ +2||Hnju+1uj”+1HLZ'

We write using the support condition (2.1.19) and (2.2.3) <le//+1>y+d”+2 <

(n)d”ﬂ<nj~+1>u+2ﬂ. Since v + 2 + ¢ < o', we deduce again from that the
wanted estimate of form (2.1.21). Since the support condition (2.1.19) is seen to be
satisfied as at the end of the proof of proposition 2.2.1, this concludes the proof of

proposition 2.2.2. O

We shall need a version of proposition 2.2.2 when Vj» in (2.2.16) is replaced by
a multi-linear map defined in a slightly different way. If V; is defined by (2.2.1), let
Wj(u1,...,uj41) be the multi-linear map given by

(2.2.23) (Wjur, ... uje1),u0) = (Vi(uo, ug, - uj41),u1)

for any u, ..., u;j41 in C*°(S',R?). Let us prove:
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Lemma 2.2.3. — For any o' € [v+ ( + 2,0] there is a constant Ky, depending

only on o', such that for any ui,...,ujy1 in C®(SY,R?), any no,...,nj41 € Z,
ML Wi (I, ugs oo My, wggn) || 22 s bounded from above by the product of
d,v (k + ] 7 1)' . j
(2224) KQm(k,j),No(O-’C’B’D';bj)WC(J)BJ
times
j+1
—o’ d+v—0o’ o’
(2.2.25) (no)™ ()™ I (ne)” 1T, ]| 2
r=1
resp. times, for any {=1,...,j
o’ d+v—o’ o —o'
(2.2.26) (no)” (njs1)™" [T e)” I, el 2 o)™ T e 2
1<0/<j+1
o

Moreover, on the support of I, W; (I, uy, ..., Iy, ujq1)
1 1
(2.2.27) max(|nol, [nal, .., Injl) < glngaal I = nja] < 7 (njea).

Finally, if Y € C°() — 1, [), and if Cy 2(X) is defined by (2.1.12), we may bound for
any y €N, €N,y <p,5 <p

/ (D
(2.2.28) 1(1d = 7)1 Tl W (I, g, - ,Hnﬁlx(ﬁ)uﬂl)nm
by the product of (2.2.24) and (2.2.25) (resp. (2.2.26)) with
(2.2.29) 21\nj+1|g<n>/405/,2(>~<)<n>_5 (4(p)".

Proof. — Inequalities (2.2.27) follow from (2.2.23) and (2.1.19). Let us prove (2.2.25).
We compute for |lug||rz <1

(2230) |<OpX [bj (Hnoum an’u,g, ey Hnj ’U,j; ')]Hnj+1uj+17 Hn1u1>|.

We apply (2.1.39) with N = 0, taking for the special index the one corresponding to
the first argument of b;, and we get the bound

(2.2.31)
(k435 —1)!

Gror VP

CoDoNG" s v (0:¢, B, D.sb;)

J
d ’ o ’
X ()T (n0) ™7 [ Maguollze TT I, werllza (o)™ Ty v 22 | Ty | 2.
=2

Since |ny —nji1| < $(nj41), we obtain (2.2.25) with a constant K5 depending only
!/
on o’
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To obtain (2.2.26), we use (2.1.39) with N = 0 and the special index corresponding
to one of the arguments us, ..., u; of b; in (2.2.30), for instance £ = 2. We get a bound
given by the first line of (2.2.31) times

>d+V+U/ <n0>o'/

g
(nj+1 Mg uoll 2 (n2) ™ [T, uz| L2

(2.2.32)

J
’
x T, werllz2 (e )™ MLyl Ty e 2.
=3

and we conclude as above. Note that (2.2.26) for £ = 1 follows from (2.1.38) and the
fact that (n1) ~ (nj41).

To estimate (2.2.28), we insert inside (2.2.30) the cut-off X(%) against u;11 and
write X(%)Hnj+ll&j+1 = K, * I, uj4+1 where K,, is defined by (2.1.11) with x
replaced by x. We then make 0,-derivatives act and use (2.1.33), (2.1.35) to make
appear the gain (2.2.29) in estimates (2.2.31), (2.2.32). O

Proposition 2.2.4. — Letd,d",v,(,o,k' k" NO,B D., . be as in the statement of
+d
di ). Let a € S(k/) No( 0,(,B,D.),

be Sdk,,l)'N (0,¢,B,D.) and define from W given by (2.2.23)

(2.2.33) W(u)= > " Wnlu,...,u).

j// >k

proposition 2.2.2. Assume o > v + 3 + max((,

,j”+1

There is a symbol ¢ € Sd +dk,5L]\l,/+L(U,C,B,D.) and a multi-linear map M(u) €

E?,:,ii,/yﬂ(a ¢, B) such that
(2.2.34) Op, [Oua(u;-) - W(u)] = Op, [e(u; )] + M (u).
Proof. — Consider the symbol c(u;z,n) = 3", ¢j(u, ..., u;x,n) where
ci(ur,. .. uj;2,m)
(2.235) = N g W (ur, - XD g ) ugsa, g s,
=i

X being a function in C5°(] f% %D with small enough support, ¥ = 1 close to zero. By
(2.1.19) applied to aj and (2.2.27), ¢; will satisfy (2.1.19) if the support of x is small
enough. Let us prove that 9997 ¢c;(II,, w1, ..., II,,u;; x,n) obeys estimates (2.1.20)
and (2.1.21). From now on, we no longer write the symmetrization operator. We make
0208 act on ¢; (Tl uy, . .. Al uj;2,m) fora+ F=p. For 0 < ' < 3,0 <y < 3 set
(2.2.36)

W (no, ... onjrya,n) = (1d = 10)08 Wy Wi (W un, - W, KD/ (1) ujorsa).

We use (2.1.10) to write 0505 ¢; (I, u1, ..., 1L, uj;2,n) as the sum for j/ + j"” = j
and for ng € Z of

(2237) / N(aaaﬁ )[ ]”O(noa ERRLVUER T n)7 Hnj//Jrzuj”-‘rQa s 7Hnjuj; €T, Tl]
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and of

’

Z Cgébﬁ/ 'yjl_j” 8“85_6/01‘].,)[%]@/’7(7107 e 77’Lj//+17n)7

<
(2.2.38) %;i S—g

Hnj,,+2uj//+2, ey Hnjuj; x, n]
We estimate the general term of (2.2.38) applying (2.1.20) to aj» and bounding
(2.2.39) (o) Wi (no, ..., mjrgr,n)| e

using the product of (2.2.24), (2.2.25), (2.2.29) in lemma 2.2.3. We obtain a bound
given by the product of

(2.2.40) KM (0,¢, B, D )N (0., B, D.;b) H||HWW|\L2
=1
and of the sum for 0 < 3/ < 3,0 <~ < 3 of
(2.2.41)
s 7=, (K — 1)
2Da 3 /Ca’ﬁ, /( "
O VTR I IV

c(3")e(i") B (4(p))P Car 2(X)

multiplied by

J

(2.2.42) ()@ OHORENB=ED= 0 g,y H (ne)”.

=1
Since by the cut-off in (2.2.29), |nj~+1\ (n), we bound <nj”+1>d”+y_al <
<n>d —L<nj”+1>u+b—a < <n)d —L<nj”+1> . As by (2.2.27), |njirgq| > c|n0| the last
factor will make converge the ng-series. Conbequently, the sum for ng € Z,5' +35" =j

of (2.2.38) will be controlled by the product of (2.2.40), of
J
n d'+d" —1—p+(a+v+NoB—0o') 4 e o’
(n) 21;[1< )
and of the sum for j' + 7" = 75,0 < 3 < 3,0 <~ < of (2.2.41). Using (2.1.15) and
(2.1.16), (2.1.17) with a large enough K (independent of any parameter), we get for
(2.2.42) an estimate of form (2.1.20).

We still have to bound the contribution (2.2.37). We proceed as above, estimating
the WJQ,’,O term by the product of (2.2.24) and (2.2.25). We get a bound in terms of
the product of (2.2.40) multiplied by

K+ =) (K — 1) . ]
PJI( (j/‘j_l)' ) ]H( (j//‘:_ 1)| ) C(],)C(]H)Bj
and by (2.2.42) with 8/ = 0. We end the computation as above.

Let us prove that (2.1.21) is valid for ¢;. Take first the special index ¢ in this

estimate be equal to some index between 1 and j” + 1, for instance £ = 1. We apply
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(2.1.21) to a;, making appear the —o’ exponent on the index corresponding to the
first argument of c¢;;. We obtain an upper bound in terms of

_ ’ —~ ’
(o)~ IIW5 7 (no, - mjrgr,m) | e

that we bound using the product of (2.2.24), (2.2.26) (with £ = 1) and (2.2.29). We
obtain for (2.2.38) an estimate in terms of the product of (2.2.40) by the sum for
0<p <p,0<v<pof (2.241) multiplied by

J
<TL>d —B+a+v+No(B8—pB")+o <TL]‘//+1>d tvto H <ng/>0 <n1>_a .

=2

Bounding as above the last factor before the product by <n>d//_b<nju+1>_2, we obtain
a control of the sum in ng, j’ 4+ j” = j of (2.2.38) by the product of (2.2.40), of

j
(2.2.43) ny? T IR NO B T () ()™
=2
and of the sum for j' +j” =7, 0< ' < 3,0 <7 < 5 of (2.2.41). We again deduce
from that the looked for estimate of type (2.1.21). The contribution coming from
(2.2.37) is treated similarly.

We still have to obtain an estimate of form (2.1.21) when the special index ¢ is
between j” + 2 and j, say £ = j. We apply (2.1.21) to a;, with ¢ = j corresponding
to the last argument, and obtain a bound in terms of (2.2.39), that we control from
(2.2.24), (2.2.25), (2.2.29). We get then similar bounds as in the case ¢ = 1, except
that in (2.2.43) (nj>a/ <n1>_0/ has to be replaced by (nj>_g/ <n1>gl. This concludes
the proof of the fact that ¢ belongs to Sd_L’VﬂWO (0,¢,B,D.).

(k/+k//)
Define now
(2.2.44)
é(u;z,m) = Zéj(u, Ce U T, M)
i>k
éi(ur, ..., uj;z,n) =
! -1 ~ D
Z 77 aj [W]// (Ul, > Wjry (1 - X) (W)Uj/q.l),u]w_;_g, S UGT, n} g
J4+5=]
and set
Mj(uh 7uj) = Opx[cj (ula au]7 )]

(2.2.45) Mu)=Y M;(u,...,u).

(u) = > My( )

!

', +d
3

11

Let ¢/ > v + 3 4+ max((,

). Using (2.1.38) for Op, [a;(u; )], we bound
(2.2.46) ||Hn0Mj (Hmul, - 7Hnjuj)Hnj+1 HL(LQ)



38 CHAPTER 2. SYMBOLIC CALCULUS

by the sum for j' 4+ j” = j and ny € Z of

>d'+(u+N70')+

g (K + 5" = 1) c(j )B] <nj+1

(2.247) CoDNGY v (0,C, B, D a)f'j N P TR (no — nj1)™
: 0 — Nj+1

multiplied by

/ D
I\O ~
<n0> ||Hn6Wj” (Hn1u17 .. aHnj// 'U/j/'7 (1 - X) ( <n]+1> )Hn‘7//+1uj”+1)||L2
(2.2.48) j /
< I me)” 1M, we e
0=5"+2

The cut-off in (2.1.38) shows moreover that we may assume

1
2. ols [ngrtal, - Ingl < 2 (nje1) and (no) ~ (nj11).
(2.2.49) In i
The support conditions (2.2.27) on W;» imply moreover that
(2:2.50) Ingls Inal,- ., [njn| < Cnjoya) and (njria) ~ (na).

Finally, the cut-off 1 — X in (2.2.48) implies that |nj/i1| > ¢(nj41) for some ¢ >

0. Altogether, these inequalities show that <n311+1> > ¢(ng) for any £ = 0,...,j

d’ .
Consequently, to prove that M;(u1,...,u;) isin A(,:j v (0, ¢, B) we have to obtain

(2.1.40) with ¢ = j” 4+ 1, v replaced by v + 1.
We estimate (2.2.48) using (2.2.26) with £ = 1. We obtain a bound given by
(2.2.24) multiplied by

J
20" "’ _
(ng)*" (o) T H ne) 1M, e | 2.

By (2.2.50), (njr41) ~ (ni). Going back to the estimate of (2.2.46) by the
product of (2.2.47) — where we take N = 0 — and of (2.2.48), we see that
T M (XL wns - o I g )Ty, | 222y is bounded by the sum for j' + j” = j
and n{, € Z of the product of

K2CoDeNY v (0,C, B, D a)NY \ (,¢, B, D.sb)

(k”),No
(2.2.51) i .//(k/ +7 =K + 5" =1) (el "’)Bj
e greny Y

and of

(2.2.52)
Jj+1

d 20! 4’ +v—30" —' o'
<1’L]+1> <7’L6> <nj//+1> + <n0> <n]+1> H nél H ||Hn2/ Ugr ||L2

o= =1

Using that by (2.2.49) (n{) < (nj11) ~ (no), the sum in n{ of <n6)20, (no) ™ (nj+1>7g/
is smaller than C'(nj11) < C(n;r41). If we sum (2.2.51) for j'+ ;" = j using (2.1.16),
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(2.1.17) we obtain an estimate of form (2.1.40) with d replaced by d’, +d", v replaced
by v + 1. O

2.3. Composition and transpose of operators

In this section, we shall study OpX[ a(u;-)] o Opx[b( u;-)] and tOpX[a(u; )] where
ac Séik/iN (U g B D) and b € Sk”)N (U,C,B,D‘).

Theorem 2.8.1. — Let d',d" € RNy € N,v,( € R, k', k" € N* 0 € R with
o > No+v+(+2,B > 0. Let D. be a (v+|d'|+|d" |40, No+1)-conveniently increasing
sequence. Assume that the constant Ko in (2.1.17) satisfies Ko > 100(2Dg + 1).

(i) For any a € ka;l)”NU(U,(,B,D.),b € S(dk,}')/’NO(J,C,B,D.), the product ab €

Szikl)'No (6,¢,B,D.) withd=d +d", k=K +k". Moreover

1 v 1%
loom?k (0,¢,B,D;; a)in‘(ik;,) 3y (0:C. B, D.sb).

(ii) Assume o > No+v+5+max(C, ) There is a (v+No+3+|d'|+|d" |40, No+1)-
conveniently increasing sequence D., a symbol e € Szik)lj\,”+N°+3( ,C,B,D.) and an

operator M & E?,:)’V+N°+3(a, ¢, B) such that

(2.3.2) Op, [a(u;-)] o Op, [b(u; )] = Op, [ab(u; )] + Op, [e(u; )] + M (u).

Proof of (i). — Decompose a(u;z,n) = Y ispay(u,...,u;z,n), blusz,n) =
> sk by (u, ... u;x,m) according to definition 2.1.5. Then

aszcj(u,...,u;x,n)

(23.1) NGy, (0,¢, B, Dsab) <

Jjzk
with
ci(u, ..., uj;z,n) = Z [aj (U1, ..., ujr; @, n)bjr (Ui, ..., u;;,n)]s
FRNTES
where S stands for symmetrization in (ui,...,u;). Let o, 8 € N with o+ 8 = p, and

compute 9202 (a;bj) using (2.1.10). Let us prove upper bounds of type (2.1.20).
Let o’ € [v+(+2,0]. When we estimate (020%a; )b or a;i(0202b;) from (2.1.20)
for a;, b1, we get a bound given by the product of

(2.3.3) Ny vy (0B, D5 a)‘ﬁ(k,,) vy (0:¢, B, D3 b)
and of
(k/ +]/ _ 1) (kll +J” 1)

(" + 1! (" +1)!
(2.3.4) i

x [T tne)” 1ML, uell 2.

£=1

Bic(j")e(j") Dy Do{n) v
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If we sum for j' + j” = j and use (2.1.16) and (2.1.17), we obtain a bound given by
the product of (2.3.3) and of

Do (k+j—-1)!_. . d—pB+(a+v+NoB—o') : o
B B0 Dyin) 70 T )

{=1

(2.3.5)

Consider now a contribution to 9292 (a;bj») corresponding to terms in the sum in
(2.1.10) i.e.

(2.3.6) Co N(Ad = 70)05 05 apr||0g = 05 bjn.
By (2.1.20) for a;s and (2.1.34)

v / 1\
o ap’ E : Y d' v . (k +7 1)
[(d = 71)703 0,y aj| < o (7/) Ny, (36,0, D5 a) (' + 1) Dar+s

. i/ d'—ﬁ'—i— o’ +v+ N, B’—a/
(237) xe(j')BY {n — )" TR

’ 1))
~ d' v . |d'|[4+8"+(a’ +v+NoB' —a’) (k +j 1)
<2 m(h’),No(U’va D.,a)(2<7>) ’ * (' +1)! Doy

xe(j) B (n)* 0O N =)
Using also (2.1.20) to estimate the b, contribution, we bound (2.3.6) by the product
of (2.3.3) and of
(2.3.8)
2|05, |(2(y))¥ 1+ H @ HrNod o)
(K + 5 — DV (K" + 5" — 1)
G+1! G+

o'+ Dyp—(ar+01)

C( ./)C(j//)Bj <n>d—5+(o¢+u+Noﬂ—o—')+

J
’
x T () 1T el 22
=1

where we have used
(@ +v+ N =o' )y + (" +v+ N — 0"y <(a+v+NoB—0')s
since o’ > v. Remark that the first line in (2.3.8) is smaller than

2P|Cg?%/ﬁ|(2<p>)ld |+l/+p(No+1)Da,+B,Dp7(a,+ﬁ,)

and so the sum in o/, 8, of these quantities will be bounded, according to (2.1.13)
and the assumptions by D,. Summing also (2.3.8) for j' + j” = j, we get a bound
of form (2.3.5) with % replaced by K%) If we assume 2D}§7:1 < 555
029c; the estimate (2.1.20), with the bound (2.3.1) for MY . (o,¢, B, D.;ab). We
must next get bound (2.1.21). The proof proceeds in the same way as above, except
that one uses an estimate of form (2.1.20) (resp. (2.1.21)) for 8292 a; and (2.1.21)
(resp. (2.1.20)) for 8;“’0‘/85*5/19]-”. This concludes the proof of assertion (i) of the

theorem. ]

we obtain for
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Remark. — When we estimate the sum for j' 4+ j” = j in (2.3.4), (2.3.8), we may

use the first inequality in (2.1.16). In that way, we get a bound for ¢; in terms of

(k—14j—1)!
(G+D!

(23.9) MG,

i.e. we have, instead of (2.3.1)

o (0,C B, Disab) <MY o (0,¢, B, D;a)NGY v (0,¢, B, Dsb).

Before proving (ii) of the theorem, let us establish some intermediate results.

Proposition 2.3.2. — Let d',d" € R, o,v,(,B,D. be as in the statement of theo-
rem 2.5.1, set d =d +d". Let V' > v be given, assume o > v' + ( + 2 and let
(2.3.10)

a(u;x, byn) = a; u,...,u;x,é,n,i)u;z, ,n) = bjn Uyoo o, U T, Y, N
( )= > ay ), b(us,y,n) = Y byi( y,n)

iz ik P

j/
be formal series defined in terms of multi-linear maps satisfying the following
conditions: 5‘35‘51852&j/(1_[n1u1,...,Hnj,uj/;x,& n) with 1 + B2 = 8, a+ 3 =p
(resp. 82‘18;2853j//(ﬂmu1,...7Hnj,,uju;x,y,n) with ap + s = a, a + f =
p) satisfies (2.1.20) and (2.1.21) with d,j,k,v replaced by d',j',k',v (resp.
d' 7" K" v ). Assume moreover that &j/(l_[nlul,...,Hnj,uj/;x,ﬁ,n) = 0 (resp.
bju(Hmul,...,Hnj,/uju;z,y,n) = 0) if maxj=1,._j(|ni]) > %|n| or if €] > %(n)
(resp. if max;—1,. j»(|n;|) > L|n|). Assume also that the x-Fourier transform of
these functions is supported in the interval of Z of center 0, and radius %(n) Define

+oo
1 . -
(2311) é(u; €, TL) = 27 Z / e—zéyd(u; T, Ev n)b(uv z,y, n)dy
s s1
{=—o00
Then é(u;z,n) = Y jsk—prrr Ci(U, ..., u;x,m), where each &; satisfies estimates
(2.1.20), (2.1.21) of an element of Z?];”;;'JQVO (0,(, B, D.) for a new increasing sequence

D., depending on D.,d',d",v, o, Ny. Moreover the support condition (2.1.19) is veri-
fied with %|n| replaced by $|n|.

Proof. — We define

+00 1
éi(u,...,uj;z,n) = Z Z %/1 efwy[&j/(ul,...,uj/;x,é,n)
s

(2.3.12) iig—j o
j/Zk/7j//Zk,,
Xbjir(wjii,s . ugs @, y,n)]sdy
where S denotes symmetrization in (u1,...,u;). Let p € N and for (o,8) € Nx N

witha+8=p, 0<a' <a,0< 8 <B,0<y<p, set

L% (@, byr) = /S eT(1d — 11)708 0 e (un, - ugrsw, €))

(2.3.13)
xag—a'aﬁ—ﬁ’l}ju (Wjrgt, .- uj;z,y,n)dy
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when 0 < o’ + ' < p,
(2.3.14)

Fgf /(aj ,l;j )= /S1 e*izy&j/ (ut,...,ujsz, L, n)@ﬁ@ﬁl;jn (Wjrg1,s ..o, uj; 2, y,n)dy

and denote by F‘;:g’e(dj/ , Ej//) the quantity of the same form obtained when all deriva-
tives fall on a;,. By (2.1.10)

(2.3.15)
000Péi(uy, ... uja,m) Z Z (@, b )—I—Fa’ﬁe(aj Jbjrr)
T 7= t=—o0
~Na, a,B,0 [~ 7
+ > Cotly Lo @y b))

0<a/<a,0<8'<p
0<v<B,0<a’+4'<p
Let us estimate (2.3.15).

We make in (2.3.13), (2.3.14) two integrations by parts using the vector field L =
%. In that way, we gain a <£>_2 factor in the integral and lose on b up to two
dy-derivatives. We use that (Id — 71)70% 0% ;s (resp. 0% Bff/(?gbju (6 =0,1,2))
obeys estimates of type (2.3.7) (resp. (2.1.20)) to bound (2.3.13) by the product of

(2.3.16) N N (0, B, D; a)‘ﬂ(k,,) vy (0:¢, B, D3 b)
and of

- . (k/+.7/_1)| j’ d' —B'+(a’+v +NoB' o’
C(p)(£) 20(3/)WBJ Dorypr(n) gl e

) (k//+j// _ 1)' -1 33" +(a +241"+No B’ —o”
(2.3.17) xe(j ')WBJ Doy grya(n)® 2@ 08" —o')4

J
H ner) ||Hne,ug/||L2

for some constant C(p) depending on d’,d”,v,o, Ny and for any ¢’ in the interval
[/ 4+ ¢+ 2,0]. We remark that
(2.3.18) (&' +V +NoB' —0')y+ (" +24+V + Nof" —o") 1 < (a+V'+2+ NoB—0')+
since ¢’ > v/. Summing (2.3.17) for j' + j” = j,£ € Z, using (2.1.16), (2.1.17) we
obtain a bound given by the product of (2.3.16) and of

@ (k +] - 1)' B‘YD <n>li—ﬁ+(a+Noﬁ+l/l+2—o'/)+

i G+ ?
(2.3.19)

j
H ner) ||Hn(/U£’||L2

for a new constant Dp depending on p but not on j. This gives an estimate of
type (2.1.20) for ¢;. To get an estimate of form (2.1.21), we argue in the same way,
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bounding either a; or b;» using (2.1.20) and the other one using (2.1.21). The only
difference is that we have to replace (2.3.18) by either

(o +vV + N =o' )y +a”" +V + NoB" +2+0" <a+v +2+ Ny +0’
or
o+ + N +0' + (" +24+ 1V + N —o")y <a+v' +2+ NoB+ 0’

which again holds true because o’/ > v/. This concludes the proof of the proposition.
O

End of proof of theorem 2.3.1. — (ii) We have by definition
Op,[a(u; )] o Op, [b(u; )] = Ople(u; -)]

where

1 X ,
(2.3.20) c(u;z,n) = o Z /e_lzyax(u;x,n — )by (u;x — y,n)dy.
l=—00

Since the Fourier transform of @ — by (u; x,n) is supported inside {¢; <’TZ> € Supp x},
we may insert inside the sum in (2.3.20) a factor x(¢/(n)) for some cut-off function
X €C(]—1/2,1/2[), x =1 close to Supp x. We may then write

c(w;z,mn) — (ayby ) (wz,n) =

2321) 1 2 [ .
2 Z /6 &’X<®>ax(u; x,n — )by (u; x —y,n) — by (u;x,n)|dy.
= oo
Define
b,y m) = 262 = 9:1) — by(wsz, )
(2.3.22) I —cw

/
(n)
It follows from the deﬁI}ition of symbols that a (resp B) satisfies the assumptions of
proposition 2.3.2 with &' =d' — 1, v/ = v + Ny (resp. d’ =d", v/ = v+ 1) and with
D. replaced by a new sequence. Thus we may write

a(u;x,f,n) :ad;z( )ax(u;x,n—f)]

(2.3.23) c(u;z,n) = (ayby)(uw;z,n) + ¢(u; z,n)

for a symbol ¢ satisfying the conclusion of proposition 2.3.2 i.e. ¢ = )" ¢; with ¢;
obeying estimates (2.1.20), (2.1.21) of an element of E?k*;;l 1\7()1’”+N°+3(a,§, B, D.) for
some increasing sequence D., and verifying (2.1.19) with %|n| replaced by %|n\ It

remains to show that
(2.3.24) Ople(u; -)] = Op, [ab(u; )] + Op, [e(u; -)] + M (u)

with the notations of the statement of the theorem. Note first that, by the example
following definition 2.1.11, Op[é(u; -)] — Op, [¢(u; -)] may be written as M (u) for some
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M e E?;)’U+N°+3(U, ¢, B) (the fact that the support condition verified by ¢, is (2.1.19)

with 1|n| replaced by i|n| does not affect the result). Moreover, modulo another
contribution M (u) of the same type, we may write Op, [¢(u;-)] = Op,[e(u;-)] for

some e € Sgk3}£+N°+3(a, ¢, B, ﬁ) actually, we define e = 3.~ e; with

max((n1],..., |[1j]|)\ ~
i) = 3 S0 P
ni

n;

where 6 € C5°(]— 1, 51), 0 = 1 close to zero, 0 < § < 1. Then, at the difference of ¢, e;
satisfies the support condition (2.1.19). Moreover, if we apply (2.1.39) to a = ¢&; —e;,
choosing as a special index ¢ one for which |ns| > ¢(n), we deduce from (2.1.39) a
bound of type (2.1.40), so that Op, [¢(u;-)] — Op, [e(u; )] is of form M (u).

To show that (2.3.24) holds true, it remains to prove, because of (2.3.23), that

(2.3.25) Oplayby (u; -)] — Op, [ab(u; -)]
may be written as another contribution of type M (u). Since

axby = (ab)y = [axby — (axby)y] + [(ay — a)by]y + [a(by — D)y
and since we may again apply to the first term in the right hand side and to a, —

a, b, — b the example following definition 2.1.11, we conclude again that (2.3.25)
contributes to M (u) in (2.3.2). This ends the proof of the theorem. O

Let us study transpose of operators.

Proposition 2.3.3. — Let d € R,v,( € Ry, k € N* Ny € Nyo > v+ Nog+ 5+
max((, d%), B > 0,D. a (|d| + 0 4+ v, Ny + 1)-conveniently increasing sequence. Let

ac S?}él)j7N0(U7C>B,D.) and denote

(2.3.26) a”(u;z,n) = a(u;x, —n).
There is a (|d| + 0 + v + Ny + 3, Ny + 1)-conveniently increasing sequence D., de-
pending only on D.,d,v,o, Ny, a symbol e in Sdil’VJrNOJr?’(m(,B,D.) and M €

(k),No
L((Jl/:)’erNOH(Uv ¢, B) such that

(2.3.27) tOpX[a(u; )] = Op, [a¥ (u; )] + Op, [e(u; )] + M (u).
Proof. — We may write ‘Op, [a(u; -)] = Op[c(u; -)] where

1 X .
(2.3.28) c(u;z,m) = o Z /S1 e~ Way (u;z —y, —n + £)dy.
We have
(2.3.29)

+oo
1 A
c(usx,n) — ay(u;z,n) = o > /S1 e ay(u;x —y,—n +£) — ay(u, 2, —n +)]dy.
{=—c0
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Define a(u; z, y,n) = 2xr=vn—ax(wen) qhe, (2.3.29) may be written

1—e—%
1 X :
(2.3.30) by e;m /s1 e~ Yoyla(u; z,y, —n + 0)]dy.
Since in (2.3.29), x € C§°(] — %, 1[), in the f-sum, |¢| stays smaller than <—72L>, S0 we
may insert inside the integral (2.3.30) a cut-off )2(0%) for some ¥ € C§°(] — 1, 3.

We perform next two integrations by parts using L(¢, D,) = 021 —- Dy). In
that way, we gain a <€>72 factor, loosing up to two 0, derivatives on a. Making 029
act on (2.3.29), (2.3.30) for o + 8 = p, we estimate using (2.1.20) the component
homogeneous of order j evaluated at (Il,, u1,...,I1,,u;) by the sum in £ of

(0)*Ce(j) Uﬂ 5'1) Y
J :

J
x T, e 2 (ner)”
=1
where the replacement of v by v + Ny + 3 comes from the losses due to one 9, and
up to three 9, derivatives. We get in that way the estimate (2.1.20) of a symbol
in Z’(il;ljl.)’z’;,'oNO*'?’(U,C,B,ﬁ.) for a new sequence D.. One proves in the same way a
bound of form (2.1.21). Moreover, the support condition (2.1.19) is satisfied with

1|n| replaced by %|n|. We have thus written

*Op,[a(u; )] = Op,[a* (u; )] = Ople’ (u; )]
for a symbol e! whose component homogeneous of order j satisfies (2.1.20), (2.1.21)
and a weakened form of (2.1.19). Arguing as at the end of the proof of theorem 2.3.1,
we write

Ople' (u;-)] = Op,[e(u; )] + M (u)
with e, M satisfying the conditions of the statement of the proposition. O

2.4. Analytic functions of zero order symbols

We shall establish a stability property for symbols of order zero under composition
with an analytic function. Let k& € N* be given, v € Ry, 0 > v +2,B > 0,D. a

(v 4 0, 1)-conveniently increasing sequence. If a symbol a is in S?,;l)'o(a, 0,B,D.), we

may also consider it as an element of S?l")j’o(a, 0,2B, D.) since in (2.1.20), (2.1.21) we
may write
E+j-1! .  (k—1)! ,
(j+ 1! j+1

and we have

(2.4.1) N (0,0,2B,D.;a) < (k—1)12F71tm0"

(1,0 (k)yo(a,O,B,D.;a).
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Proposition 2.4.1. — Let F be an analytic function defined on a neighborhood of
zero in C, satisfying F(0) = 0, |[FO0)] < R~ for some R > 0. Let a €
S?,;;O(U, 0, B, D.) with m(()1570(0,0, B, D.;a)(k—1)125=1 < R. Assume that the constant
Ky of (2.1.17) satisfies Ko > 2Dy + 1. Then F(a) € S?};l)”o(o,O,QB,D.).

Proof. — We write

+oo )
(2.4.2) Fla)=Y" E w(o) a.
=1 :

According to (2.4.1), we may consider, in a product a’, one of the factors as an element

of S&;O(O’,O, B, D.) and the other ones as symbols in 6’?1’)”70((7,07 2B, D.), so that, by

(i) of theorem 2.3.1 and (2.3.9), af € S?,;;O(a,o,QB,D_) with

(2.4.3) N 0(0:0,2B, Dsa’) < [(k —1)125 7' MGY (0,0, B, D)’
We decompose each a = sk aeg(u, ..., u;z,n) and write
(2.4.4) F(a) = Z ci(u,...,u;x,n)
ik

with

+o0 F([) (0)
(2.4.5) ci(uL,...,ujz,n) = Z Taz’j(ul’ Co UG T, ).

=1 ’

We have to show that ¢; satisfies (2.1.19), (2.1.20), (2.1.21). The support condition
is clearly verified. If we apply (2.1.20) to each term in the right hand side of (2.4.5),
and use (2.4.3), we get for [0292¢;(uy, ..., u;;2,n)| a bound

+o0o

FO (0 o 5
Z%[(/@ — DM (0,0, B, Dsa)f
=1

k+j5—-1 ! . j - a+tv—o’ ! o’
PR By D)+ T () M e

£=0
where p = a + 3. The choice of R implies convergence of the series. One obtains
estimates of type (2.1.21) in the same way. O



CHAPTER 3

COMPOSITION AND POISSON BRACKETS

The aim of this chapter is to study composition of operators associated to symbols
with remainder maps, and to apply this to Poisson brackets of functions defined in
terms of such operators.

3.1. External composition with a remainder map

Proposition 3.1.1. — Let d',d" e R, d=d +d",v,( eR,0 eRc >v+2+
max((, g), B >0,k k" eN*" Ny e N D. a(d+v+0c,Ny+ 1)-conveniently increasing
sequence. Assume that the constant Ko of (2.1.17) is large enough.

(1) Let M' € E'(ikg(a ¢,B), M" € £‘(7lk,,"(0,§,B). Then M'(u) o M"(u) belongs to

(k)(a ¢,B) where k =k + k" and

(3.1.1) NG (0,¢, B; M o M”) < md 5 (0,¢, By M’ )mglk,;”(a ¢, B; M").

(i1) Let a € S(k, N, (0:¢.B,D.) and M" € Ek,,)(a,C,B), Then Op, fa(u;-)] o
M"(u) belongs to £(k)(o,C,B) and

(3.1.2) M (0,¢, B; Op,la(u;-)] o M) < <mdv v, (0:¢, B, D; a)‘ﬂ

(K'), N, 1(0,¢, By M")

k//)

if Ko is large enough relatively to Ds, o, d.

(i) Under the same assumption as in (ii), M"(u) o Op,la(u;-)] belongs to
£‘Zk';(a,C,B) and and m?k';(U,C,B;M” o Op, [a(u;-)]) is bounded by the right hand
side of (3.1.2).

Moreover conclusions (i), (ii), (iii) above hold true more generally if we as-
sume that M',M" (resp. a) is given instead of (2.1.41) (resp. (2.1.27)) by

a series M'(u) = Y sp i Mi(u,...;u), M"(u) = 3 sy i" M (u,... u)
(resp.  a(w;z,n) = 3 dlag(u,... uiz,n)) with M), € A?k/Vj)(g,C,B),
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M, € A?k,’,'jj,,)(a,g,B) (resp. a; € Efk}fj,LNU(a,C,B,D.)) satisfying estimates
(2.1.42) (resp. (2.1.28)).

Remark. — Let us explain, before starting the proof, why we allow, in the last
part of the statement, series of form . j'Mj;/, 3. j'aj. It turns out that we
shall be using proposition 3.1.1 to estimate Poisson brackets of functions given for
instance by expressions of type (M’(u)u,u). These brackets will be expressed from
the (symplectic) gradient of such functions, so in particular from (JVM'(u)u,uw).
Because of the homogeneity of each component of M’(u), the gradient acting on it
makes lose a factor 5/ on the j'-th component.

Proof. — We prove the proposition using for M’, M" the more general expressions
of the end of the statement.
(i) We decompose
M) =" §'M(u,...,u), M (u)= > §"Mj(u,...,u)
j/zk/ j//zk//
and define
(313) Mj(ul,...,uj) = Z [j/M]{/(ul,...,Uj/)O(jHM]/-i/(’LLj/_,_l,...,Uj))]s
i+i"=i
where S stands for symmetrization. We bound, denoting
Hn/UI = (Hnluh e ,Hnj,u]'/), Hn//UN = (Hn]-urlujurlv [N ,Hnjuj)
and forgetting symmetrization to simplify notations
||HnoMj(Hn1u17 . ,Hnj uj)Hnj+1 ||£(L2)
(314) < ST 5 I M (T UL | g2y [T M (T UL |22
n€L j'+j"=j
We apply (2.1.40) to both factors in the above sum. We bound in this way the right

hand side of (3.1.4) by the sum in n and in j' 4+ j” = j of the product of the right
hand side of (3.1.1) and of

-/(k/+j/ B 1)' ~//(k”+j// — 1)

| .
"Bic(q! -1/
(j/ + 1)! J (j// 4 1)! C(j )C(] )
20" —3¢'+d’ —3¢'+d"
x [(n)* (max(|ngl, ..., |nj|, [n])) 7> T max(|nl, njgal, - Ingl) 77T
j+1 g
X H <ng/>d H ||Hn€,u1g/||L2.
=0 =1
Since % + v+ 2 < ¢/, the n sum of the factor between brackets is bounded by

_ !
Co(max(|nol, ..., [n;])) 27 T4,

Using then (2.1.16), (2.1.17) when summing for j’ 4+ j” = j, we conclude that M; €

ALY (9,¢, B), and (3.1.1) holds if K;'Co < 1.
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(ii) We decompose as above M"(u) = 3" sy j" M (u,. .., u) and, according to
(2.1.27), a(u,-) = > jspr g aj (u, ..., us ). Set

M;(uq,...,uj) = Z 3’3" [Op, laj (ur, ... wjrs )] o M (ujryr, ..o u )]s
i+i"=i

We need to bound, instead of (3.1.4),
(3.1.5)

Z Z j/HHnoOpx[aj’(Hn’U/§ ')]Hnllﬁ(LQ)jHHHnMg/'/” (Hn”UH)HnjH ||£(L2)-

n€Z j'+5" =
Let £ be such that |ng| > |ng| for any 0 < ¢/ < j+ 1. To prove for (3.1.5) an estimate
of type (2.1.40) when £ =0 or 5/ +1 < ¢ < j+ 1 we apply to the first (resp. second)
factor above inequality (2.1.38) with N = 2 (resp. inequality (2.1.40)). We get a
bound given by the right hand side of (3.1.2) times

e M D L G o M O

CoDoj -Bie(j')e(5") (ng —n) >
Do i S B et o = )
(3.16) ) L
X<n> <nz>730'+11+ H <n£,>0' H ||Hn[/ WUpr ||L2
=0 =1

(where we have applied (2.1.40) to M J’»f, with the special index taken to be n, when
£=7+1,...,j+1, and taken to be n when ¢ = 0, using that in this case (ng) ~ (n)),
Cy being a constant depending on o, v, d. Since (n)d/ < C<n0>d/ < C(n@d/, we obtain
summing in n and in j' + j” = j, and using (2.1.16), (2.1.17) an estimate of form
(2.1.40), if Ky is large enough relatively to Do, o, d,v. To conclude the proof, we just
need to note that estimate (2.1.40) with £ = 0 implies the same estimate for any £
between 1 and j’, since the support condition (2.1.19) satisfied by a;j implies that
[ne| < 2|ngl, £=1,...,5".

(iii) The proof is similar. O

3.2. Substitution

We study in this section the effect of substituting to one argument of a symbol a
quantity of form M (u)u, where M is a remainder operator.

Proposition 3.2.1. — Let d',d’" € Ry ,d =d +d’,. = min(1,d"),v,{ € Ry,0 >
v + max((, %) +3,B>0,Ny € N,D. a (6 +d + v, Ny + 1)-conveniently increasing
sequence, k', k" € N*,

For every a € Séik;')”NO (0,¢, B, D.), for every M(u) =3 jnspn j" Mjn(u, . .., u) with

Mj» € ALY 0 (0,¢, B) and

~ gl v def s v
m?k//)(aa<7B;M) = Sup m?k/;7j//)(o-7<aB;Mj”) < +OO,

j”>k//
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there are a symbol a € Szi,;]’\l,'oﬂ(m ¢,B,D.), with ( = max((, %), and an operator
M e z:d 5 (0,¢,B), with k =k + k", such that

(3.2.1) Op, [Bualu;-) - [M(u)u]] = Op, [a(u; )] + M (u).

Moreover, if the constant Kq in (2.1.17) is large enough relatively to o,

(322 N v (0,¢, B, Da) < m(k;) v, (0:¢, B, Dsa)N k,/)(a ¢,B; M)
m§k§+1(a,<,B;M) < m(k;) vy (0. B, D; a)‘)’t(k,,)(a ¢, B; M).

Proof. — We decompose

a:Zaj/(u U T, M) Z]Mu ceey )

j/zk/ //>k//
with aj € Zflk, "Ny (0:C B, D), My € A?k,/” i (0,¢, B). We write
(323) Mj//(ul, e 7’LLjH) = Mjl/,(ul, e 7Uj//,n) + Mf,/(uh ceey U, n)

where

max(|nol, - .-, [njr41)
M-lu (U1 ey Wi n Z Z ( J )
i ’ s W'y
(3.2.4) e <”>

XH’nOMj” (Hnlu17 e ’Hnj” ’U,j//)H

Tl 41
with x1 € C§°(R), x1 = 1 close to zero, Supp x1 small enough, 0 < x; < 1. Set
M*(u,n) =3 juspn My (u,...,u,n) and decompose
(3.2.5)
(Oua)(u; z,n) - [M(u)u] = (Oya)(u; z,n) - [M* (u,n)u] + (ua)(u;z,n) - [M?(u,n)u).

We study first M(u) = i>k ]\7.I'/J(u7 ..., u) where

(3.2.6)
Mj(U1,...,Uj) = Z j’j”OpX[aj/(uh.. uj/,l,Mzu(uJ ,...,uj,l,-)uj;-)]s
i+"=i
with S denoting symmetrization. Denote U’ = (u1,...,uj—1), U" = (ujr,...,uj_1),
n' = (ni,...,ny_1),n"” = (n;,...,nj_1) and use the natural notation IL, U’, IL,,, U".

Applying (2.1.38) with N = 0, we bound ||1_In0],\\/[/j(Hnlul7 ooy o ui) o |l 222y by

the product of ‘ﬁ(k/) No (0,¢,B,D.;a) and of

K47 =D '
an Y S P EET =B (11"

(3.2.7) n=-00j'+j"=j (7 + 1!

i1
’ 7
< [T (ne)” (M, ver || 225" (n) 1T M (T U 1 41T g 2
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for any o’ € [v+ 2+ (,0]. By (2.1.19) we have on the sum

1
(3.2.8) max(|nil,...,[ny-1], In]) < 1|”j+1|’ (no) ~ (nj41)
and by (3.2.3), (3.2.4)
(3.2.9) max(|ny|, ..., |n;l,n]) > e(nji1).

Let £ be such that |n,| is the largest among |ngl, ..., |n;j4+1]. Inequality (3.2.8) shows
that we may assume that j' < £ < j+ 1. If we estimate the last factor in (3.2.7) using
(2.1.40), we bound the second line of (3.2.7) by

-1/ (k// Jrj” — 1)'

’ /

B e(i")ne) ™ )™ (o) ™7 ()™

(" + 1!
i+l L
< IT e T 1M, wellz2-
£=0 =1

Plugging in (3.2.7), using (3.2.8), (3.2.9) and (2.1.16), (2.1.17) when summing for
Jj'+ 3" = j, we see that we obtain for ||HnUM (W, ury o M ug )y | 222y bounds
of form (2.1.40) with v replaced by v + 1. If the constant K, of (2.1.17) is large
enough in function of d, o, we get the second estimate (3.2.2).

We are left with studying the contribution of the first term in the right hand side
of (3.2.5) to (3.2.1). Let us show that

aj(u,...,uj;z,n) = Z 373" ag (ua, - wg g, M (uge, . ugq,m)uy); @, n) s
=
belongs to E?ktgl WY t(g,¢, B, D.). Forgetting again symmetrization in the nota-
tions, we have by (2 1.10), fora+ B =p
(3.2.10)
000%a;(uy,. .. ,uj;x,m) =
Z i/ "(80‘3ﬁaj Mwt, . uj—1, Mjl/, (wjry ..., uj—1, n)uj; z,n
J+i=
+ Z Z Caﬁl ’Y'] 7-1)78;“85 aj/)[ul,...,uj/_l,
J'+3"=30<pB'<pB
0<~y<p

j"@ﬁfﬁ/Mjlu (wjry ... uj—1,m)uj); x,nl.
We replace u; by II,,,up in (3.2.10), £ = 1,...,5. We note that if Supp yx; is small
enough, the support property (2.1.19) will be verified by a;. We write in (3.2.10)
Mjl/, =30 HnOMjl,, and note that by (3.2.4)
108~ Ty M}y (T U ), | 222

(3.2.11) o
< Cs_pr (x1)(n) ™) MLy My (T UL, || 2129

for some sequence C. (1) depending only on x1, with Cy(x1) = 1.
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Let us bound the first term in the right hand side of (3.2.10). Let o' > v+ 2 +
v+ max(¢, 4). Using (2.1.20) to estimate a; and (2.1.40) to bound the last factor in
(3.2.11), we obtain an estimate by the product of

(3.2.12) mfk;g’No (6,¢,B,D.; a)‘ﬁ‘(ik,’,'; (0,¢,B; M)

and of the sum in ng, 5’ + 5" = j of

(3.2.13)
-/ (k, +jl - 1)! -1/ (k” +j// _ 1)!

-/ 7 7 d' —B+(a+v+NoB—o') 4
(j/“rl)! J (j”-i—l)! C(] )C(] )DPB CO(X1)<n>

J
_ ’ 1 ’ ’
x[(max(|nol, nyrl, - I )77 (no)* T TT (mer)™ 1T, e | 12
=0

since by assumption o’ > v + 2 + max((, %N)
Since —30’ + v + d” < 0, we bound the term between brackets by

Clng) ™"+ (o)™~ < Clna) =+ ()"

(because of the cut-off x; in (3.2.4)). Since ¢’ > v+¢+2, the sum in ng and j'+j"” = j
of (3.2.13) will be smaller, by (2.1.16), (2.1.17) than the product of (3.2.12) and

(k+j—1)

J
(] n 1)' C(j)BJ <n>dfbfﬁ+(a+u+NoﬁfU )+ H <’I’L[/>U ||Hne,ue’||L2

1
(32.14) 5D,
=0

if the constant K of (2.1.17) is large enough. To obtain estimates (2.1.20) for (3.2.10),
we have to bound by (3.2.14) the second term in the right hand side of (3.2.10). We
write (Id — 7)Y =377 _ (,7,)(—1)7/7'17/, estimate aj using (2.1.20) and (2.1.34), and
bound the right hand side of (3.2.11) using (2.1.40). We get for the second sum in
(3.2.10) a bound given by the product of (3.2.12) and of the sum in ng and j'+j"” = j
of

(3.2.15)
~a, v /
> [ea ( ) (2o r
0<p'<p 7
0<~y<B

BRI R ]
(' +1)! (" + 1!
>d/—ﬂ+(a+u+Noﬁ—fT')+[<

c(j")e(5") Dats B! Cp—p (x1)

)72 gy

x (n max(|nol, |njl,...,|n,

J

’
x I (ne)” 1, werll o

/=0
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By definition (2.1.14) of (o + d’ + v, Ny 4+ 1)-conveniently increasing sequences

o " ,
(3.2.16) > (Cjﬁ,%(y/) )T NFIPD 0 Ca_ g (x1) < D,
0<p’
0%%5,66

Using again (2.1.16) (2.1.17) we obtain for the sum in ng, j' + j” = j of (3.2.15) an
estimate of form (2.1.20), (3.2.14) if o/ > v 4 ¢ + max((, d?”) + 2 and the constant K
of (2.1.17) is large enough.

Let us prove bounds of type (2.1.21). If the special index £ is between 1 and j' —1,
we bound (3.2.10) computed at (IL,,, u1,...,II,;u;) using (2.1.21) to estimate a; and
(3.2.11), (2.1.40) to control Mjl/,. We obtain an upper bound given by the product of
(3.2.12) and of (3.2.13) or (3.2.15), where the power of (n) is now d’—f+a+v+NyS+0’
and where <ne>0'”Hn£w”L2 has been replaced by (ng>7gl||Hm,ueHLz. We conclude
then as above.

Assume next that the special index ¢ is between j' and j. We apply (2.1.21) to
a;r, but we take the special index in this estimate to be the one corresponding to the
last argument of a;;. We estimate the first term in the right hand side of (3.2.10).
We use (3.2.11) and (2.1.40), in which we make appear the —3¢’ 4+ v 4+ d” exponent
on (ng) if |ng| > |ng| and on (ng) if |ng| > |ne|. We obtain an upper bound given by
the product of (3.2.12) and of the sum in ng and j' + j” = j of

S 43 =D, (6 + 57— 1))

(i')e(j") Dosp B ()"~ TN

+Or G
(3.2.17) J o o oyt
< TT (ne)” I, el 2 (ne) ™ 1, uell 12 (max(lnol, Inel)) :
1<'<j
£
We write

7 d"’ d'— o
(max(|nol, [ne[)) ™ ™ < (n) ™ (max(|nol, Inel)) 7

and sum next in ng (using o’ > v+ ¢+2) and in j' + j” = j (using (2.1.16), (2.1.17))
to obtain for (3.2.17) an estimate of type (3.2.14), where the power of (n) is now
d—t1—0B+a+ NyS+o +v.

To estimate the last sum in (3.2.10), we proceed in the same way except that we
have to use (3.2.7) to bound the powers of (n — ) coming from (Id — 71)7. We obtain
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an estimate

(3.2.18)
~a, v 'fv4o’
5 (G| (7 )y esm s
0<B'<B g
0<~<B

S84 =D (8 + 57— 1)!

N j d' —B+a+v+NoB+a’
(]l+1)' j (J,/+1)' C(] )C(] )Da+ﬁ/BJCﬁ*ﬁ,(X1)<n>

< o’ —o’ —o'v+d”
x TT (me)” I, wer |l 22 (ne) ™ T el |2 (max (ol [ne]))
1<0'<j
AL

We conclude as after (3.2.17) above, using (2.1.14) to obtain a bound of type (3.2.14)

with a power of (n) given by d —¢ — 8+ a+ NoB + o’ + v.
This concludes the proof of the proposition. O

3.3. Poisson brackets of functions

This section is devoted to the study of Poisson brackets of functions defined in terms
of para-differential operators or of remainder operators. Let us fix some notation. We
set

, [t o], Jo =] , fo 1
. ret 0o e ]

so that any 2 x 2 matrix may be written as a scalar combination
(3.3.2) M+ pd +al’ + 3J.

We denote by S(d];l)’ No (0,(,B,D.) ® M3(R) the space of 2 x 2 matrices whose entries

belong to S?,;l)' No (0,(,B,D.). If A is a matrix valued symbol, we decompose it in

terms of scalar symbols according to (3.3.2) and define ‘ﬁ?kg ~,(0,¢, B, D5 A) as the
supremum of the four corresponding quantities for the four coefficient in (3.3.2). If
s € R, p > 0, we denote by Bs(p) the ball of center 0 and radius p in H*(S!; R?).

Proposition 3.3.1. — Letv € Ry, Ngo € Ry. There is v > v and for any ( € Ry,
any d',d" € Nwithd =d +d" > 1 any o > U+ 2+ max((, %), any (c+v+d,Nog+1)-
conveniently increasing sequence D., there is a (0 +0+d, Ng+1)-conveniently increas-
ing sequence D. and for any B > 0,k', k" € N*, for any A’ € S?I;;l)/,No (0,(,B,D.)®
My(R), A" € Szi];,’;l)/,NO(O.7C’B7D') ® Mo (R) with AV =42 = A", one may find
Ay € S35 (0,¢,B,D.) @ Ma(R), Ay € S{'y (0,¢,B,D.) ® Ms(R) and a map
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M e c‘(i,g(m ¢, B), with k =K + k", such that

(3.3.3)
{(Op, [A" (u; )], u), (Op [A” (u; )Ju, u)} = (Opy [As (us )]u, u) + (Op, [Ao(us )Ju, )
+(M (w)u, u)

and A,Y = Ay, AyY = Ay. Moreover

(3.3.4) Nk

o (0.C B, Dy AY) SN (0,¢, B, D ALY | (0.C, B, D A”)

(k") (k""),No
and for a uniform constant C,
(3.3.5)

d—1,0 > d,i
m(k)}NO((LCyB,D,AO)‘Fm(k) (O’,C’B7M)

d' v . d’ v .
< CoMEY \ (0,C B D ANV (0,¢. B, D A).

Remark. — The assumptions AV = A ,ZHV = A” just mean that the operators
Op, [A'(u;-)], Op, [A"(u; )] send real valued functions to real valued functions.

We shall prove first a formula similar to (3.3.3) when the matrices A’(,-), A”(u,-)
are given by the product of a scalar symbol and a constant coefficient matrix.

Lemma 3.8.2. — Let d',d" € Ry,d = d' +d’,/ = min(d’,1),.” = min(d",1).
Assume o > v+(+3. Let E') E" be matrices of M3(R), e’ € S(dk}')j N, (0,¢, B, D.),e" €
Sf,;/,})”,NO (0,¢,B,D.). One may find symbols

(3.3.6) & €Sy (0.6, B,D.),&" € S (0,¢. B, D))

and a remainder map
M(u) € LG (0,6, B),
such that
(3.3.7)
{{Op,[e’(us; )] E"u, u), (Op, [¢" (us; )| E"u, u) }
= ([(Opyle (u; )] E" + *Op, [¢/ (u; )" E') J (Opy [e” (us ) E” + "Op, [e” (u; )] E)]u, u)

+([Opy [€'(u; )IE" + Op, [6" (u; )| E"[u, w) + (M (w)u, u).
Moreover ‘JI?;)L;:,’:+L/I(J,C,B,D.;(§’) (resp. m?,;)L;\’,ZJrL,(U,C,B,D.;é”)) may be esti-
mated by

Co [m?k’/;’]\]o (0,¢, B, D; 6/)9/1?1«’/1)/7]\[0 (0,¢,B,D.;€")]

for some universal constant Cy.
Proof. — Denote C1(u) = Op, [¢/(u; )| E", Ca(u) = Op, [e”(u; -)| £ and set
Ci(u) = Ci(u) +"Ci(u), Cy(u) = Ca(u) + 'Ca(u).
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We write for j =1,2

(3.3.8) 0u(Cj(w)u, u) - U = 0y(Cj(w)w, w)|w=u - U + {(0.C;(u) - U)u, )

whence by (1.2.5)

{Cr(w)u, u), (Co(w)u, u)} = 0y (Cr(vw)w, w)|wey - JVu{Co(u)u, u)
+(0,C1(u) - (JV (Co(u)u,u)) - u,u).

We write the first term in the right hand side as

(3.3.9)

Vu(Ci(w)w, w)|y=y + JVu (Co(u)u, u)dx
a1y VelGiw (Cau)u, )

= —(0u(Ca(u)u, u)) + IV (C1(v)w, w)|w=u
since *.J = —J. Using the notation C'; introduced above, we may write
Ou(Co(w)u,u) - U = (Cy(u)u, U) + ((0,C2(u) - U)u, )
Vo (C1(w)w,w) = C; (u)w
so that (3.3.10) may be written
—(Co(u)u, JC; (u)u) — (uCa(u)(JC (u)u)u, u).
Coming back to (3.3.9), we get
{(Cr(w)u, u), (Co(w)u, u)} = (T (u) JCo(u)u, u)
= (0uCa(u)(JCy (wu)u, u) + (9 Cr (u) (S Vi (Co(w)u, u))u, u).
The first term in the right hand side is the first term in the right hand side of (3.3.7).
Let us check that the last two terms in (3.3.11) contribute to the last terms in (3.3.7).

If we set V(u) = JC;(u)u we get by (2.2.1), (2.2.2), (2.2.16) a quantity to which
proposition 2.2.2 applies. Consequently, by this proposition

9uCa(u) - V(u) = E"Op, [0u€" (u;-) - [JE'Op, [e’ (u; -)]u]]u
+E"Op, [0ue" (u;-) - [J'E" Op, [¢/ (u; -)]u]]u

(3.3.11)

may be written as
Op, [e"(u; )| E"u

for some " € S(d;)i\}';“/ (0,¢, B, D.). This gives the wanted conclusion for the second
term in the right hand side of (3.3.11). Consider now the last term in (3.3.11). We
may write

(0(Ca(u)u,u) - U = (Cy(u)u, U) 4 (Op, [Oue” (u;-) - UIE"u,u).

By (2.2.1) and (2.2.23) the last term may be written as [, W(u)Udz where W (u)
is given by (2.2.33). Moreover, as we have seen above, Cy(u)u is a quantity of form
V(u) i.e. of type (2.2.16). The last term in (3.3.11) is thus

(0uCr(u) - (J(V () + W (w)))u, u) = (E'Op, [0ue’ (u; ) - (J(V (1) + W (w)))]u, u).
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If we apply (2.2.17) and (2.2.34), we write this as
(D& (1 )L E"w, w) + (M (w)u, w)

where & € 81" (0,¢, B, D.), M(u) € L3} (0,¢, B).

This concludes the proof of the lemma. O
Proof of proposition 3.3.1. — We decompose the matrices A’, A” of the statement
using (3.3.2) and apply lemma 3.3.2. The last term in (3.3.7) contributes to the
last term in (3.3.3). When d” = 0 (resp. d' = 0) the & (resp. €”) contribution
to (3.3.7) is of the form of the A; term in the right hand side of (3.3.3). When
d’ > 1 (resp. d > 1) we get instead contributions to the Ay term of (3.3.3). We
are left with examining the first duality bracket in the right hand side of (3.3.7).
Using theorem 2.3.1, proposition 2.3.3 and proposition 3.1.1, we may write as well
this expression as contributions to the three terms in the right hand side of (3.3.3).
Note that the decomposition of A’, A” using (3.3.2) gives 16 terms of the form of the
left hand side of (3.3.7). The first duality bracket in the right hand side of (3.3.7)
gives, using the results of symbolic calculus (theorem 2.3.1 and proposition 2.3.3), for
each of these terms four contributions of type

(Op, [f (u; )| Fu, w)
where FF € {I,I',J,J'} and f = €’e” or ¢'Ve" or €’¢”V or ¢/Ve”V, plus contributions
to the last two terms in (3.3.3). Using estimate (2.3.1), we see that we obtain the
bound (3.3.4). This concludes the proof of the proposition since the conditions AY =
Ay, AY = Ay may always be satisfied, using that the left hand side of (3.3.3) is real
valued, which allows to replace in the right hand side (Op, [A4;(u;-)]u,u) by

(1Op, [ )] + Oy A, (Tl ) = {0p, [A0 AT, )

1
2

O

Proposition 3.3.1 provides for the Poisson bracket of two quantities given in terms
of symbols of order d’, d” an expression involving a symbol of order d’+d”. We cannot
expect anything better if we consider arbitrary matrices A’, A”. On the other hand, if
we limit ourselves to matrices that are linear combinations of I and J, we may write
the first term in the right hand side of (3.3.3) from a commutator of Op, [A’(u;-)]
and Op, [A”(u;-)], gaining in that way one derivative. We shall develop that below,
limiting ourselves to polynomial symbols in u, as this is the only case we shall have
to consider in applications.

Definition 3.3.3. — Let d€e R,k e N*, v, € Ry, Ny € N,sp € R;sg > v+ % +
max(¢, 4) and sy > 2.
(i) One denotes by H’?,:i ~,(¢) the space of functions u — F(u) defined on

H*°(S';R?) with values in R, such that there are symbols A(u;-), u(u;-) belonging
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to §(Cl,:)"NO (€), satisfying AV = A, iV = p and an element M (u) € E‘(ikl)'(() such that

for any u € H*0(S'; R?)
(3.3.12) F(u) = %(Opx [Aw; )T+ p(u; ) JJu, u) + %(M(u)u,u)

(ii) Ome denotes by H((i,’c'; ~,(¢) the space of functions u — F(u) defined on
H*°(S';R?) with values in R, such that there are a symbol A(u;-) € gzik')j n, (O ®
M3 (R) satisfying AV = A and a map M (u) € Z‘(ik';(o such that

1 1
(3.3.13) F(u) = §<OpX[A(u; N, uw) + §<M(u)u, u).
Remark. — By proposition 2.1.13 (or its special case concerning polynomial sym-

bols) the left half of each duality bracket in (3.3.12), (3.3.13) belongs to H*~%(S*; R?),
so the assumptions made on sy show that F'(u) is well defined

Let us study the stability of the preceding classes under Poisson brackets.

Proposition 3.3.4. — Let di,dy € Ry, k1,ky € N* v, € Ry, Ny € N. Set f =
max((, %); There is some V' > v, depending only on v, Ny such that for any
so > v + 2 + ( the following holds:

. _ d; )

(1) Assume di > 1,ds > 1,59 > % and take F; € H’(,ij)wo((), j=1,2.

Then {Fy, Fy} is in H"(ié;f,i;};\lfo ©).

(ii) Assume dy,ds € N;dy+dy > 1,50 > dlng and take F; € H?,;]l)/ NO(C), j=1,2.

.o di+do, v’ et
Then {F1, Fa} is in H(;;,;)’NO Q).

Before starting the proof, we study Poisson brackets of quantities involving remain-
der operators.

Lemma 3.3.5. — Letd',d" €Ry,d=d +d",v,( €Ry,0 >v+2+max((,2),D.
a (d+ v+ o0, Ng+ 1)-conveniently increasing sequence, k', k" € N* E € M3(R),e €
S?k})”,NO(U,C,B,D.),M” € E((ik,’,g(O',C,B). Denote k =k + k", .= min(l,d”)N.

(i) Assume o > v + 3 + max((, g) There are a symbol € € Szi,;)f]’\';oﬂ(a,QB7D~),

with ¢ = max((, %), a remainder operator M e E?,’S'H(a, ¢, B) such that

(3.3.14)  {{Op,[e(u; )] Eu,u), (M" (u)u,u)} = (Op, [6(u; )] Eu, u) + (M (u)u,u).

(i) Let M' € E?,;’,l)'(a, ¢,B). There is M € £‘(i;€l)’(a, ¢, B) such that

(3.3.15) UM (w)u, u), (M" (w)u,u)} = <M(u)u, ).

Finally, if e, M', M" are polynomial i.e. belong to §(dl;/')j Ny (©)s E‘(i,;’,';((), E?,:,’,’; (¢), then
&€ S{NE0), M e LEGTTHC) in (i) and M € LG (C) in ().
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Proof. — (i) By definitions 2.1.10, 2.1.11, we may write

(M"(wyu,u) = Y Ljn(u,...,u)
‘//>k// H’_/
.j = jl/+2

where L;» is (j" + 2)-linear and satisfies for any o’ € [v + 2 + max((, %/), o]
(k‘” + 4" — 1)!

"

4w ) . .
|Lju(Hn0u0,...,Hnj,/+1uj//+1)| S m(k,,)(U,B,M”) (j” n 1)‘ C(]N)B‘]
7 1’ j/,+1 ’
x(ng) 7T (o) I, ue | 12
=0

for any ¢ =0,...,7” + 1. This implies that we may write JV(M" (u)u,u) as J\/Z”(u)u
where M"(u) = 3" jnspr §" M (u, ... ,u) with M7, € A?k,ZTj//)(U,CvB) with

Sup ‘ﬁ?,:/,fj,,)(a,B; ]\//T]’-i,) < C"ﬁ‘(i],,,,;')’(a,B;M”)
]//_ 1"

with a uniform constant C. Denote
C'(u) = Op, [e(u; )] E, C'(u) = C'(u) +"C"(u).
By (1.2.5)
{{C" (w)u, u), (M (w)u, u)} = 9, (C" (w)u, u) - (M" (u)u)
= (C'(w) - (M (), w) + ([(2.C" (w) - (M (w)u)]u, ).
The first bracket in the right hand side may be written
(C’(u)]\//f”(u)u, u) + (u, t]\?”(u)C'(u)w

(3.3.16)

and so, by (ii) and (iii) of proposition 3.1.1, has the structure of the last term
in the right hand side of (3.3.14). The last duality bracket in (3.3.16) is
(Opx[aue(u;~)-(M"(u)u)]Eu,u) and so, by proposition 3.2.1, has the structure
of the right hand side of (3.3.14). This concludes the proof of (i).

(ii) We have written above JV{(M" (u)u,u) = ]/\/[\”(u)u for some M”. We may find
in the same way a similar M’ (u) such that for any v

Ou (M (w)u, u)) v = (M’ (w)u, v).
Consequently, the left hand side of (3.3.15) may be written
(M (uu, M (w)u) = ("M (u) M (u)u, ).

If we apply (i) of proposition 3.1.1, we get the right hand side of (3.3.15). This
concludes the proof. O

Before giving the proof of proposition 3.3.4, we state and prove a lemma, giving
a similar statement, for the more general case when F, Fy are defined in terms of
symbols that are not necessarily polynomial.
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Lemma 3.3.6. — Let dy,dy € R+,d1 > ].,dz > ].,kl,kz e N* Ny € N,V,C €

Ry,0 > v+ 2Ny + 8 + max((, 24%). Let D. be a (v+di +de+0,Ny + 1)-

conveniently increasing sequence, B > 0. Denote ( = max((, @), Let X, p; €
dj,v . N — . N2

S@Y 8o (0,6 B, D) with N = Aj, iy = pj,j = 1,2 and let My € LG (0,¢,B).

Consider the Poisson bracket

(3.3.17)

1
{S0Py [P (s )T + g (w3 ) T, )
1 1
500D D5 ) 1 o5) Tty ) + 5 (Mo, )}
One may find V' = v+2Ny+6, a new conveniently increasing sequence D., and symbols

di+do—1,0" e 2 . . 3 = di+dz,v’
PWTRS S(kll—:liz),lNo (0,¢, B, D.) satisfying \Y = A\, 5% = p and M € E(é;;;?) (0,¢,B)

such that (3.8.17) equals
(3.3.18) %(Opx[)\(u; T + (s )T, ) + %(M(u)u, ).

Proof. — Let us study first the contribution coming from (Ms(u)u,u) in the second
argument of the bracket (3.3.17). By (i) of lemma 3.3.5 we get a contribution to

(3.3.18), with symbols A, u € sd,;ti,j A "*(0,¢,B,D.) and M € cd,ﬁf;’”“( .(,B).

This is of the wanted form. Consider now the contribution to the bracket coming
from

(3319) 0Dy N ()T + g w5 o, ), (O o )T + oo )T, )}

Apply lemma 3.3.2 with £/ and E” equal to I and J. The last two brackets in
the right hand side of (3.3.7) give contributions of form (3.3.18). Let us study the
contributions of the first duality bracket in the right hand side of (3.3.7). If we set

e + 105 (w)]

Cj(u) = Opy [Ny (us )T + (w3 ) J], C(u) = 5

this may be written
(3320) (G ()ICa(wu ) = {ICy () ICo(w) ~ Calw)ICy ()], w).
If we set
A5(u) = 2 [0p, [0 )] + Oy g )]
By () = 10p g (5-)] — ‘O s (s )]
so that C;(u) = A;(u) + JB;(u), (3.3.20) equals

(3.3.21) <(([BQ,A1} + [Ag, Bu)) + J([Ar, Asg] — [B1,Bg]))u,u>.
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We apply proposition 2.3.3 to write

1

Aj(u) = Op, [5 (A + A7) (w3 )] + Op, le; (us )] + M (u)
(3.3.22) ;
Bj(u) = Op, [5 (15 = 1) (w3 )] + Op, £ (us )] + M7 (u)

. dj,v+No+3 dj—1,v+Nog+3 ~

with MJA,MJB ~6 E(kj)Jr *" (g, ¢, B) and ej,f]; € S(kj%N[f (g, ¢, B, D.) (for a
new sequence D.) since ¢ > v + Ng + 5 + (. By theorem 2.3.1 the contribu-
tions of the para-differential operators in (3.3.22) to (3.3.21) may be written as

(3.3.18) with symbols A, p in S?ﬁﬁ§231]%+2N0+6(0, ¢, B, D.) (for another D.) and M €

E?ﬁjﬁ;;g”NﬁG(a, ¢, B). On the other hand, the contributions to (3.3.21) of M]A7 MP
may be dealt with using proposition 3.1.1, and give expressions of form (M (u)u,w)
for M € Ezl,:fz;fr%% (0,¢, B). This concludes the proof of the lemma. O

Proof of proposition 3.3.4. — (i) By definition of H’Elg;l)/’NO ©),

(3.3.23) Fj(u) = %(Opx[)\j (u; )+ pj(u; ) J]u, u) + %(M](u)u,w

. odj,v . . X _ ~dj,v
with A\j, p; € S(k,-),NO(O satisfying A} = \j, iy = p; and M; € [,(kj)(C). We may

apply lemma 3.3.6 and (ii) of lemma 3.3.5 to {F}, F>} using that here the symbols and
remainder operators are polynomial ones. We obtain the conclusion of the proposition.
(ii) We have to study the Poisson bracket of two functions of form

Fy) = 540D, [A; ()]s} + 5 (0 (w)us )

with Aj(u;-) € §Ei,§;;NO(®)M2(R) with AJV = A;. Lemma 3.3.5 shows that the
contributions coming from a Poisson bracket involving at least one term (M (u)u,w)
may be written as the right hand side of (3.3.13), with a symbol A belonging to
Qdi+des—t,vtu s F odi+ds, v+ &

S a0 © Ma(R) € SgERA T (() © Ma(R) (where ¢ € [0,1]). On the other
hand, the contribution coming from

i{<0px [Ax (u; )], u), (Op, [A2(u; )]u, u) }

is of the form of the left hand side of (3.3.3), with polynomial symbols. It follows
from proposition 3.3.1 (applied to polynomial symbols), that this quantity may be

written under the form of an element of H‘(i,ijf;;)’l%(f ) for some v’ depending only

on v, Ny. O
We shall make use below of the following lemma.

Lemma 3.3.7. — Let v, > 0, Ny € N. There is sg > 0 large enough, pg > 0 and
for any B > 0, for any (d,s) € Ry X [sg, +00[ satisfying either d < 1 or 2s > d >
2s — 1, for any o > s, any (o + d + v, Ny + 1)-conveniently increasing sequence D.,
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any k € N* the following holds: Let { = max((, %), a (resp. M) be an element of
S(d,;;NO(U,C,B,D.) ®@ M2(R) (resp. EE%(J,C,B)). Define
(3.3.24) F(u) = (Op, [a(u; -)]u, u) + (M (v)u, u).

Then for any s > so the map u — DF(u) (resp. u — VF(u)) is C' on Bs(po) with
values in L(H™ T4 R) (resp. H*=%). Moreover, there is C > 0 such that for any
u € Bs (PO)

(3.3.25) |F(u)| < O|lul|kt2

Proof. — Let us show that DF(u) extends as a linear form on H—*t4, If V €
C*>°(S',R?) we may write DF(u) -V in terms of

(3.3.26) {Op,[a(u; )V, u), (Op, la(u; -)]u, V)
(3.3.27) (Op, [Bualu;-) - V]u, u)
(3.3.28) (M (u)V, ), (M (w)u, V)
(3.3.29) ((OuM (u) -V, )u, u)

Let us check that these expressions may be extended to V in H 5%,

By (2.1.44) with s replaced by —s + d, the first duality bracket in (3.3.26) is a
H™% — H* pairing. The second one is a Hs=% — H~5td pairing. Note that the
conditions u € HYT53+¢+9 and o > v + € + 2 of proposition 2.1.13 hold true if s > so
large enough since, because of our assumption on d, ¢ < max((, %)

Consider (3.3.27). Assume first that 0 < d < 1. If s > v+ ( + > we may apply
(2.1.46) with s replaced by s — d. If we assume s > d + v +  + 5, we see that
this inequality implies that (3.3.27) is a H~® — H® pairing. Consider now the case
when 25 > d > 25 — 1. Then V € H—*+d ¢ Hs=! ¢ HY*H5+0 (5§ > 0 small) if
s > sg large enough, depending only on v, (. By (i) of proposition 2.1.13, we get that
Op, [0ua(u;-) - V] is in L(H*,H*~%) C L(H*, H™*) so that (3.3.27) is a H~* — H*
pairing.

Let us study (3.3.28). By (2.1.47), for s > s large enough in function of v, (,
M (u)u € H*=% so that the second bracket in (3.3.28) is a H*~¢ — H—5*+% pairing.
Consider now the first one. When d < 1, (2.1.48) shows that for s > s( large enough
relatively to v, M (u)-V € H~*, so that we have a H~®*— H?® pairing. If 2s—1 < d < 2s,
V € H=*"4 so that applying (2.1.47) with o’ + 1 + § = —s + d, we see that M (u)-V
belongs to H*. Consequently (3.3.28) is a H~® — H*® pairing.

To treat (3.3.29), we use when 0 < d < 1 (2.1.48) to see that for V € H—5+4,
(OuM(u) - V)u belongs to H=* for s > s large enough. When 2s —1 < d < 2s,
V € H=+4 C H*! so that (9, M (u)-V)u belongs also to H~* if s > s, large enough
relatively to v, by the statement after (2.1.47).
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This shows that DF(u) € L(H*t% R). The fact that u — DF(u) is in fact
C! follows differentiating once more (3.3.26) to (3.3.29) in u, and making act this
differential on some W € H*(S',R?). Since a, M are converging series, this just means
replacing in the general term of their development one argument u € H*(S'; R?) by
W € H*(S';R?) which does not change the boundedness properties. O

Remark. — We shall use below the following consequences of the study of (3.3.28),
(3.3.29). If F(u) = (M(u)u,u) with M € E%,’C’;(a,(,B) and if s > s¢ is large enough
relatively to v, (, then u — VF(u) is a C! map from B,(p) to H*(S*; R?). Actually,
in (3.3.28), we have M (u)u € H® by (2.1.47) if s is large enough. Moreover, we have
seen in the proof that M (u) -V and (0, M (u) - V)u belong to H=* if V.€ H™".

3.4. Division of symbols

The aim of this section is to construct from a symbol or an operator another
symbol or operator defined by division by a convenient function. We recall first some
notations and results of [5], [1], [11].

If ng,...,nj41 € Z, denote
maxy(|nol, - ., [nja]) = max{[nol, ..., [n41} = {Ing |})
(3.4.1)
m(no, ..., mj1) = 1+ max({[nol, ..., [njtal} — {Inel, [ne, [})
where £y is an index such that |ng,| = max(|ng|,. .., |n;+1|) and ¢; is an index different
from £y, such that |ng, | = maxa(nol,...,|n;j4+1]). In other words, u(no,...,n;11) is
essentially the third largest among |nol, ..., |n 1]

If m €]0,+00[, j € N,ng,...,nj41 €Z,0 <L < j+1 we set

14 Jj+1
(3.4.2) Ef(no,...,nj41) = Z \ym?+nZ — Z ym?+nZ.
=0 =41

It follows from [5], [1] Theorem 6.5, [12] Proposition 2.2.1 that the following propo-
sition holds true:

Proposition 3.4.1. — There is a subset N C|0, +00[ of zero measure, and for every
m €0, +oo[—N, there are N1 € N, ¢ > 0 such that the inequality
(343) |F£L(7L0, ce ,nj+1)| > C/J(TLO7 PN ,nj+1)_N1
holds in the following two cases:
e When j is odd, or j is even and £ # %, for any (no, . Mjr1) € ZIT2.
o When j is even and £ = % for any (no,...,nj41) € 73%2 — Z(5), where
(3.4.4)

Z(j) = {(no, ..., nj+1) € Z*2; there is a bijection o : {0,... £} — {£+1,...,j+1}
such that |ng ;| = |n;| for any j =0,...,(}.
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Note that a much better lower bound for |EFY, (no, . ..,n;41)| holds when the largest
two among |ng|,...,|n;+1| are much bigger than the other ones, and correspond to
square roots affected of the same sign in (3.4.2). To fix ideas, let us assume that £ > 1
in (3.4.2). Then for any m > 0, there are constants C' > 0,¢ > 0 such that for any
(noy - .. ,njp1) € ZIT2 satisfying

(3.4.5) Ino| = C(1+ [na| + -+ + [njqal), Ina| = C(1+ [ngf + - + [nj1a)
one has
(3.4.6) [Fr(n0s oy nj1)| = e(1+ [nol + -+ + |njgal).

Recall that we introduced in definitions 2.1.4 and 2.1.12 classes of multi-linear sym-

bols f]‘(ij')/ No (¢) and operators flé;’ (¢), which are the building blocks of the polynomial
symbols .§(dk’)' No (¢) and operators [:?kl)'(() These polynomial symbols or operators
have arguments (u1,...,u;) belonging to C*°(S', R?)7. It will be convenient to iden-
tify C°(S!,R?) to C>°(S!,C), and so to consider symbols or operators which are

functions of arguments in C°°(St, C)7. We introduce a special notation for them.

Definition 3.4.2. — (i) Let d € R (resp. d € Ry), v,( € Ry, j € N*, Ny € N.

One denotes by Cf}‘(’;’)’_ N (€) (resp. C/leij’.')’(()) the space of all C j-linear maps
(u1,...,u5) — ((z,n) — a(ui,...,uj;2,n)) (resp. (u1,...,u;) — M(uq,...,u;))

defined on C*°(S',C)/, with values in C*°(S! x Z,C) (resp. with values in
L(L3(S;C), L*(S',C))) satisfying conditions (2.1.24), (2.1.25) and (2.1.26) (resp.

satisfying estimate (2.1.40) for any o/ > v + 2 + max((,%), with (k&riz)l!)!c(j)Bj

replaced by an arbitrary constant) for any uy,...,u; € C=(S';C).

(ii) We denote by ngié'; n, (€) (resp. CZZ’S(C)) the space of finite sums of form

(2.1.29) (vesp. (2.1.41)) with a; € °S(¥ o (C) (resp. M; € CALY(Q)).

beCxh (¢). Define

Let 7 be an even integer, ¢ = %, () No

(3.4.7)
! ! ! dz ! ! —2in dy
iy = 11,/ 5 -— 1L,/ L — v
b'(ui,...,uj;2,n) ;/Slb( nU,x,n)%r—l—;/Slb( U5 —y,n)e o

where I, U’ = (II,,, u1, ..., 11, u;), and where the sum Z/ is taken over all indices
n' = (ni,...,n;) € Z7 such that there is a bijection ' : {1,...,¢} — {{+1,...,j} so
that [ng ()| = [ne| for any 1 < ¢ < {. Then b’ € Ci?f)/,No (¢). Actually, integrations
by parts show that the last term in (3.4.7) belongs to Ci?ygfy\;:JrN (¢) for any N. We
set

(3.4.8) V' (ur, .. uja,n) = (b—b)(us, ..., uj;z,n).
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Note that, denoting by F the z Fourier transform,
(3.4.9)

21 F[Op, [0/ (T U5 )My, w1 (n0) = By (T U750 — 11,1541 )it 1 (41)
= [6(no = nj41)by (T U';0,n41) + 8(ng + ny4 )by (ML U5 =201, m540) it 41 (1)
so that
(34.10)  Op (U ujsr = > 3 I, Opy [b(ILu U5 )L, 1

0,75 +1 n
[nol=|nj+1l

By the support condition (2.1.24), if b(IL,, u1,...,Il,;us;-,n) # 0, we have
Inil,...,|nj| < %In|. This shows that the conditions on (ng,...,n;+1) in the
sum in (3.4.10) is equivalent to

A There is a bijection 6 : {0,...,¢} — {¢+1,...,j+ 1} such that
3.4.11
( ) [ng(ery| = |ne| for any ¢ € {0,...,0}.

Consequently, we may write as well (3.4.10) as

I
Op, ['(U"s Nujer = Y Mg Opy (L U3 )Ty 1

!/
where Z means the sum over all n = (ng,...,n;1) satisfying (3.4.11).
If w= (wo,...,wj+1) € {1, 12 if (u,...,u;) — A(ui,...,u;) is a j-linear
map with values in the space of linear maps from C*°(S*, C) to C*°(S*,C), if A,,, =

V—A 4+ m?, we set

J
LW(A)(’LLh N ,Uj) = wOAmA(ul, . ,’LL]') + Z (.de(’LLl, e ,Am’LLgl, . ,’LL]')

(3.4.12) =

+wj+1A(u1, ey Uj)Am.

We shall use the following lemma.

Lemma 3.4.3. — Define

Jj+1

(3.4.13) F{ no, ... ,njp1) = Y wey/m? +nd.
=0

(i) Assume wow; 1 = 1. Then for any m €]0,4o00] there is co > 0 and for any v € N,
there is C > 0, such that for any (h,nq,...,nj41) € 7712 with

def

L+ '] 2 1 4 max(fml, ... In]) < colnyal

and |h| < §(nj1),

(3.4.14) A

Nnj+1

[FS (h+njna, . ngn)] 7 < Clnga) ™7
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(ii) Assume wow;y1 = —1 and #{';wp = —1} # #{l';wey = 1}. Then for any m €
10, +00[=N, for any v € N, there is C > 0 such that for any (h,n1,...,njy1) € Z7 T2
with |n'| < f|nj41| and |h| < §|nj41]

(3.4.15) [, [E) (h+njgrma,. . ngen)] 7Y < OB ) O ) 7

s o
(iii) Assume wow;i1 = —1 and #{l';wpy = —1} = #{';wp = 1}.Then for any m €
10, +00[=N, for any v € N, there is C > 0 such that for any (h,n1,...,njy1) € Z >
with 0’| < f|nji1l, |hl < 3nje1| and (h+nj1,na, ..., nj41) € Z(w), where

Z(w) = {(no,...,nj+1) € Z*?; there is a bijection 6 : {f;wp =1} — {f;w, = —1}
with [ng| = ng| for any £ with w, = 1}.

one has

w — 1N _
(34.16) |87 [F (h+njer,na,...,ni)] 7Y < O ()OI N 0y 0)
Proof. — We prove (ii). Since wowjt1 = —1 we may write Féf)(no, ...,Mj4+1) as the
sum of a term depending only on n’ = (n4,...,n;) and of a quantity given up to sign
by

1
(’no — TLJ‘_H) _/0 [m2 + (tno + (1 — t)nj+1)2]_1/2(tno + (1 — t)nj+1)dt.

This implies that for any fixed m, any v > 1, any (h, n1,...,n,41) as in the statement
(3.4.17) 107, FS (h+njga,ma, )] < Cylh)(ngg) 7
From this we deduce by induction that 0 [Fﬁnw)(h +1nj+1,m1,...,n541)] " may be

written as a linear combination of quantities of form
Fz,(h, n’, nj+1)
Hy (h,n',mjqa) - HY (hyn/ njgq)

(3.4.18)

where 0 <4’ <y and I, H/ satisfy

105, T2 < Calh) (nj41) 7~
(3.4.19) |H] (B, mj)| = e (n) ™
05, H] (hmj0)] < Cay () (n41) ™ > 0.

Actually, at the first step of the induction, T = 1, HJ = Fr(n‘”)(njﬂ + h,n',njq1)
and the second and third inequalities (3.4.19) are just (3.4.3) and (3.4.17). Estimate
(3.4.15) follows from (3.4.18), (3.4.19).

Let us prove (i). In this case, wowj+1 = 1, so that the square roots involving the
largest arguments are affected of the same sign. Consequently, if the constant ¢y of
the statement is small enough

[ (nja + honasomg)| = elngg).
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Moreover
1—
107, FS (e + hona, )| < G (ngn) .

These inequalities imply (3.4.14).
Finally, let us show that (iii) holds true. We may apply the proof of statement
(i) if we are able to show that the lower bound of H) in (3.4.19) still holds. The

functions H, (h,n’,nj;+1) equal either F,Elw)(

njt1 + h,M1,...,n41), or a translate of
such a function obtained replacing n;4+1 by n;41 + A. Up to a change of notations,
inequality (3.4.3) shows that the lower bound of the second line of (3.4.19) holds true
for those (h,n’,n;j;1) satisfying the assumptions of the statement (since, changing
notations, we may reduce to the case when Z(w) is given by (3.4.4)). The proof of

(ii) applies then without any change and brings (3.4.16). O

Proposition 3.4.4. — Let m €]0,+oo[ be outside the exceptional subset N of propo-
sition 3.4.1. Let j e N*,d € R{,Ng € N,v,¢ € Ry, (wo, ... ,wj1) € {—1,1}72

(i) Assume wowji1 = 1. Let b € CE?;}]’\Z)((). There is a € CE‘(ij?l)':‘I'VZO (¢) such that
(3.4.20) Lo, (Opyla(us, ..., ug;-)]) — Opy[blua, - . ugs -)]
belongs to (C/Nl‘é’.)”'s'2 ).

(11) Assume that wowjt1 = —1 and that #{l;w, = 1} # #{l;w; = —1}. Then if

No > 2(N1 + 1) (where Ny is the exponent in (3.4.3)), for any b € CE'(ij')’N (€), there
isa€ Z‘(i ')/er\[i+N1+2 (€) such that

(3.4.21) Lw(OpX la(u, ..., u;;-)]) = OpX[b(ul7 R TIOIE

(iii) Assume that wg = 1,w;1 = —1, that j is even and wy = -+~ = wj/o = L,wjjo4 =

- =wj = —1. Then if Ng > 2(N1 + 1) for any b €€ CZd” ((), there is a €

dv+C+N1+2 ()Mo
CE(];NO ') such that

(3.4.22) L, (Op,la(ui, ..., u;;-)]) = Op, [b" (u1, ..., uj;-)]
where b is defined by (3.4.8).

Proof. — (i) Let x1 € C§°(R), x1 =1 close to zero and decompose b = by + by where

bi(us,...,uj;2z,n) = Z Z (max (], > |nj|)>b(Hn1u1,...,Hn].uj;:r,n).

If we apply (2.1.39) to a = by, N = 2, and use that if by(Il,, uy,...,Iy;u;;2,n) Z0
there is an index ¢ for which [ng| > c(n), we see that Op, [ba(u1,...,u;;")] de-
fines an element of C/]EIJTL)'H(C). Consequently, we just have to find a solving
L,(Op,(a)) = Op,(b1). Writing from now on b instead of by i.e. assuming that if
b(Iln w1, ..., Iy, uj;2,n) is not zero, then [ni| + --- + |n;| < ¢(n) for some given
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positive constant ¢, we have to find a so that, for any ng,..., 741
HnoLw [Opx [a(]‘_‘[nlul7 cee aHnjuj; ')]]Hn_7‘+1uj+1

(3.4.23)
= 1I,,,Op,, [b(IL,, ug, . .. AL ug; ~)]]Hnj+luj+1.

If we use the definition (3.4.12) of L, and A,,II,, = v'm? 4 n?Il,,, we may write this
equality
Frgﬁ.W)(nOa ooy Mg )y (T wn s o Tl ugs o — Mg, 1)
(3.4.24) g+1)Ox s Ui j j
= by (I, ur, o gm0 — 11, mg1).

We solve (3.4.24) defining a by

a(Ilp ugy ..y ugsz,njpn) =
1 v h ihy 1 (w) -1
(3425) g X(<n+1>> o € Fm (h+nj+1,n1,...,nj+1)
h J

X (I, un, -y o ug; 0 — y, mjy)dy

where ¥ € C§°(] — 3, 2[), ¥ =1 close to [—1, 1]. We estimate

3336 a(Ily u, ... o ug;2,m40)

N1
from (3.4.25), using the Leibniz formula (2.1.10), estimate (3.4.14) and performing
two integrations by parts of L = (14 h?)"'(1+ h- D) to gain a (h)™? factor. We
obtain estimates of type (2.1.25), (2.1.26) with v replaced by v + 2. Since (2.1.24) is
also trivially satisfied, we obtain that a € Cifj)”j'vi ©).
(ii) Let us define again a from b by (3.4.25). We make act 920  on a, using

M1

the Leibniz formula (2.1.10). We get a sum of contributions with 5’ 8:: -derivatives
falling on )Z(h/(nj+1>)(F,(ﬁ”))’1 and (" O, ,-derivatives falling on b, with 3'+3" = f3.
We perform ' + 2 integrations by parts using the same vector field as above, to get
a (h)™? factor to make converge the serics. Using (2.1.25) and (3.4.15) we obtain a

bound in terms of the sum for 8’ + 8" = 3 of

J
(3.4.26) <nj+1>d—ﬁ+(0t+ﬁ +24v+Nof"' —a') 4 <n1>(5 +1)Ny H (ne)” |, e 2
=1
for any o' > v + ( + 2, if ny is the index such that |n;| = max(|n|,...,|n;]). We
want, to get the conclusion, find a bound in
J
(3.4.27) <nj+1>dfﬁ+(a+2[3 (14+N1)+5" No+24v+(+N1—0) ¢ H ()7 ||TL,,, 2] 2
=1
forany o > v+(+2. If 0 > 5/ (1+Ny1)+v+(+2, (3.4.26) applied to 0’ = o —F'(1+Ny)
implies (3.4.27). If 0 < /(1 + N1) +v + ¢ + 2, (3.4.26) with ¢’ = o implies (3.4.27).
Assuming Ny > 2(1 + Ny), we obtain estimate (2.1.25) for the symbol a, with v
replaced by v + ( + N; + 2.
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If we estimate 202" b using (2.1.26), we get instead of (3.4.26) the bound

>d7f3+a+[j’+ﬁ”N0+2+V+0/ <n/>(ﬁ/+1)N1 H <77,2>

’ . ’
(nj1 7T, e[|z () ™7 T, e 2

1<0'<e
2
which implies a bound of type (2.1.26) for a, with v replaced by v + N; + 2, using
that (n’) < C(nj+1) and Ny > Ny + 1. Since moreover the support condition (2.1.24)
is satisfied by a by construction, we get that a € Cidj’.l’jVCJerJrQ(().
(iii) We define a by (3.4.25) with b replaced by b”. By (3.4.10), (3.4.11), we have

F,(nw) (’I’LO7 . 7nj+1)&X(Hnlu1, e 7Hnjuj; no — 7’Lj+17 nj+1)
= Y (ngmyi)@z()0x Mnyur, - Ty ugsmo — njyn, mjgn)
so that in (3.4.25) with b replaced by b we may insert in the integral the cut-off

L(htngrimneeomy 1) #2(w)} -
The rest of the proof is similar to the case (ii) above, using estimate (3.4.16) instead

of (3.4.15). This concludes the proof. O

We conclude this section by an analogous of the preceding proposition for remainder
operators. Let d > 0,1, € R,. When M € C/l‘(ij’.')j(g),w € {—1,1}*2 with j even
and when #{¢;w; = 1} = #{l;wy = —1}, we decompose M = M’ + M" with

! N\ ! .
M (ula”'au]) - Z HnoM(Hrnula~~~7HnjuJ)Hnj+1

Ty Mj41
!/
where Z stands for the sum on those indices for which (3.4.11) holds true.

Proposition 3.4.5. — Let m €]0,+oo[ be outside the exceptional subset N of propo-
sition 3.4.1.

(i) When j is odd or j is even and #{l;wy = 1} # #{l;wy = —1}, there is for any
M in C]lé';(() an element M € (C/]((i]?l)’+N1 (¢) such that L,(M) = M.

(ii) When j is even and #{l;wy = 1} = #{l;w; = —1}, there is for any M in
C/NI?J’.’)’(C) an element M € C/]?}3'+N1(C) such that L,(M) = M".

Proof. — (i) The equation to be solved may be written

=1I,, M (I, u1, ... 7Hnjuj)H

M,y Lo (M) (T, . ., TL, ) TT

Nj+1 MNj4+1
or equivalently
(3.4.28)

E (noy oy 1) g M (Wt oy Ty )Ly = Ty M (T -, Ty )T

nj4 ISR
If ¢ is such that |ng| = max(|no|,...,|n;+1|), we have by (3.4.3)
|F) (ng,...,nj1)| > cu(no, - .., mjp1) N0 > (1 4 |ng) =N

If we use estimate (2.1.40) for the right hand side of (3.4.28), we deduce from this
that M satisfies the estimates of an element of C/]é’.l)’Jer €).
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(ii) The proof is similar, using that on the support of

HnOMN(Hnl'LLl, v ,Hnj’LLj)H

g1

estimate (3.4.3) holds true. O

3.5. Structure of the Hamiltonian

In this section, we shall express the Hamiltonian given by (1.2.8) using the classes
of operators introduced in section 2.1.

Proposition 3.5.1. — Let G be the Hamiltonian (1.2.8). One may find v > 0 and:
o A symbol e(u;-) in §(11")’0(0) satisfying e(u; -)v =e(u;-),

o An element M € Zzll)'(O),

such that if we denote E(u;x,n) = 0 0 , we may write
0 e(u;z,n)
1 1 1
(3.5.1) G(u) = §<Amu,u> + §<OpX[E(u; N, uw) + §<M(u)u, u).

Before starting the proof, we study some multi-linear expressions. Consider a
collection of j + 2 > 3 constant coefficient operators

(3.5.2) Qe =AM or Qr=A1%0,,0<0<j+1
of order —1/2 or 1/2. Let a € C°°(S*;R). For any function u, in C*°(S!; R?) denote

1
up = {54 and set vy = uf € C*(S';R). Consider
¢

(3.5.3) | a@)Quuo)-+- (@101}

Lemma 3.5.2. — Let x € C§°(] — 1,1[), x even, x =1 close to zero, Supp x small
enough. One may find v > 0 and for any i,i" with 0 <i < < j+ 1 symbols

. ~ 1 v
(3.5.4) ay (uyz,n) in 2(23‘7),0(0)
and remainder operators
(3.5.5) b(uw) € 4335(0)
such that (3.5.8) may be written
Z /(ini)(x)OpX[ai,(uo, ey Uty ey U ) U AT

0<i<i' <j+1

+ > /ui(x)[Mf,(uo,...,@,...,@,...,uj+1)ui/]dm
0<i<i’<j+1

(3.5.6)
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Proof. — We decompose vy = > II,,, v, and write Q¢II,,v¢ = be(ne)IL,, v, with

mny

(3.5.7) be(ng) = (m? +n2)~Y2 or by(ny) = ———.
\/m?+n?
We may write (3.5.3) as

1

(3.5.8) ﬁ %; o al=no = - = ngpr) [ ] be(ne)de(ne).

Nj+1 £=0
Let x1 € C§°(R), x1 even, x1 = 1 close to zero with Supp x; much smaller than
Supp x. Define for 0 <i <4’ <j+1

(3.5.9) O ((ne) o) = Xl(ﬁ%(mel)/@w»-
Decompose (3.5.8) as
(3.5.10) > on+r
0<i<i/ <j+1
with
(3.5.11)
, 1 g+l .
Z?I/ = W Z e Z &(_no — = ’n,JJrl) H b[(ﬂ[)@[(ﬂ[)@;
70 Nj41 £=0
1 j+1 _
"= R S alno— - —nyp) [ be(no)ie(n) (1= ) @)
no UFES £=0 6,4 50<i!

e Contribution of "
We write I” as [vo(z)M (v1,...,vj)vj11de with

1 —inoT &
M(Ul,...,vj)vj+1:WZ...Ze Oa(*nof"'fnj-ﬂ—l)
o Tj+1
(3.5.12) i1
x(1— Z @/ )bo(no) H be(mne)0e(ne)
i, 5i<! =1
so that
||Hn0M(Hn1’U1, e 7Hnjvj)Hn]»+1 HE(LZ)
(3.5.13) . . j+1 J
< la(no =+ =nys)l| (1= 32 @) | TT Ieere) | T UM vellz2-
i<’ £=0 =1

We may bound the right hand side by the product of C’Hiié (ne)® z:1HanWHL2
times

J+1 .
(3.5.14) la(ng — -+ — nj+1)|‘(1 _ Z q)z:/)‘ H (ng) =+

£=0

i,il i<
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as each by is a symbol of order at most 1/2. To prove that M defined by (3.5.12) may
be written as an element of /12]1)'(0) for some v, we just need to bound (3.5.14) by

Cng) 727t for any € = 0,...,j + 2. If one among |ng|, ..., |n;41| is much larger
than any other one, the rapid decay of a brings the wanted estimate. If not, and
if ip < iy are those two indices for which |n;,| and |n; | are the largest two among
Inol,. .. [njt1l, we may assume that C~*ngy| < |ny| < Clng,| for some constant
C > 0. If there is another index £y # ig, ¢y # i}, and a positive constant ¢ > 0 such
that [ng,| > ¢|ng, |, (3.5.14) has again the wanted estimate as (n;,)~° (ny) " (ne,) 7 <
C(n;,)"*?. On the other hand, if for any ¢ # ig, i}, |ng| is much smaller than |n;,| ~
|ni6| then @ZZ(nO, sy eeymyr1) = 1and @4 (ng,..., M, ...,njr1) = 0 for any
(i,1") # (do,1(), so that the cut-off in (3.5.14) vanishes. This shows that I” contributes
to the last sum in (3.5.6).

e Contribution of I},

We take, to simplify notations, ¢ = 0,7’ = j + 1, set n’ = (n1,...,n;41) and write
®(n') instead of @), (n’). We decompose

I, =I11)+1(2)

where
(3.5.15)
1 N ’ n +71j 1 g “
10) = Gy ; » nz; i(—=np — - —nj41)B(n )X(M)Zl:lobg(ng)w(ng).

We may write 1(2) = [vo(x)M(v1,...,v;) - vj41dz with

M(’Ul, e ,’Uj) . ’Uj+1 = Z e Z d(—’n(] — s — nj+1)e_i"°:”
no MNj+1

(3.5.16) o+ j+1
x ®(n) (1 - X<M>)bo(m) 11 bemo)ie(ne).
=1

(njs1)
We thus get for M a bound of type (3.5.13) except that (1—3" ®%,) has to be replaced
by ®(n') (1 —X(M)). To show that M may be written as an element of /]E]')'(O),

(nj+1)
we just need to bound

(3.5.17) alng — - — nyn) @) (1 - x(%)) Zﬁ) )+

by C<n5>73°—+”+1 for any ¢ and some v. By definition of ®, on its support |ng| <
c1(njt1),0 =1,...,7 for some small ¢; > 0 depending on Supp x1. If |ng| > |n,41| or
[nj1| > |nol, the |a| factor in (3.5.17) gives the wanted estimate. If on the contrary
CHng| < |nj41] < Clng| for some constant C > 0, and if we use that because
of the (1 — x) cut-off, we may assume that |ng —nj41| > c(n;41) for some small
¢ > 0 much larger than ¢;, we get again from the |a| factor a bound in (nj+1>7N ~
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(max(|nol, ..., |nj+1\)>7N for any N. This implies the wanted upper bound, and
shows that I contributes to the second sum in (3.5.6).
We are left with studying quantity (3.5. 15) Let us define

a?-&-l(”h-- V53X, M) Z Zezm(n1+ ) a()
(3.5.18)

x®(ny,...,n5,n) H be(ne)ie(ne)bjpa(n).
=1

Then aj, satisﬁes (2.1.24), (2.1.25), (2.1.26) for No = 0,¢ = 0, some v and d = % so

that a9, € 2(2 ), ",(0). Moreover

&9+1(v1,...,vj;n0,n) (no—ny1 —---—n;)®(n1,...,n5,n)

J

x [ be(ne)oe(ne)bja(n)

=1
so that if wg = by(D)vo
(wo, OPX[ a1 (M, 01, T 055 )]041)
no + N1
e 3 ) ( )
(2m) P — (njt1)
X a4y (T, 01,y T 055 =10 = 1241, 1 41) 041 (741
— (1),

This shows that /(1) may be written as a contribution to the first sum in (3.5.6) and
concludes the proof of the lemma. O

Proof of proposition 3.5.1. — According to (1.2.8), G(u) is the sum of (A, u, u) and
of quantities of form (3.5.3) with v, = u? the second component of u. By lemma 3.5.2,
these quantities may be written as a contribution to the last term in (3.5.1) and to
expressions of form

(3.5.19) /uQQ[OpX [€(u; )] Jude

~1
where @ is a constant coefficients operator of order 1/2, and where é € Sé’)yo (0) for
some v. By theorem 2.3.1, (3.5.19) may be written as contributions to the last two
terms of (3.5.1), replacing eventually v by some larger value. O






CHAPTER 4

SYMPLECTIC REDUCTIONS

The goal of this chapter is to construct an almost symplectic change of vari-
ables in a neighborhood of zero in H*(S';R?) such that a Hamiltonian of form
(Op, [E(u;-)]u,u), where E is a 2 x 2 matrix of symbols of order one, be transformed,
up to remainders, into (Op, [E'(u; -)]u, u) where the matrix £’ is a linear combination
of I, J with coefficients symbols of order one.

4.1. Symplectic diagonalization of principal symbol

Let B> 0,v > 0,0 € R,0 > v+2 be given. Let D. be a (0 + v+ 1, 1)-conveniently
increasing sequence. Let x be a positive integer. We set

def

Xo(u;z,n) = Xo(n) = vVm?2+n2, po(u;2,n) =0

and assume given for 1 < k < k — 1 elements A, g of S(llél)'o(a, 0, B, D.), such that

(4.1.1) )\k(u;x,n)v = A\ (u;z,m), uk(u;x,n)v = p(u;z,n)

and that

(112) Mo 2, 1) — N (5, ), g (52, ) + (s 2, m)

belong to S?,;?:SI(U,O,B,D.). Let 2 be an element of SS;';O(U,O,B,D.) ® My(R)
satisfying

(4.1.3)

Qu; m7n)v = Q(u;x,n), and *QY(u;z,n) — Qu; z,n) € S?};’;fgl(mo, B,D.) ® M3(R).

Since for any matrix valued symbol A, Op, (A)u = OpX(Zv)ﬂ, condition (4.1.1) and
the first condition (4.1.3) imply that Op, (ArI + piJ) and Op, (©2) send real valued
functions to real valued functions. Condition (4.1.2) and the second condition (4.1.3)
imply in view of proposition 2.3.3 that these operators are self-adjoint at leading
order. According to proposition 2.1.13 (i), if s > v + % is fixed, there is r > 0
such that if u belongs to the ball By, (r) of center 0 and radius r in H®°(S';R?),
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then Op, [Ax(u; )] + px(u;-)JJu and Op, [Q(u;-)]u are well defined and belong to
H#0=1(S';R?). This allows us to consider for u in such a ball

=
|
-

(414) ()= 5 3 (Op Pkl )T+ e )T, ) + 3 (O, (92w Y ).

0

Do =
B
Il

In this section, we want to “diagonalize” the € contribution, i.e. replace {2 by a
matrix which is a linear combination of I and J, up to lower order terms. Moreover,
we want to do that in an approximately symplectic way.

Proposition 4.1.1. — There are a constant B’ > B and a symbol q belonging to

S?};’; (0,0, B, D.) ® M3(R) satisfying §¢” = q such that if we set

K—1

(4.1.5) a'(uz,n) = Z(Ak(u;x, ) + pg(uw;z,n)J) + Qu; z,n)
k=0
and p(u;z,n) = I + q(u;x,n) the following properties hold:
(i) ' (u; &, n)Jp(u; @, n) — J € S,5¢(0,0, B, D.) © Ma(R).
(ii) There are scalar symbols \q(u;x,n), p(u;z,n) in S(ll’;)' 0(0,0, B, D.) such that

)‘R(u;x7n)v = Afi(u;xvn)a ILLK(U;.’L',TL)V = :ufi(uaxvn)

A — AL, e + ) belong to S?}ngl(a,O, B',D.)

(4.1.6)

and

K

(4.1.7) p(w @, n)a (u; 2, n)p(u; z,n) — ;(Ak(u;$7n)1 + pii (u; ,m).J)

€ 80441 (0,0,B', D.) @ Ma(R).

Before starting the proof, let us comment on the meaning of the proposition. If we
set

1o o1
418) r=ly O =)

and decompose the matrix € in (4.1.5) as
(4.1.9) Qu;z,n) = by (u;x,n)I + ba(u;x,n)J + by (u; 2, n)I" + by(u; z,n)J’

where by, b}, by, b}, are scalar symbols of order 1, formula (4.1.7) asserts that using
p, we may transform 2 in a matrix for which b},b, are of order zero. Moreover, (i)
means that Op, [p(u;-)] will be a linear symplectic transformation (up to a remainder
of order —1).
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Let us define some notation. Since Ag(n) = vm? + n? is invertible, we may set

h(u;z,n) = Xo(n) Ne(usz,n), k=1,...,5—1

mg(u;z,n) = Ao(n) pp(u;z,n),k=1,...,k—1
ln(u;x7n) = )\O(n)flbl(u’x’n)
U'(u;z,n) = Xo(n) 1) (u; 2, n)
m(u;z,n) = Xo(n) tha(u;z,n
o) (wi0:m) = Xa(m)~"ba(us )
w'(u; 2,n) = Ao(n) " by (u; z,n)
l(uax7n) - Z lk(u,x,n)
k=1
K
m(u;z,n) = mg(u;z,n).
k=1
By construction, /,m belong to 5(1) 0(0,0,B,D.), I'’ym’ belong to SE),;’;O(U,O,B,D.).
Moreover, [ = [V, m=m", I’ ="V, m’ =m'Y and | — [V, m+m", (vesp. I' — 'V, m' —

m'V) are in S 1;5“(0 0,B,D.) (vesp. S0 (0,0, B, D.)) by (4.1.1), (4.1.2), (4.1.3).

According to (4.1.5), (4.1.9) and (4.1.10), we may write
(4.1.11) o' (u;z,n) = Mo(n)[(1+1(u; z,n)) [+m(u; 2, n)J+1' (u; 2, n)I'+m’ (u; 2, n)J'].
Set

1 ) 1
(4.1.12) K=— {1 Z} VK =il 'K = — {1, 1}

211 —i V2 =i
and define

1 |14+ l4im I+ im’

4.1.1 ; =KJd K™ =i\ :
(4.1.13) S(wa,n) = KJa iAo {(l’im’) (1+l)+im}
The proof of proposition 4.1.1 will rely on the diagonalization of S(u;x,n).
Lemma 4.1.2. — There is a constant B’, depending on B and on the quantities
‘ﬂ(()lgo(a,(),B,D.;l) ‘ﬁou 0(0,0,B,D;1'), ‘ﬁou 0(0,0, B, Dsm’) and there are symbols

Aws i € S(l’:;O(O',O,B/,D‘), satisfying condztzons (4.1.6), and a matriz of symbols
qge S(H) 0(0,0,B',D.) ® M3(R), satisfying

K-1§'K — K 'qK € S+ (0,0, B', D.) @ M5(R)

(4.1.14) 0
NI+ @)V I(I+§) —T €S, 0" (0,0,B', D) @ Ms(R)

such that

(4.1.15) tJHI+ @)V IS +q) — 2 [(26 M) + (32T ) 0

0 = (320 M) + (2T )

belongs to S?:)'Bl(cr,(), B',D.) ® M2(R).
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Proof. — Define

12 +m/2

Since [ belongs to S(O{I;’O(U,O7B7D.) and !’,m’ belong to S?,;I)I’O(J,O,B,D), we may
consider them as elements of S?l’;’,o(a,O, B" D.) and S?’:)”O(a, 0, B”, D.) respectively
for any B” > B. If B” is large enough, we may make ‘ﬁ?i';o(a,O,B”,D,;l),
‘II((),;V),O(U,O,B”,D.; ", ‘IK(():W(U,O,B”,D.;m’) arbitrarily small, so that assumptions
of proposition 2.4.1 will be satisfied with B replaced by B”. This proposition implies
that 6 € S?}’{;O(O’,O,B/,D.) with B’ = 2B”. Moreover, § = 6" and § — §¥ belongs to

S—l,l/—l—l

()0 (0,0,B’,D.). The eigenvalues of the matrix

- / - I
(4.1.17) {1+l+zm ' +im }

(' —iw) —(14+1) +im
are £(1+ 1)(1+ ¢) + im. Define ¢ by

R 2 4 m'? —1/2 1 __V+im/
(4.1.18) (I + G(u;z,n)) = (1 - —)2) ) |

l’fi ’
(1+02(2+0 BCEDIeE=) 1

Applying again proposition 2.4.1, we see that ¢ belongs to S?};’; (0,0, B", D)@ Ms(R),
eventually with a new (larger) value of B’. The inverse matrix is

(4.1.19) (I+ Glusz,n))~t =1JAd + G(u; z,n))J.

Moreover since I’ — 1"V, m’—m'V, [—1Y are of order —1, §—¢" € S(js’gﬂ(a, 0,B,D)®
M3 (R). Since the eigenvectors of (4.1.17) associated to the eigenvalues (1 + I)(1 +

0) +im and —(1 4 1)(1 + J) + ém are collinear respectively to

1 V4w’
|: l/ 7J“/ and |: (1+l)(2+6):| s
BEEDICET) 1

(I + ¢) diagonalizes (4.1.13), so taking (4.1.19) into account

(4.1.20)
ETHT + Glus 2,m)) TS (u = 2,n) (I + G(u; z,n))
~ i {(1+l)(1—|—5)+im 0 |
0 —1+DA+6)+im
By (4.1.10)
k=1 Kk—1

(1 + D(1+0) +idom = (D A +b1)(L+6) +i( D pk + ba)
k=0 k=1
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may be written since § € S?:)”O(a, 0,B',D.), by, by € S(ll’{l)"o(a?O, B’,D.), and using (i)

of theorem 2.3.1 as

i(z Ak) +i(ZMk)
k=0 k=1
with A\e, pe € S(ll;l)/O(O',O,B/,D.). Since § = 6V, by = bY, by = by, 6 — ¥ (resp.

by — by, ba + bY) is of order —1 (resp. of order 0), conditions (4.1.6) are satisfied by
Ais - Since ¢ — ¢Y is of order —1, (4.1.19) and (4.1.20) imply the second relation
(4.1.14) and (4.1.15). By a direct computation, K~1GK = K 'gK. Since § — ¢" is
of order —1, this implies the first relation (4.1.14). The proof is complete. O

Proof of Proposition 4.1.1. — We set

1
(4.1.21)  q(u;z,n) = K q(u;2,n)K, q(u;z,n) = E[ql(u; z,n) + ¢ (u;z,n)).
By the first relation (4.1.14), ¢ — g1 belongs to S@%:g“(a, 0,B',D.) ® M3(R) and by
construction ¢ is an element of S?;S 0(0,0,B,D.) ® M3(R) satisfying ¢ = ¢¥. We set
p = I + ¢q and show that (i) of proposition 4.1.1 holds. By (4.1.21) and the second
relation (4.1.12)

(4.1.22)  plusz,n) — ' TKI(1+ §(u;2,n)K € S )0 (0,0, B, D.) @ Ma(R).
Together with the second relation (4.1.14) and (4.1.12), this implies that

YV Ip—J €S, e 1 (0,0,B, D) © Ma(R)

i.e. (i) of proposition 4.1.1 is satisfied. If we use (4.1.22), the definition (4.1.13) of S
in terms of a’ and the second equality (4.1.12), we get that

pla'p+ it K[ (I +q)Y TS(I + )| K
belongs to S?}Stl(a,Q B',D.) ® Ma(R). Using (4.1.15) and the definition of K, we
obtain (4.1.7). This concludes the proof of the proposition. O

4.2. Symplectic change of coordinates

Our goal is to define from the symbol p = I + ¢ constructed in proposition 4.1.1
an almost symplectic change of variables near the origin in H*(S!;R?) for s large
enough.

Proposition 4.2.1. — Leto > 0,v > 0,B > 0 be given with o — v large enough and
let D. be the (o + v + 1,1)-conveniently increasing sequence fized at the beginning of
section 4.1. Let B’ > B be the constant given in the statement of proposition 4.1.1.
There are B"” > B’, pg > 0,59 > 0 and an element r € S?,;l)"o(a,O,B”,D.) such that,
if we set for v € By, (po)

(4.2.1) $(v) = (Id + Op, [r(v; )])v,
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then 1 is for any s > sg a C' diffeomorphism from a neighborhood Uy of 0 in
H*(SY;R?) to a neighborhood Wy of 0 in the same space, satisfying the equality
(4.2.2) q(¥(v);z,n) = r(v;z,n).

Moreover, for any v € Us, ¥'(v) extends as an element of L(H*, H™*). In addition,
¥ is almost symplectic in the following sense: for any o +1 > s > sg + 1, there is

C > 0 such that for any v € Uy, '0v(v)Jy(v) — J extends as a bounded linear map
from H*Y(SY;R?) to H*(S';R?) with the bounds

(4.2.3) [0 (v) JOU(v) = Tl £ ars-1,m5) < Cllol .

Remark. — The gain of one derivative in (4.2.3) above will be essential when ap-
plying this proposition to our quasi-linear problem (which loses one derivative).

Let us first construct r through a fixed point argument.

Lemma 4.2.2. — Letqg e S&’)'O(U, 0,B’,D.) ® M3a(R) be the symbol constructed in
proposition 4.1.1. There is a constant B" > B' and a symbolr € S** (5,0, B", D.)®

(r),0
My (R) such that

(4.2.4) q(v + Op, [r(v;)]v;z,n) = r(v;z,n).
Proof. — Recall that elements of S?;S o(0,0, B, D.) are formal series of homogeneous

terms, so that (4.2.4) is an equality between formal series. Decompose q(v;x,n) =
>isk @, -, v,m,n) with ¢; € Eowi)’o(a, 0,B’,D.) ® M2(R) and look for r as
———

(%,

%

with r; € 20"

(ei0(0:0, B, D.) ® M3(R). We shall define

q<i(vix,n) = Z qir (v, ...,v;z,M)

K</ <i
rej(viz,n) = Z rir(v,...,v;x,n).
k<G <j

We construct the r;’s by induction. We first set 7, = ¢,.. By definition of ‘ﬁ?ﬂ’; o)
we have, since k > 1

‘J’I?:H) 0(0,0,B", Dsry) < ‘JT?:) 0(0,0,B", D.;q)
(4.2.5) B
0,v .
S ﬁ‘ﬁ(ﬁ)’o(a, 07 Bl, D., q)
If B” is large enough, we may assume that the right hand side of (4.2.5) is smaller
than 1. Assume next that r.,...,r;_1 have been constructed such that

(4.2.6) m?;';,U(U,O,B”,D.;rq) <1
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Remark that the term homogeneous of degree j in the left hand side of (4.2.4) depends
only on 7,,...,7rj_1, so that, equating terms of homogeneous degree j in (4.2.4) is
equivalent to taking the term homogeneous of degree j in

qlv+ Opx[r<j (v; )|v; z,n).
We define r; to be this term of degree j. By proposition 2.2.1, we know that

ri(u,...,uj;-) is in E?::j)yo(cr,(),B”,D.) ® M3(R), or equivalently that ;i is in

S?};’;yo(a, 0,B",D.) ® M5(R), and by (2.2.7)
(4.2.7) m?;:)yo(a,o, B",D.;rejy1) < Cm?vﬁ”m(a, 0,B",D.;q)

with a constant C depending only on ‘ﬂ?;:;’o(a, 0,B”,D.;r<;). The induction assump-
tion (4.2.6) shows that C' is independent of j, and using the last inequality in (4.2.5),
and assuming that B” is taken large enough in function of C, B, ‘ﬁ?:;o(o, 0,B’,D.;q),
we obtain that the left hand side of (4.2.7) is smaller than 1. We have performed the

induction hypothesis (4.2.6) at step j + 1. This concludes the proof. O

Proof of proposition 4.2.1. — We define 1(v) by (4.2.1). Note that this is meaningful
if v € By, (po) for some large enough so and small enough py. Actually, if so > v+ %,
(i) of proposition 2.1.13 shows that for ||v||gso small enough and s > s¢

(4.2.8) 10p [r(v; vl < Csllollfro

al/j7en

Together with the implicit function theorem, this shows moreover that v is a local
diffeomorphism from a neighborhood of zero in H*(S'; R?) to a neighborhood of zero
in H*(S';R?), for any s > sg. Equality (4.2.2) follows from (4.2.4) and the definition
of 1. Let us show that (4.2.3) holds when s > so + 1. By (4.2.1) the differential of ¢
acting on a tangent vector V is given by

oY(v) -V = (Id 4 Op, [r(v;-))V + Op, [0,7(v; ) - Vv
— (1d+ Op, [g((0): )V + R(v) - V

where we used (4.2.2) and defined

(4.2.10) R(v) -V = Op, [0yr(v;-) - V]v.

(4.2.9)

From (i) of proposition 2.1.13, we have
(4.2.11) IR() - Vg < CllollzrallV [|zzso vl -
From estimate (2.1.46), we deduce

(4.2.12) [R) - Vg0 < Clloll g IVl

'U”Hs.

This implies together with (i) of proposition 2.1.13 that ¢’(v) extends as an element
of LIH*,H®) if s > sg large enough. Moreover, by duality

(4.2.13) IR o sy < Cllolli

o
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Let us compute

L9 (v)J(v) = *(Id + Op, [q(¢(v); -)])J(Id + Op, [q((v); )])
+ 'R(v)J(Id + Op, [¢(¢(v); -)])
+'(Id + Op, [q(¢(v); -))JR(v)
+'R(v)JR(v).

(4.2.14)

Since (Id + Op, [¢(¥(v);-)]) is bounded on any Sobolev space, (4.2.11) and (4.2.13)
imply that the last three terms in (4.2.14) are bounded operators from H*~! to H*
(actually from H®° to H®) if s > sg + 1, with operator norm smaller than C||v||%..

We apply to the first term in the right hand side of (4.2.14) (ii) of theorem 2.3.1,
proposition 2.3.3 and (ii), (iii) of proposition 3.1.1. This allows us to write, since
p=1+q

'(Id+Op, [q(u; -)])J (Id + Op, [q(u;-)])

(4.2.15) _ Opx[tp\/(u; DJp(u; )] + Opx[e(u; )]+ M(u)

-1,

with e € 5
M e E?;S/ (0,0, B"). By (i) of proposition 4.1.1 and (i) and (iii) of proposition 2.1.13
(in which we take in (2.1.47) ¢/ = s — 2 — §), we obtain if sp +1 < s < o + 1 that
(4.2.15) may be written J + S(u) where S(u) is a bounded operator from H*~! to
H*, with operator norm bounded from above by C||ul|5.. Setting u = ¥(v), we get

the conclusion of the proposition. O

(0,0,B”,D.) ® Ms(R) for some v/ > v, some new sequence D. and

We end this section stating a corollary of proposition 4.1.1 and 4.2.1 that will be
needed in the last chapter.

Corollary 4.2.3. — Let G'(u) be given by (4.1.4) and let v be the local diffeomor-
phism constructed in proposition 4.2.1. There are symbols

(4.2.16) Ae(vsm,n), i (v;2,m) in 8(1570(0, 0,B",D.)

for some B"” > B, satisfying

(4.2.17) AN = N, i = i

and there are sy > 0, pg > 0 and a map v — L(v), defined on Bs,(po), C* on
a neighborhood of zero in H*®(S'; R?), with values in R, with VL(u) € H* for any
s € [so+ 1,0 + 1], satisfying

(4.2.18) IVLWlz= < Cllull 7t
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such that for any v € Bs,(po)

G0 = 5 (00, T + (w510
(4.2.19) =0
£ 50D helus )+ (5 )]0, ) + L (v).
Moreover, o satisfies
(1220) 00()7*00() — Tl e 1 < Cllol

for any s € [so+ 1,0 + 1], any v in an H® neighborhood of zero.

Remark. — The above corollary states that if we set u = 9(v) in (4.1.4), the matrix-
valued symbol €2 may be replaced by a new symbol, which is a combination of I, J
with coefficients scalar symbols of order 1. The remainder L(v) has by (4.2.18) a
gradient belonging to H® when v is in H®, while the gradient of the duality brackets
in (4.2.19) is only in H*~!. In that way, we can say that the change of variables v
diagonalizes the principal part of the Hamiltonian, removing the components of €2 on
I’ and J’ in a decomposition of type (4.1.9).

Proof. — By (4.2.1) and (4.2.2)

(4.2.21) $(v) = Op, [p(¥(v); )]v
with p = I + ¢q. We plug (4.2.21) in (4.1.4), which gives using notation (4.1.5)

(4.2.22) G'(P(v)) = %(topx[pw(v); )IOp, [a' (¥ (v); )]Op, [p(¥ (v); )], v).

By (4.1.7) and the theorems of symbolic calculus (theorem 2.3.1, proposition 2.3.3
and proposition 3.1.1) we may write

‘Op,[p(u; -)]Op, @ (u; )]Op, [p(u; -)] = Op, [P (u; -)a’ (u; - )p(u; )]

(4.2.23) +Op, [e(u; )] + M (u)

where e(u;-) € S?';’;/O(O',O,BH,[)) ® M3(R) for some v/ > v, 0 > v/ + 2, and some

new sequence D., and where M € E%:;/ (0,0, B"). Define L(u,v) = (Op, [e(u; -)]v, v) +
(M (u)v,v). Tt follows from (2.1.44) and (2.1.48) that 8, L(u, v) belongs to L(H %, R)
if u,v € H® and s is large enough. The same is true for d,L(u,v) by (2.1.46)
and (2.1.48). Consequently, since we have seen in proposition 4.2.1 that ¢’'(v) is
in L(H—*, H*), we see that L(v) = L(1(v),v) satisfies (4.2.18). We deduce from
that that the contribution of e, M in (4.2.23) to (4.2.22) give the last term in (4.2.19).
By (4.1.7), the first term in the right hand side of (4.2.23) brings to (4.2.22) a contri-
bution of form L(v) (coming from the remainder in (4.1.7)) and the main term

3 > OD W) )+ s (b(0); )T, v).
k=0
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Note that for any k. =1,...,k—1
A (W(v);z,m) = A (I + Opx[r(v; Nv; z,n)
= M (v;z,m) + e (v; 2, 1)

with Ay € S(I:)’,O(a, 0, B”, D.) by proposition 2.2.1. Since A\, (¢(v);-) is also in such a
class of symbols by the same proposition, and since similar properties hold true for py,
we obtain (4.2.19). Finally, property (4.2.20) follows from (4.2.3) and the fact that
Y/(v) is invertible from H*® to H* and from H*~! to H*~! for any s € [so + 1,0 + 1]

with s¢ large enough. O



CHAPTER 5

PROOF OF ALMOST GLOBAL EXISTENCE

The aim of this chapter is to combine the results obtained so far to prove theo-
rem 1.1.1. We shall do that constructing a function O, defined on a neighborhood of
zero in the phase space H*(S';R?), equivalent to the square of the H* Sobolev norm,
and such that ©,(u(t,-)) will be uniformly controlled on a long time interval when u
is a solution to (1.2.9). We shall construct O, in several steps, using composition by
(almost) symplectic transformations.

5.1. Composition with symplectic transformations

We discuss here several composition formulas. We consider a small neighborhood
of zero in H*(S';R?), namely Bs(p) for some p > 0 small enough. Let us recall that
if F: Bs(p) — R is a C! function such that for any u € Bs(p), OF(u) € L(H®,R)
extends as an element of £(H ~* R), we may consider the gradient VF(u) and the
Hamiltonian vector field X (u) as elements of H*(S';R?). If we assume moreover
that u — Xp(u) is C* on B,(p) with values in H*, we may solve locally the differential
equation

O(1,u) = Xp(P(7,u))

(5.1.1) 200 = 1,

Let us remark that if F' is C? on Bs(p), then for any 7, D®(r,u) which is a priori an
element of L(H*®, H®), extends as an element of L(H *, H™*). Actually D® solves
the ordinary differential equation

D3(r,u) = (DXp)(®(r, u)) DD(r, u)
D®(0,u) = Id

so that we just need to show that DXp(u) = JDVF(u) is a continuous function
of u, with values in L(H *, H™*®). Note that the definition of the gradient, namely
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Jus VF(u)-Vda = DF(u)-V for any V € C*°(S';R), implies for any W € C>(S;R)
/§1 (D(VF(u))- W) - Vdx = D*F(u)(W,V)
= D?*F(u)(V,W)
_ /S (D(VF(w) V) - Wa.

We want to see that the left hand side extends continuously to W € H=* and V € H®.
This follows from the fact that such an extension holds for the right hand side, as
D(VF(u)) € L(H*, H®), since we assume that u — Xg(u) is C* on By(p).

If moreover F'(0) = 0, OF(0) = 0, for p small enough, the solution of (5.1.1) is
defined up to time 7 = 1 and xp(u) = ®(1,u) is a canonical transformation from
Bs(p) to a neighborhood of zero in H?, satisfying xr(0) = 0. If © and G are two
functions on a neighborhood of zero in H*(S'; R?), we get for u € Bs(p) for small
enough p the usual equality

(5.1.2) {©0xr,GHu) ={6,G o x5 Hxr(w).

If we assume that G is a C'! function on By(p) such that, for any k € N* Ad*F .G =
{F,Ad""'F -G} is also C' on B,(p), we have

dk
SEG(@(t ) = (-1 (AP - G)(@(t,w)
for any k € N, so that
N k 1
(5.1.3) Goxp'(u) =) A%F -G(u) + ]\1“/0 (1 —71)NAAVTE - G)(®(—7, u))dT.
P ! !

If we have moreover an estimate of type |[Ad"F - G| < CklA¥||u|/%,. for some constants

C > 0,A >0, then for p small enough, we shall get

S Ad'F
k!

(5.1.4) Goxp' (u) =
k=0

-G(u).

The above formula will apply when F' is given by an expression (Op,[a(u;-)]u,u),
with a symbol of order zero. Nevertheless, we shall have to consider also expressions
of that form involving symbols of order 1. In that case, VF(u) or Xp(u) belong
only to H*~! when u € H®. Consequently, we cannot consider (5.1.1) as an ordinary
differential equation. To avoid the resolution of (5.1.1) in that case, we shall use
instead of (5.1.2) a formula of the same type, up to a finite order of homogeneity,
and use special assumptions on O, G, F' to be able to write convenient substitute to
(5.1.3)

Remind that we defined in definition 3.3.3 the class H’ ((11;1)17]\]0 (¢) of functions
on H*(SY;R?) for sg > v+ 2 + max(gg),so > %. By proposition 3.3.4, if
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ki,ko e N*, F| € H/?};’:)’NO ), Fy € Hlél’cl;),NO(CL their Poisson bracket {Fy, Fb} is in
H/(k1+k2) No (¢) for some v/ > v depending only on v, Ny, and where ¢ = max((, ]
We shall denote by H’ Elé'i No (¢) the space of functions of form

(5.1.5) (A% u,u) + F(u)
where o € R, F € H’(l) ~,(€). Proposition 3.3.4 extends to the case when Fy €
Hl(o) Ny ), F» € H’(k) ~, (€) (k € N*) and shows that {F, F»} is in ’H'%,;;NO(C) for

some v’ > v.
From now on, we fix a large integer k. We introduce truncated Poisson brackets.

Definition 5.1.1. — Let F (resp. G) be an element of H'IVNO(C) (resp.

H'(O)N (¢)) with d € N*, v > 0,Ny € N*. Decompose F and G as sums of
homogeneous terms and assume that all components of order larger or equal to
vanish,

rk—1 k—1
(5.1.6) F(u) =Y Fi(u), Gu) = Gy(u)
k=1 k=0

We define

(5.1.7) {F.G}.= > {F.Gu}.
040 <k—1
£>1,0'>0

We obtain an element of H’ 1) No (¢) for some v/ > v. We set by induction
Ad.F -G ={F,G},

(5.1.8) . -

AdJF-G=AdF-(Ad’'F)-G.

We have for some increasing sequence v; depending only on v, Ny and for ¢; =

max((, %)
] dﬂ/j
(5.1.9) AdJF -G e H' Yy (G)-
Finally, we define
e dly Y .
(5.1.10) exp[TAdF]- G =Y —Ad,’ - F.
i=0 '

Note that by (5.1.9) and the truncation in definition (5.1.7), the coefficients of T7
vanish when j > k.

Lemma 5.1.2. — Lets € N*, Ny € N, ©(u) = £(A5 u, A u) element ofH’?g)OO( ).

Let G € H'l Ny N, (0) = o Ul,>o7‘(' n, (0) and let H € H’(liiﬁo( ). Assume that G and
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H have no component homogeneous of order greater than or equal to k. We have the
equality

(5.1.11) {exp(TAd, H)O", G}, = exp(TAd H) - {0° exp(—TAd H)} .
Remark that for fixed x, the functions in the preceding formula are well defined

when u € H® with s large enough: the regularity condition of definition 3.3.3 of the
class H’?]il)/jNo((j), namely

5 d 5 d+3j
5> V—|—§—‘r1’naX(Cj,§) = U—|—§ +max(§,%)
is satisfied for any j =1,...,k when d = 2s and s is large enough relatively to &, v.
Proof. — Since (5.1.11) is an equality between polynomials in 7', we just need to

check that all T derivatives coincide at T' = 0. Note first that
d
ﬁ{exp(TAdHH) -0Y, G} = {exp(TAd . H)Ad,.H -0°% G},
and that

A exp(TAH) - {60, exp(~TAH) - G},
= exp(TAd, H)[Ad H - {0°% exp(~TAd. H) - G},
—{0% Ad,.H - exp(~TAdH) - G},]
= exp(TAd,. H){Ad, H - 0%, exp(~TAd,.H) -G},
using the Jacobi identity
{F, Fo}, B3} + {{Fs, F3}, Fi} + {{F5, F1}, Fo} = 0.
Iterating the above two inequalities, we get for any j € N
%{exp(TAdKH) 0% G, = {exp(TAd, H)Ad,’H - 6°,G},

d?
(5-1.12) s lexp(TAd,H) {00, exp(~TAd,H) - G
= exp(TAd, H){Ad,”H - 0° exp(~TAd,H) - G} .
This shows that the two quantities (5.1.12) coincide at T = 0 and concludes the
proof. O

To write a formula similar to (5.1.2), we introduce if ©%, G, H are as in the state-
ment of the preceding lemma, the notations

67 o Xfi(u) = exp(Ad,H) - ©(u)
Go(xf) ™ (u) = exp(~Ad.H) - G(u)
so that (5.1.11) may be written at T' =1
(5.1.14) {02 o xX7, G}e = {60, G o (i)™ }u o Xy

(5.1.13)



5.1. COMPOSITION WITH SYMPLECTIC TRANSFORMATIONS 89

We shall deduce theorem 1.1.1 from the following result.

Theorem 5.1.3. — There is a large enough sy € N and Ny € N and for any s > sg
there are pg > 0 and

e A CY map F : Bs(po) — R, such that uw — VF(u) is C* from Bg(po) to
H*(SYR?) and F(0) = 0,0F(0) = 0,0VF(0) =0,

e A diffeomorphism 1 from Bg(po) to a neighborhood of 0 in H*®(S';R?) with
¥(0) =0, L

o An element H € H’(i;:]o\,oo (0),

such that if we set

(5.1.15) O,(u) = (83 o xF) 0¥~ ! o xr(u),

any solution u of (1.2.9) satisfies, as long as it exists and stays in Bg(po),
d K

(5.1.16) O (u(t, )| < Cllult,)|I5*

dt

with a uniform constant C' > 0.

Remark. — In (5.1.15) note that we use on the one hand the notation xr to denote
the canonical transformation defined after (5.1.1) from a C! map on H?® such that
u — VF(u) is also a C! map from H® to H*, and on the other hand the notation x%
defined by (5.1.13). We could not give a meaning to x g as a map from a neighborhood
of zero in H*® to H® solving an equation of form (5.1.1). Nevertheless, notation (5.1.13)
is perfectly meaningful since it involves only elements of classes H’ ?kl)' No (0) for which
the stability property with gain of one derivative of proposition 3.3.4 (i) holds.

Let us show that theorem 5.1.3 implies theorem 1.1.1. It is enough to show that
if the solution of (1.2.9) exists over some interval [0,7T] and satisfies for ¢ € [0,T],
u(t, ) € Bs(po) with a large enough s, then for any ¢ € [0, T

(5.1.17) lut, e < Cllu(0, )17 +/O lu(r, |32 dr]

with a uniform C' > 0. Actually, since [|u(0,-)||gs < Ae for some A > 0, a standard
continuation argument allows one to deduce from (5.1.17) that there is ¢ > 0 and
A" > A such that if T < ce™" and € > 0 is small enough, ||u(t,-)||g- < A’e for any
t € [0,T]. This allows one to extend the solution up to a time of magnitude ce".

Let us deduce (5.1.17) from (5.1.16). By this inequality, as long as u(t, ) stays in
Bs(pO) and t € [OvT]v

t
Os(u(t,)) < O4(u(0,-)) +C/ [u(r, ) |15 dr.
0
We just have to find some K > 0 such that for any u € Bs(pop)
(5.1.18) K7 ul[: < 0s(u) < Kllul|%-.
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Since xr and 1 are C! local diffeomorphisms sending 0 to 0, it is enough to get such
an estimate for ©% o y%,. By (5.1.13), (5.1.10) and (5.1.9), ©% o x4, — ©Y belongs to
H'?f)'j]’\}o (Cx). Definition 3.3.3 of that space and proposition 2.1.13 (in the special case
of polynomial symbols) show that

(6% o X — 62)(w)] < Clull3

if s is large enough and uw € Bs(po). Estimate (5.1.18) follows from that.
We have reduced ourselves to the proof of theorem 5.1.3. In the following three
sections we shall construct successively maps F, ¢, H involved in (5.1.15).

5.2. First reduction: elimination of low degree non diagonal terms

Let u be a solution of (1.2.9), smooth enough and defined on some interval [0, 7.
Then

%@S(u(t, ) = DOy (ult, ")) - Xa(ult,-))

(5:2.1) = {0, G}(u(t,"))
={(©% x§) o™, G o X Hxr(ult,-)))

using (5.1.15) and (5.1.2). The aim of this section is to construct F' in order to simplify
Go x;l up to a given degree of homogeneity «. By proposition 3.5.1 we may write,
using notation (3.3.1),

1 1
G(u) = 5 {Amu, u) + - (Op, [e(u; )] Tu, u)
2 4 X
(5.2.2) .
— 1(0p, e 1w ) + 5 (M () )
where e € §(117)”70
choose F in such a way that G o X;f will be given by a similar expression where all
contributions in I’ (or J) up to order k+ 1 will be removed. In that way, Gox;l will

0),M € Zzll)/(O) for some v > 0, e verifying €V = e. We want to

WV

be the sum of 2(A,,u, u), of an element of H’%l) 0(0) for some new value of v, and of
contributions vanishing at least at order x4+ 2 at zero. We shall first compute G o Xgl
for any given I’ with a convenient structure and then, in a second step, choose F' in
order to eliminate all bad terms in the expansion brought by the first step. Remind
that we denote by Bs(p) the open ball of center 0, radius p > 0 in H*(S'; R?).

Proposition 5.2.1. — One may findv > 0, symbols o, 3 € 5?1’3'0(0) satisfying &V =
a, BY = B, an element G' € H’(lig,O(O), a large enough number so > 0 and, for any
o > sg, a constant B > 0, a (v + o + 1,1)-conveniently increasing sequence D., an
element g, € 5(1,5’0(070, B, D.) @ My (R) verifying g\ = Gx, a C* function u — L(u)
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defined on Bg,(p) for some py > 0, satisfying for any s € [so, o]

VL(u) € H*(S';R?) if u € By(p) for a small enough p > 0

(5.2.3) B
IVL(w)l| - < Cllull 7t

such that if we set

(5.2.4) F(u) = (Op, [a(u; )" + B(u; ) I u, u)
we have
(625 Goxp'(u) = (A u) + Gu) + (O, (o ) + Lw)

Let us note that the map F defined by (5.2.4) satisfies VF(u) € H® if u € H?,
s € [so,0] i.e. that OF (u) extends as an element of £L(H ~* /R). This follows from
(i) and (ii) of proposition 2.1.13 if sg is large enough (see (2.1.44) and (2.1.46)).
Moreover, since F' is polynomial in u, these estimates show that « — VF(u) and
u — Xp(u) are C! maps from H*(S';R?) to H*(S!;R?). We may thus consider the
flow ®(7,u) of (5.1.1), and for u € Bs(p) with p small enough, define

(5.2.6) xr(u) = ®(1,u), Xl?l(u) =®o(—1,u).

As mentioned before the statement of the proposition, the first step of the proof will
be the computation of G o Xgl for any given F' of form (5.2.4).

Lemma 5.2.2. — Letvg >0, a,3 ¢ 5?1’3'00(0) be given with & = «, ¥ = 3. One

may find so > 0, ps, > 0,v > vy and for any o > so a constant B >0 and a (v +1+
o, 1)-conveniently increasing sequence D., a symbol g, € S(ln'; 0(0,0,B,D.) ® M2(R),
and a Ct function u — L(u) defined on Bs,(ps,), satisfying (5.2.8) such that

— Ad"F

(5.2.7) Goxp'(u) = o G + (Op, [ (u; )]u, u) + L(u).
k=0 '

Proof. — Let us show first that we may find so > 0, pp > 0, > vy and for any o > sg
a constant B’ > 0, a (0 + v + 1, 1)-conveniently increasing sequence D., a constant
C >0 and

e A sequence (gx)g>x of elements of 5(1,50(0,0, B',D.)) ® M3(R) satistfying
mb;ﬁ,o(@O,B’,D-;gk) <1,

e A sequence (Ly)>, of C'-functions on Bg,(ps, ), such that for any s € [so, 0|
there is ps > 0, Cs > 0 so that for any v € Bs(ps), VLi(u) € H® and ||V Ly (uw)| g <
ORIl
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such that for any K > &

rk—1 k K
Goxi'(u) = Y0 20 0t + 3 1 (0D [ow s )
k=0 ’ k=x
K+1 1

La—n)K
A N D ot P

We prove (5.2.8) by induction on K. By (5.1.3) with N =x —1

B _H—lAdk‘F. V(1= gyt . -
(5.29) Goxg (u)—k:O I G(u)—i—/o NCESR (Ad"F - G)(®(—T,u))dr.

The definition (5.2.4) of F' shows that F belongs to the class H(()il)'oo(()) of defini-
tion 3.3.3, and G € H(li’)’f’o(O) if vy is large enough. Proposition 3.3.4 (ii) implies
that

K 1Lv—3 1,v
Ad"F -G e H i,y ,*(1/3) CHY ,(0)

for some v > vy i.e. we may write
(5.2.10) Ad®F - G = (Op, [gx (u; -)]u, u) + (M (w)u, u)

with g, € 5(1,’50(0) ® Ms(R), M,, € Eéﬁ")(O) Let LL(u) = (M, (u)u,u). By estimates
(2.1.47) and (2.1.48) of proposition 2.1.13, if s > s large enough, VL (u) belongs to

H*(S';R?) when u € H*(S';R?), and
IVLL(W) |l < Cllull5t"

If we set L, (u) = fol(l — 7)Y M,. (), W ®(—7,u))dr, L, verifies similar properties
since D®(—7,u) € L(H %, H™*) as seen at the beginning of section 5.1. Let o > s
and choose a (v+ 140, 1)-conveniently increasing sequence D. and a positive constant

B’ such that g, € 5,7 (0,0, B, D.) © M2(R), a, 8 € S} (0,0, B/, D.) with

(5.2.11) N

(1)70(07073/7D‘;O‘I/ +ﬂ‘]/) < ]-amz’u (UvoaBlvD-;gn) < 1.

K),0
(Note that taking B’ large enough, we may always make the left hand side of the
preceding inequalities as small as we want for given a, 3, g,). It follows from (5.2.9),
(5.2.10) and the definition of L, that (5.2.8) with K = x — 1 holds true.

Let us show that (5.2.8) at rank K implies (5.2.8) at rank K + 1. Integrating by
parts the integral in (5.2.8), we get

1
1 1 <Opx [gK-l‘l(u; )}U, ’LL>
(5.2.12) (1)

L — K+t
+ /0 W{F, {Opy [grc+1(w; )]w, W) Huw=a (7 dT-
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Taking definition (5.2.4) of F' into account, we may apply to the Poisson bracket in
the above integral proposition 3.3.1. This allows us to write this bracket as

(5:213)  (Opy[grt2(w;)]w, w) + (Opy [ex o (w; )Jw, w) + (Mo (w)w, w)
where gxo2 € S(k+2),O(G,O,B/,D.) ® M3(R), and where for some 7 > v and some
new sequence D. (independents of the induction step)

et € S(it 2 0(0,0, B, D) @ Ma(R), Micy2 € L (0,0, B').
Moreover, by (3.3.4), (5.2.11) and the induction hypothesis

ml,y

(K+2)(U’07B/aD~§QK+2) <1

and by (3.3.5)

0,0
mK+2)

1,0
m(K+2)

The first term in (5.2.13) gives, when plugged in the integral (5.2.12), the last term
n (5.2.8), at order K + 1. Set

(5.2.14) Lici2(u) = (Opy [era(us )]u, u) + (Mict2(u)u, u)

By estimates (2.1.44), (2.1.46), (2.1.47), (2.1.48) of proposition 2.1.13, L., is a C*
function of u on By(ps) (for ps > 0 independent of K) such that u — VLj ,(u) is
in H*(S';R?) with an estimate

IVLic 42 (w)llzz+ < C(s)(CB") X (K + D!lul| 5.

(U7O,B/7D.;6K+2) <y
<0707B/;MK+2) S C10'

If we set L
Licsa(u) = / (1= 1) R LY (B(—7,w))dr
0

it obeys similar estimates, since we have seen after formula (5.1.1) that D®(—7,u)
extends as an element of £L(H~*, H™*) so that V(Lj ,(®(—7,u))) is in H*. We have
proved (5.2.8) at order K + 1.

To finish the proof of lemma 5.2.2, we still have to make K go to 400 in (5.2.8).
We just need to prove that for some B > B’

e There is a symbol g, € S(1 ';O(cr, 0,B,D.) ® M3(R) such that

(5.2.15) (u;z,n) Z klgk u; T, M)
o The function L(u) = Y% gy Li(u) satisfies (5.2.3),
e The integral
! (1-7)K
(5.2.16) T(Opx (951 (w3 )]w, W) |y—a(—7,u) AT
o !

goes to zero when K goes to 400 and w remains in By, (ps, )-
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Let us prove (5.2.15). Since gj, € 5(1,:)’0(0, 0,B’,D.) @ M3(R), we decompose using
definition 2.1.5

gr(u;z,m) = ngvj(u, co U T, N)
j>k
with gr; € 3, (0,0, B, D)@ Ms(R). Then gi(w;2,n) = Y5 Gij (4, - 03 2,1)
with

J
- 1
Gr,i(u1, ... ujz,n) = Z Hg;w»(ul, Ce UG T, ).
k=k
We need to check estimates (2.1.20) and (2.1.21) i.e. we have to evaluate
J 1) 2j , 1)
Z(k—f—] 1).S .2 §22](ﬁ—i‘—] 1)..
= (DR T+ G+t
We thus obtain for g, ; estimates of type (2.1.20), (2.1.21) with a new constant B =
4B'.
We must next verify that L(u) satisfies (5.2.3). This follows from the bounds

IV Ly ()| rs < CsCRE|ul/% ! satisfied by each Ly if |ul|zrs < ps small enough.
Finally, by (i) of proposition 2.1.13,

(0D, [grc+1(us )], w)| < C(CB)H ul 557 K

which shows that (5.2.16) goes to zero when K goes to infinity if ||u| gso < ps, small
enough. This concludes the proof of the lemma. O

Proof of proposition 5.2.1. — The last two terms in (5.2.7) contribute to the last two
terms in (5.2.5), for any F' of form (5.2.4). We have to show that we may find such a
F so that the sum in the right hand side of (5.2.7) may be written % (A,,u, u) + G’ (u)
with G'(u) € H’(lig,O(O) for some v, up to remainders contributing to the last two
terms in (5.2.5). Let us write
k—1 k r—1 k

A‘ILF G =G+ {F,Go}+{F.G—Go} + Ai,F
k=0 k=2

(5.2.17) G

with Go(u) = %(Amu,w. Since G — G vanishes at least at order three at zero, the
contribution to {F,G — Gy} homogeneous of degree k depends only on Fy/, k' < k.
The same is true for the last sum in (5.2.17). Consequently the expression may be
written

r—1
(5.2.18) Go+ Y _[Gr + {Fx, Go} + Hi] + Y _[Gi + Hy

k=1 kE>k
where the last sum is finite and where Hy is homogeneous of degree k + 2 and may
be expressed using iterated brackets of Fy/, ¥’ < k, and Gj.. Consequently, by

proposition 3.3.4 (ii), Hy belongs to H(II;I;(,’O(O) for some 1j. Moreover, the expression

> k>x[Gr + Hy] belongs to H(ll’;;‘l’o (0), so may be incorporated to the last two terms in
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(5.2.5), reasoning as in the study of (5.2.14), if the constants v, B of the statement of
the proposition are taken large enough. For 1 < k < x — 1 write, using decomposition
(4.1.9) of any matrix

Gk—l—Hk:G;c—l—G%

with G), € H’b’géo(()) homogeneous of degree k + 2 and

(5.2.19) G (u) = %<Opx I’ + B, Ju, )

where oy, B, € 5(1];’)’30(0) satisfy @)/ = %@Z = 3, and are homogeneous of degree k.
To reduce expression (5.2.18) to (5.2.5), we have to construct Fy, so that {Fy, Go}+GY.

~ ’
1,vy

may be written as a term (M (u)u, u) with My, € L (0) (for a new value of v/)), that
may be incorporated to GJ. In other words, we are left with proving the following
lemma: O

Lemma 5.2.3. — Let kaﬁk be as above. There are ay, i € g?,;')/60+2(0), satisfying

a) = ay, B = B and My, € 21(,:;‘,’”(0) so that

{(Op, fa(u; )T + By (us -)J Ju, w), Go}

(5.2.20) = (Opy log (us VI + B, (us )T T, u) + (M (u)u, u).

Proof. — In the proof, we omit the subscripts k in «, 3, o, 3, M. Let us take complex

coordinates (w,w) related to the real coordinates {Zl} of u € H*(S'; R?) through
2
el 28 )
w Uo 2 |1 —1i] |us
Since Op, [a(u;-)] = Op, [a(u;-)], Op, [B(u;-)] = Op, [B(u; )] we have, denoting
= ,1w.. o ,1'11)..
(5.2.22) Y(w,w; )—Q(K {w} ; ) zﬁ(K LU} ; )
the equality
1
(5.2.23) §<Opx[g(u; '+ B(u;-)J' Tu, u) = Re /S1 [Op, [v(w, ®; -)Jw]wdz.
Since

Go(u) = %(Amu,w = / (A w)wdx

st

we look for a symbol v(w,w;-) in C§?,;§60+2(0) such that

(5.2.24) {/(Opx['y(w,@;-)]w)wdx,Go} - /(Opx[l(w,ﬁ;')]w)wdx
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equals some remainder. Let us decompose

Zve ( Wy W)
¢ k—0
with 7y, € CE?,;;OO( ). We look for v as
k
(5.2.25) Yw, ;) = 7@, ..., Ww,... w).
=0 ¢ k—t

with v, € CE(()ISOJ 2( 0). Using expression (1.2.14) for the Poisson bracket in complex

coordinates, we may write the first term in (5.2.24) as

k
(5.2.26) zZ/ Li[Op, (@, ..., W,w, ..., w)w - wdz
=0 8! 0 k—¢
where Ly(-) is defined by (3.4.12) with wg = 1, w1 = -+ = wp = —l,wpy1 = --+ =

wi+1 = 1. By (i) of proposition 3.4.4, we may find v, € CE((Jk)°+2( ) and M, €

C/]b’cl)/‘/’w(()) such that (5.2.26) equals

k k
Z/Opx[lé(ﬁ,...,@,w,...,w;.)]w.wd:r+Z/[Mg(w,...,@,w,...,w)w]wdw.
=0 £=0

If we define v by (5.2.25), we get that (5.2.24) equals fﬂ(w,@)w - wdz with

Let us define

a(u;x,n) = [’y(Ku; z,n) +v(Ku;z, —n)]

| =

! [ (Ku;z,n) — (Ku;x,—n)]

B(u;x,n) = 5

We obtain elements of §?é’;60+2 (0) satisfying @" = «, 8¥ = 3 such that

1
O, [y (w, @ w - wde = Z(Op,[al’ + 87"Ju u).
Sl

Taking the real part of (5.2.24) and using (5.2.23) we have proved
1 1
5 UOp[a(us )I" + Blu; ) J'lu, u), Go} = 5(Opy[au; ) I+ Blu; ) Tu, u)

+Re / (M(Ku)w)wdz.
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Writing the last term as (M (u)u, u) for some M € E?,’S‘SH(O) we obtain (5.2.20). This
concludes the proof. O

5.3. Second reduction: elimination of higher order non diagonal part

The construction of F' performed in section 5.1 allowed us by (5.2.1) and proposi-
tion 5.2.1 to write

(31) .l ) = (600 xi) o v Goxp Hxr(ult, )

with

(5:3.2) G oxg' (u) = Go(u) + G'(u) + (Opy (g (u; -)]u, u) + L(u)

where G’ € H’gil)"o(()), and is the sum of homogeneous terms of order k =1,...,k—1,

gk € 5(1:)'70(0, 0,B,D.) ® My(R) and L satisfies (5.2.3). The goal of this section is to
choose ¥ in (5.3.1) in order to eliminate the non diagonal components of g, i.e. those
along I’ and .J’. In other words, we want to do with g, what we did in the preceding
section for components of lower degree of homogeneity, except that we do not want to
get as remainders symbols of order one, homogeneous of degree k + 1, but a symbol
of order zero, homogeneous of degree k.

By definition of H’éi')jyo(O), we may find \(u;-), u(u;-) in §(11')jo(0) satisfying \V = A,
pY =pand M € ZH;(O) such that

1 1
(5.3.3) G () = S0Py (A(w; )T + plu; ) )us w) + 5 (M (u)u, u).
Note that in the duality bracket, we may always replace Op, (A + pJ) by

1
(0P (AT + ) + '0p, (AL + )]

so that, by proposition 2.3.3, and up to a modification of v and M, we may as-

sume that AV — A\, uV + p belong to 5(01’3'70(0). In the same way, we may in (5.3.2)

replace g, by a symbol $Q(u;-) € Sgé';o(o,O?B,D.) ® M (R), satisfying 'QY — Q €
SE’S#(J,O,B,D.) ® M2(R) (for a new value of v, D.), up to a modification of L
in (5.3.2). Decomposing A, p, M as sums of homogeneous contributions Ak, pg, My,

k=1,...,k—1 we write

(5.3.4) Go(u) + G'(u) + (Op,[Ge (u; ) u, w) = G’ (u) + G (u)
with

G'(u) = % (Op, Ak (u; ) + pug (s -)J )u, u) + %(Opx[ﬂ(u; Nu, u)
(5.3.5) 1 =

G'(u) = 3 (M, (u)u, u)
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and conditions (4.1.1), (4.1.2), (4.1.3) are satisfied. Consider ¢ the local diffeomor-
phism constructed in proposition 4.2.1, and let us apply corollary 4.2.3. We write
the right hand side of (5.3.1) evaluated at w = xr(u), according to (5.3.2), (5.3.4),
(5.3.5)

(5.3.6)
{(6% 0 xip) o™ (G + ) oo™ }(w) +{(Of o xfy) 0 ™", L}H(w)
=960 o X)W (w) 0 9~ (w) 0 T 01 (8) H(w) - V[(G' + G") 0 ) (¥~H (w))
+0165 o x| (¥~ (w)) 0 0%~ (w) 0 J - VL(w).
By (4.2.20), J = 0v(v)J (0¥ (v)) + Ri(v) where Ry(v) is a map sending H*™! to
H?, with norm O(]|v||%;.). Plugging this into the first term in the right hand side of
(5.3.6), we get setting Ri(v) = 8%~ (¢(v)) Ru(v)"(99) " (4(v))
{(©2 0 Xi), (G" + ') 0 v} (w))
+0[0% o X (w)) Ry~ (w)) (VG + ) 0 g]) (4 (w)).
By assumption, 0% € H’?g;?o( ), H € H’l Don, (0) for some 19 > 0, some Ny >
0. Consequently (5.1.13), (5 1 10), (5.1. 9) 1mp1y that ©% o x4, will belong to
H'Qg)"&o(%—&-;—l) C H’2S)VJ“\);_ T (%) (for a new value 1) of 1p). By lemma 3.3.7
0[0% o x%5;] belongs to L(H*,R) and V[(G' + G’) o0 9] belongs to H*~*(S!; R?). Since
R; gains one derivative, we see that the last term in (5.3.7) belongs to H*(S';R?)

and has H*®-norm O(||w|\“+2) A similar property holds for the last term in (5.3.6),
so that (5.3.1) may be written

da
(5.3.8) dt

(5.3.7)

Os(u(t, ) = {02 o X7, (G" + G") 0w}~ (xr(ult, )
O(Jfu(t, ) II55)

when v remains in some small ball B(ps).
We express in the above formula G’ o ¢ using (4.2.19). Moreover
=
G o(v) = 5 > (Mi((0)e(v), ¥ (v).
k=1

By definition ®(v) = ¢ (v) — v satisfies |®(v)|gs < O[5t and 0®(v) extends as
an element of L(H~*, H™*) with [|0®(v)||z(g—s,m-+) < Cl|v[/F.. It follows from this
and from the remark after the proof of lemma 3.3.7 that

G op(v) = G'(v) + L(v)

where L satisfies again (5.2.3). Consequently, we may write the right hand side of
(5.3.8) as

{82 o X7, G + G (W™ (xr(ult, ) + O(ut, ) |I5E?)
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with
1 Kk—1
(o) = 5 3 0D el )T + e o)
(5.3.9) =0
50, (w3 )T + (5] )
and

I\JH

(5.3.10) - Z_:
=1

Moreover, up to a modification of the remainder, we may always assume
(03 ) + fig(v3) )Y = A (03 )] + fig(v; ) J) € S 51 (0,0, B, D.) ® Mo (R).
Summarizing the above results, we may state:

Proposition 5.3.1. — There are v > 0,50 > 0 and for any o > so a constant
B >0, a (v+0+1,1)-conveniently increasing sequence D., elements Ap(v;-), pu(v;-)
in 5(1,;')/’0(0), k=1,...,6—1, Xe, fie i1 S1 (0’ 0, B, D.) satisfying conditions (4.1.1),
(4.1.2), (4.2.17) and

(5.3.11) S\K(u;x,n) - S\Z(u;x,n),ﬂﬁ(u;m,n) + i) (usz,n) € S?H’;-gl(a 0,B,D.),

such that for any s € [so, o[ there is a local diffeomorphism 1 defined on a neighborhood
of zero By(ps) in H*(SY;R?) satisfying the following: For any H € H’1 o N (0)

(5.3.12) %@s(u(t, ) =1{0% o x5, G\ + G M o xr(u(t, ) + O(ult, )||5H?)

as long as u(t,-) exists and stays in a small enough neighborhood of zero in H®.

5.4. Third reduction: elimination of low degree diagonal terms

This last section will be devoted to the proof of the following:

Proposition 5.4.1. — Let G, G’ be given respectively by (5.3.9), (5.3.10). Set

(5.4.1) G (w) = 5 37 (Opy DN (03 )T + (s ) T, v).

There are vg > 0, Ng € Ry, 59 >0 and H € H’l o ~, (0) such that
(5.4.2) (0% x%, G + G’}K(u) =0
for any v € H*(SY;R?),s > s0.

Before starting the proof let us make some preparations. Remind that the function
09 belongs to the space H’ ), 0( ) defined by (5.1.5). Let us prove:
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Lemma 5.4.2. — Let H € H’(li')/ONO(O). Let v € Ry,s0 > 0,B > 0,D. be as in the
statement of proposition 5.3.1. Then for any s € [so, o]

(5-4.3) {62 0 X, (Opy [Nl )T + fuc (u; ) TJu, w)} = O(|[ull F22).

Proof. — We note first that if we are given dy,ds € N* ks € N* v > 0,0 > v +

% + 2Ny + 8 and Ao, uo in S?;Q;NO(J,O,B,D.), M, € L‘(i;:)’(cr,(),B), satisfying

Ay = Ao, fiy = uo the bracket

(5.4.4) <%<A§,;u, ), %<Opx Do (13 )T + iz (s )T, ) + (Mo (), w)
may be written as
(5.4.5) %(Opx[)\(u; I 4 peus ) JT]u, w) + %(M(u)u,u)

for \,v € S(d,;f_:l,;_)}]’\z;(a, (,B,D.), M € E?,:f;:)/(cr,(),é), with a new value v/ of
5 di+da
foz,

v (independent of di,ds), a new constant B, a new sequence D. and 5 =
Actually, this is a version of lemma 3.3.6, applying when the left half of bracket
(3.3.17) is given in terms of a symbol vanishing at order 0 at u = 0 instead of some
order k1 > 1. The only place in the proof of lemma 3.3.6 (and in the proofs of the
results used to demonstrate it) where the fact that k; > 0 is needed is when applying
inequality (2.1.16). Actually, this inequality allows one to gain one negative power
of 5/ + 1 and j” + 1. When studying a bracket of form (5.4.4), we have j' = k' = 0,
j" > K" = ko, and we can gain ﬁ writing in estimates of form (2.1.20), (2.1.25)

B" < ﬁ(ZB)j” i.e. replacing B by B = 2B. This allows one to get an expression
of form (5.4.5) for (5.4.4).

We have seen when obtaining (5.3.8) that ©Y o x*%; € H’?S)"j‘{,o(%“) for some vy, so
that function may be written as a multiple of (A?*u, u) plus an element of H’?f)’”]‘i,o (23—5)
The contribution of the (A*u,u) term to (5.4.3) is an expression of form (5.4.4)
with d = 2s,dy = 1, and so may be written as (5.4.5), with symbols A\, u €
S(Q’:)’?No(o, ¢,B,D.) for some v/ independent of s, ( = 228l M € E?Z;rl’” (0,0,B).
The contribution of the component of ©% o X% belonging to H’?f)yj‘\’,o(%) to the Pois-

son bracket (5.4.3) may be treated applying lemma 3.3.6, and gives contributions of

the same type.
If s > sg large enough, and s < o, it follows from (2.1.44) and (2.1.47) that (5.4.5)
is O(||ul%5?). This is the wanted conclusion. O

Before proving proposition 5.4.1, let us show that together with the preceding
lemma it implies theorem 5.1.3. According to proposition 5.3.1, inequality (5.1.16) will
follow if we prove that H may be chosen so that {69 o x%, G4 + G} (v) = O(||v||5?).
By lemma 5.4.2, such a bound holds for {09 o x%, G — G4 }(v). We may thus prove
that {02 o %, G4 4+ G'}(v) = O(||v||5t?). If H is given by proposition 5.4.1, (5.4.2)
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holds, so that we just have to check that
(5.4.6) {620 X7, Gy + G’} = {00 o X, G + G'}, = O(l[o] 7E2).
The left hand side of (5.4.6) is made of those contributions to {090 x%, G| + G’}
which are homogeneous of degree k + 2 with k& > k according to definition (5.1.7)
of the truncated bracket. As we have seen in the proof of the preceding lemma,
the first argument in the above bracket is in H’ ZS)VX,O(
G + &' defines an element of H'| ) " »(0) for some v. By (i) of proposition 3.3.4 (and
the extension of that result to con)lponents of order zero discussed in the proof of
lemma 5.4.2), (5.4.6) is a finite sum of elements of H’?;;t’o(%ﬁ'l) for some v" and for
k > k. We just have to apply (2.1.44), (2.1.47) to get (5.4.6).

To conclude the proof of our main theorem, we still need to prove proposition 5.4.1.

) for some vy. Moreover,

Proof of proposition 5.4.1. — We decompose G’l +@G’ as a sum of homogeneous terms
K—1
(5.4.7) G+ G =Y Qi) =
with Qo(v) = 5 (Amv, v> and for 1 <k <k-—1
1
(5.4.8) Qr(v) = <OPX[/\k( M p(v;) v, v) + 5 (Mi(v)v, v)
so that Q € 'H’é,’c’io( ) for some v > 0. According to (5.1.14)
(5.4.9) {62 o X7, @}, = {62, Qo (i)'}, o X

We shall construct H € H’%il)'?NO (0) for some vg, so that {©9,Q o (x%) 7'}, is zero.
This will give the wanted conclusion. By the second relation (5.1.13) and (5.1.10)

rk—1 +oo
(5.4.10) Qo AdJH - Qy

k=0 j=0
(where the j sum is actually finite). We look for H as H = Z'Z;ll H, with Hy €
H'Z;’"N (0) for some increasing vy, £ = 1,...,k — 1, Hy homogeneous of degree ¢. By

(i) of proposition 3.3.4
{HKU{H&"" 7{pr7Qk}}"'}
belongs to H’l v n, (0) for some v, with £ = ¢ + -+ + £, + k (we used again that

H'; o, NU(C ) C H’ o, ZJ\;C( 0)). Consequently the contribution homogeneous of degree k,
1<k <k-—1in (5.4.10) may be written

(5.4.11) Qr — {Hy, Qo} + Ki

where Ky, € H'éé;’fNo(O) for some increasing v}, 1 < k < k — 1, K}, depending only on
Hi,...,H;_ 1. To solve the equation

{62, Qo (X)), =0
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we just need to construct recursively Hy, k = 1,...,k—1 so that, by (5.4.10), (5.4.11)
(5.4.12) {02, Qr + Ki — {Hy, Qo}} = 0.

By definition of H’EI;I;’QNO (0), and the fact that Q, Hy are homogeneous of degree k,
we may write

(5.4.13) (Qr + Ki)(v) = <Opx[>\k( M+ e (v; ) ], 0) + %<Mk(v)v,v>

with Ay, s € S(lk')’kN (0) with A = A, i) = pig, My € E(lkg’“( ), Ay iy My being
homogeneous of degree k. The proof of proposition 5.4.1 will be complete as soon as

we shall have solved (5.4.12). This is the aim of next lemma. O

Lemma 5.4.3. — There is Ng € N and there are symbols Ay, fix, € S’l VkJFNO (0) and

operators Mk € E(ky)"+N0( ) homogeneous of degree k, with )\ = )\k, ity = [ such

that

%(Opx[)\k(v; N + pg(v;-) Jv, v) + %(Mk(v)v, v)
(5.4.14) ) ) N
- §{<OPXP\1@(U§ )M+ fig(v; -) J]v,v) + (Mg (v)v,v), Qo}

Poisson commutes with ©Y.

Proof. — We shall prove lemma 5.4.3 using the same complex coordinates system as

in section 5.2, namely
g K vi| _ @ 1 i. v '
W Vg 2 |1 —1| |ve

We do not write the index k all along the proof. Define

. — -1 |W|. : -1 |W|.
(5.4.15) y(w,w;x,n) = )\(K LJ ,x,n) + m(K L}} ,:c,n)
so that, since A = AV, u = [,
1
(5.4.16) S (Op, AW )T + (5 )], ) = Re / (Op, [y (10, ; o]
S1
Decompose

M(’l}) = Ml('l))[ + MQ(U)J +M1(U)I/ +M2(U)J/
where M;(v), M,(v) are operators acting from H*(S*;R) to itself. We define

[(w,@) = M, (K—l {

1) + ity (5 M)
D, w) = M, (K M) — MK Lﬂ)

(5.4.17)
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so that
1
(5.4.18) §(M(v)v,v> = Re / [['(w, w)w]wdz + Re / L(w, w)w]wdz.
st st
We shall look for a symbol 4(w, ®; -) and for operators I'(w, @), I'(w, @) so that

Re {/Sl [Op, (v)w]wdz + /51 [I'(w, w)w]|wdz +/ L (w, w)wwdz

St

_ {/Sl [Op,, (F)w]wdz + /Sl [T(w, w)w]|wdz + /S1 [T (w, @)w|w, QOH

Poisson commutes with ©2(w,w) = [, (AZiw)wdz. We decompose

(5.4.19)

k
Yw, ;) = 7@, ..., ww,. .. w)
£=0
k—¢
k

k—1
T'(w,w;-) = E L)(w,... ww,.. . w)
=—1 M M
41 k—t—1

with v, € 2215 n,(0), Te, Iy € C[%kl;( ). When £ is odd or k is even and £ # %, we

set 7/ = 7¢. When k is even and ¢ = § we decompose
(5.4.20) Ye(wi, ..oy wys ) = ’Yé(wh W)+ (W W )
according to (3.4.7), (3.4.8). By (3.4.10), (3.4.11) and (1.2.14)

{[ ©On i@ i wywds, | 1w
(5.421) =i (g, ... nps1)

X / [HnOOpX eIy, @, ..., 1, @, 1, w, ... I, w; )|, wjwde
Sl

!/
where Z denotes the sum over those (ng,...,ng+1) such that there is a bijection
6:{0,...,0} = {{+1,...,k+ 1} with |ng(;)| = |n;| for j =0,...,¢ and where

V4 k+1
2 2
q(noy ..., nEy1) E m?2 —|—n E (m —l—nj)s.
7=0 Jj=0+1

I
By definition of Z , this quantity vanishes on the summation, so that (5.4.21) is

identically zero, and since we want to find 7, I, T such that (5.4.19) is equal to quan-
tities that Poisson commute to ©%, we may in the left hand side of (5.4.19) replace
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by
(5.4.22) Y (w,w;) =Y A @, Ww, . ws).

We decompose in the same way I'y, I',. When k is odd or when k is even and ¢ # g we
set I =T, T/ =T,. When k is even and £ = £, we write I', = [, + I/, T, = I, + I}
with
!/ ! /

Ty(wy, . ywe) = Y Mg Ty (M, wy, ., Ty wp) T,

resp.
/
Ly(wi, . ywe) = Y Mo Dp(Ty wy, o, T i) T,

where ZI is the sum for those ng,...,ngy1 such that there is a bijection 6 :
{0,....¢0y = {{+1,....,k+ 1} (resp. 6 : {1,...,6+1} — {0, +2,....,k+1})
with |ng(j)| = |n;| for any j € {0,...,£} (resp. j € {1,...,£41}). As above,

{/ [F;(E,...,E,w,...7w)w]@dm,®2} =0

{/ L) (w, ..., 0,w,... ,w)w]wdx,@g} =0.
St —— ——
41 k—t—1

Consequently we may replace in (5.4.19) T (resp. I') by I = Z]Z:O I/ (resp. I =
E?:_il T'})). We have in this way reduced ourselves to finding 4y, I's, L', such that

/[(Ovaé’)w]ﬁdx—i—/ [Fgw]@dac—&—/ [0 wwdx
st st st

(5.4.23)
= {/sl [(Op, Fe)w]wdz + /S1 [T yw]wdz + /Sl [T w]wd, QO}

where in these expressions 7, T/ .3¢,Ty (resp. TY,T,) are computed at the argu-

ment (W, ..., W, w,...,w) (resp. (W,..., W, w,...,w)). Let us define L;[Op, (7¢)] and
—_——— —— —_——— ——
N ¢ k—t o+1 k—t—1
Ly(Ty) by (3.4.12) with w = (wp,...,wk+1) given by wo = w1 = - = wy = —1,
Wep1 = 0 = Wrp1 = 1 and Lg(Eé) by (3412) with wq, = .-+ = w1 = —1,
wo = Wepa = -+ = w1 = 1. To solve (5.4.23), we remark that since Qo(w,w) =

Jo: (Apyw)Wdz, we have by (1.2.14)
{/Sl[(opx(%))w]wdx,Qo} = i/Sl [LE(OPX(’%»IU]@(Z(E

{/S [few]wx,Qo} = Z/S [Lo(T o) w]wdz
{ /S [Lw]de’QO} =i /S [Lo(To)wlwdz
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so that we need to find 4, € Cib’;ﬂvjz“ (0), Ty € C/]%;C'TFNO (0), T, € (C]l%;;ﬁ]v‘) (0) such
that

e iL¢[Op, ()] = Opy (77)

h iLy(T¢) =T7,iLy(T,) = Y.

By (ii) and (iii) of proposition 3.4.4, we may solve the first equation (5.4.24) if we
assume that m is outside the exceptional subset N of the statement of that proposi-
tion. We get a symbol 7y if we assume that Ny has been taken larger than 2(Ny + 1).
To solve the equation involving I'y,I', we use proposition 3.4.5. We set next

Let us define
- 1 -
Mwsa,m) = 3 [3(Kusa,m) + 5(Kuw, )]

s, m) = o3, m) — 5 (Kusw, —m)

so that )
Re [ [Op, 3w, m:)ulwds = 3 (Op A1 + il ).
Sl

In the same way, if we set

M, = §[F(K”) + I'(Ku)]
M, — %mxu) —T(Ku),

we get
Re /S [F(w, myufwdr = %((Ml(u)l + V()T ), ).

Analogously, setting

we get
Re /S [C(w, m)w]wds = %((ﬂl(u)f + My (u)J u, u).
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Finally, if M(u) = My(u)l + May(u)J + M, (u)I' + My(u)J’, we see that (5.4.19)
implies the conclusion (5.4.14). This concludes the proof of the lemma. O
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