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Consider a nonlinear Klein-Gordon equation on the unit circle, with smooth data of size ǫ → 0. A solution u which, for any κ ∈ N, may be extended as a smooth solution on a time-interval ]c κ ǫ -κ , c κ ǫ -κ [ for some c κ > 0 and for 0 < ǫ < ǫ κ , is called an almost global solution. It is known that when the nonlinearity is a polynomial depending only on u, and vanishing at order at least 2 at the origin, any smooth small Cauchy data generate, as soon as the mass parameter in the equation stays outside a subset of zero measure of R * + , an almost global solution, whose Sobolev norms of higher order stay uniformly bounded. The goal of this paper is to extend this result to general Hamiltonian quasi-linear nonlinearities. These are the only Hamiltonian non linearities that depend not only on u, but also on its space derivative. To prove the main theorem, we develop a Birkhoff normal form method for quasi-linear equations.

HAMILTONIAN FORMULATION

Résumé. -Considérons une équation de Klein-Gordon non-linéaire sur le cercle unité, à données régulières de taille ǫ → 0. Appelons solution presque globale toute solution u, qui se prolonge pour tout κ ∈ N sur un intervalle de temps ]-c κ ǫ -κ , c κ ǫ -κ [, pour un certain c κ > 0 et 0 < ǫ < ǫ κ . Il est connu que de telles solutions existent, et restent uniformément bornées dans des espaces de Sobolev d'ordre élevé, lorsque la non-linéarité de l'équation est un polynôme en u nul à l'ordre 2 à l'origine, et lorsque le paramètre de masse de l'équation reste en dehors d'un sous-ensemble de mesure nulle de R * + . Le but de cet article est d'étendre ce résultat à des non-linéarités quasi-linéaires Hamiltoniennes générales. Il s'agit en effet des seules non-linéarités Hamiltoniennes qui puissent dépendre non seulement de u, mais aussi de sa dérivée en espace. Nous devons, pour obtenir le théorème principal, développer une méthode de formes normales de Birkhoff pour des équations quasi-linéaires.

CHAPTER 0 INTRODUCTION

The main objective of this paper is the construction of a Birkhoff normal forms method, applying to quasi-linear Hamiltonian equations. We use this method to obtain almost global solutions for quasi-linear Hamiltonian Klein-Gordon equations, with small Cauchy data, on the circle S 1 .

Let us first present the general framework we are interested in. Let ∆ be the Laplace-Beltrami operator on R d or on a compact manifold, and consider the evolution equation

(∂ 2 t -∆ + m 2 )v = F (v, ∂ t v, ∂ x v, ∂ t ∂ x v, ∂ 2 x v) v| t=0 = ǫv 0 ∂ t v| t=0 = ǫv 1 , (0.0.1)
where v 0 , v 1 are smooth functions, ǫ > 0 is small, F is a polynomial non-linearity with affine dependence in (∂ t ∂ x v, ∂ 2

x v), so that the equation is quasi-linear. We are interested in finding a solution defined on the largest possible time-interval when ǫ → 0+. If F vanishes at order α + 1 at the origin, local existence theory implies that the solution exists at least over an interval ]cǫ -α , cǫ -α [, if v 0 ∈ H s+1 , v 1 ∈ H s with s large enough, and that v(t, •) H s+1 + ∂ t v(t, •) H s stays bounded on such an interval. The problem we are interested in is the construction of almost global solutions, i.e. solutions defined on ]c κ ǫ -κ , c κ ǫ -κ [ for any κ.

This problem is well understood when one can make use of dispersion, e.g. when one studies (0.0.1) on R d , with v 0 , v 1 smooth and quickly decaying at infinity (for instance

v 0 , v 1 ∈ C ∞ 0 (R d ))
. When dimension d is larger or equal to three, Klainerman [START_REF] Klainerman | Global existence of small amplitude solutions to nonlinear Klein-Gordon equations in four space-time dimensions[END_REF] and Shatah [START_REF] Shatah | Normal forms and quadratic nonlinear Klein-Gordon equations[END_REF] proved independently global existence for small enough ǫ > 0. Their methods were quite different: the main ingredient of Klainerman's proof was the use of vector fields commuting to the linear part of the equation. On the other hand, Shatah introduced in the subject normal form methods, which are classical tools in ordinary differential equations. Both approaches have been combined by Ozawa, Tsutaya and Tsutsumi [START_REF] Ozawa | Global existence and asymptotic behavior of solutions for the Klein-Gordon equations with quadratic nonlinearity in two space dimensions[END_REF] to prove global existence for the same equation in two space dimensions. We also refer to [START_REF] Delort | Existence globale et comportement asymptotique pour l´équation de Klein-Gordon quasilinéaire à données petites en dimension 1[END_REF] and references therein for the case of dimension 1.

A second line of investigation concerns equation (0.0.1) on a compact manifold. In this case, no dispersion is available. Nevertheless, two trails may be used to obtain solutions, defined on time-intervals larger than the one given by local existence theory, and whose higher order Sobolev norms are uniformly bounded. The first one is to consider special Cauchy data giving rise to periodic or quasi-periodic (hence global) solutions. A lot of work has been devoted to these questions in dimension one, i.e. for x ∈ S 1 , when the non-linearity in (0.0.1) depends only on v. We refer to the work of Kuksin [START_REF] Kuksin | Nearly integrable infinite-dimensional Hamiltonian systems[END_REF][START_REF] Kuksin | Analysis of Hamiltonian PDEs[END_REF], Craig and Wayne [START_REF] Craig | Newton's method and periodic solutions of nonlinear wave equations[END_REF], Wayne [START_REF] Wayne | Periodic and quasi-periodic solutions of nonlinear wave equations via KAM theory[END_REF], and for a state of the art around 2000, to the book of Craig [START_REF] Craig | Problèmes de petits diviseurs dans les équations aux dérivées partielles[END_REF] and references therein. More recent results may be found in the book of Bourgain [START_REF] Bourgain | Green's function estimates for lattice Schrödinger operators and applications[END_REF].

The second approach concerns the construction of almost global H s -small solutions for the Cauchy problem (0.0.1) on S 1 , when the non-linearity depends only on v. In this case, small H 1 Cauchy data give rise to global solutions, and the question is to keep uniform control of the H s -norm of the solution, over time-intervals of length ǫ -κ , for any κ and large enough s. This has been initiated by Bourgain [START_REF] Bourgain | Construction of approximative and almost periodic solutions of perturbed linear Schrödinger and wave equations[END_REF], who stated a result of almost global existence and uniform control for (∂ 2 t -∂ 2 x + m 2 )v = F (v) on S 1 , when m stays outside a subset of zero measure, and the Cauchy data are small and smooth enough. A complete proof has been given by Bambusi [START_REF] Bambusi | Birkhoff normal form for some nonlinear PDEs[END_REF], Bambusi-Grébert [START_REF] Bambusi | Birkhoff normal form for partial differential equations with tame modulus[END_REF] (see also Grébert [14]). It relies on the use of a Birkhoff normal form method, exploiting the fact that when the non-linearity depends only on v, the equation may be written as a Hamiltonian system.

Let us mention that some of the results we described so far admit extensions to higher dimensions. Actually, constructions of periodic or quasi-periodic solutions for equations of type (i∂ t -∆)v = F (v) or (∂ 2 t -∆ + m 2 )v = F (v) have been performed by Eliasson-Kuksin [START_REF] Eliasson | KAM For the non-linear Schrödinger equation[END_REF] and Bourgain [START_REF] Bourgain | Green's function estimates for lattice Schrödinger operators and applications[END_REF] on higher dimensional tori. Almost global solutions for the Cauchy problem on spheres and Zoll manifolds have been obtained by Bambusi, Delort, Grébert and Szeftel [START_REF] Bambusi | Almost global existence for Hamiltonian semi-linear Klein-Gordon equations with small Cauchy data on Zoll manifolds[END_REF] for almost all values of m.

We are interested here in the Cauchy problem when the non-linearity is a function not only of v, but also of derivatives of v. Some results have been proved by Delort and Szeftel [START_REF] Delort | Long-time existence for small data nonlinear Klein-Gordon equations on tori and spheres[END_REF][START_REF] Delort | Long-time existence for semi-linear Klein-Gordon equations with small Cauchy data on Zoll manifolds[END_REF] for semi-linear non-linearities of the form F (v, ∂ t v, ∂ x v) on S d or on Zoll manifolds. For instance, it has been proved that if F is homogeneous of even order α + 1, then the solution exists over an interval of length ǫ -2α , when the mass m stays outside a subset of zero measure. Similar statements have been obtained in one space dimension for quasi-linear equations in [START_REF] Delort | Long-time Sobolev stability for small solutions of quasi-linear Klein-Gordon equations on the circle[END_REF]. Nevertheless, no result of almost global existence was known up to now, for non-linearities depending on the derivatives. This is related to the fact that, in contrast with the case of non-linearities F (v), the normal form method used to pass from a time-length ǫ -α (corresponding to local existence theory) to ǫ -2α cannot be easily iterated. Actually, for non-linearities depending only on v, the iteration may be performed using a Birkhoff normal forms approach permitted by the Hamiltonian structure. To try to obtain almost global existence for equations involving derivatives in their right hand side, it is thus natural to limit oneself to systems of the form of (0.0.1) for which the non-linearity is Hamiltonian. This obliges one to consider quasi-linear equations, as the only semi-linear non-linearities enjoying the Hamiltonian structure of theorem 1.1.1 below are those depending only on v.

The main result of this paper asserts that the quasi-linear Klein-Gordon equation on S 1 , with Hamiltonian non-linearity, admits almost global solutions for small enough, smooth enough Cauchy data, when the mass is outside a subset of zero measure (see section 1.1 for a more precise statement). The main novelty in this paper, compared with the semi-linear setting, is the introduction of a Birkhoff method adapted to quasi-linear equations. We shall describe below the idea of the method on a model case, which can be used as a road-map for the more technical approach that will be followed in the bulk of the paper. Roughly speaking, the idea is to combine the usual Birkhoff normal forms method with the strategy used to obtain quasi-linear energy inequalities (namely (para)diagonalization of the nonlinear principal symbol of the operator). The latter was used in [START_REF] Delort | Long-time Sobolev stability for small solutions of quasi-linear Klein-Gordon equations on the circle[END_REF] in the non-Hamiltonian framework. Here, as we need to preserve the Hamiltonian structure of our problem, such a diagonalization will have to be performed respecting the underlying symplectic form.

Let us describe the organization of the paper and the idea of the proof on a model problem. Chapter one is devoted to the statement of the main theorem and to the introduction of the symplectic framework. In this presentation, let us consider the symplectic form on the Sobolev space H s (S 1 ; C) (s ≥ 0)

ω 0 (c, c ′ ) = 2Im S 1 c(x)c ′ (x)dx.
If F, G are two C 1 functions defined on an open subset of H s (S 1 ; C), whose gradients belong to L 2 , we define the Poisson bracket

{F, G} = i(∂ u F ∇ ūG -∂ u G∇ ūF ).
For a given C 1 Hamiltonian G on H s (S 1 ; C), the associated evolution equation defined by its symplectic gradient is (0.0.2) u = i∇ ūG(u, ū).

Let us study as a model the case when (0.0.3) G(u, ū) = S 1

(Λ m u)ūdx + Re (a(u, ū)Λ m u)ūdx + Re x + m 2 . The associated evolution equation is

∂u ∂t = iΛ m u + i 2 [aΛ m + Λ m ā]u + i 2 [ bΛ m + Λ m b]ū + i 2 ∂a ∂ ū (Λ m u)ū + i 2 ∂ā ∂ ū (Λ m ū)u + i 2 ∂b ∂ ū (Λ m u)u + i 2 ∂ b ∂ ū (Λ m ū)ū. (0.0.4)
This equation is, if a(0) = b(0) = 0 and if u is small enough, a small perturbation of the linear hyperbolic equation ∂u ∂t = iΛ m u. Moreover, since the non-linearity involves first order derivatives, this is a quasi-linear equation.

To prove that (0.0.4), with a Cauchy data u| t=0 = ǫu 0 with u 0 ∈ H s (S 1 ; C), has a solution defined on an interval ]cǫ -κ , cǫ -κ [ for any given κ ∈ N, it is enough to prove an a priori bound Θ 0 s (u(t, •)) ≤ Cǫ 2 when |t| ≤ cǫ -κ , where (0.0.5)

Θ 0 s (u) = 1 2 Λ s m u, Λ s m u
is equivalent to the square of the Sobolev norm of u. Let us recall how such a uniform control may be obtained in the case of semi-linear equations (i.e. when the last two terms in (0.0.3) are replaced by Re S 1 a(u, ū)uūdx + Re S 1 b(u, ū)uudx). One introduces an auxiliary C 1 -function F and solves the Hamiltonian equation (0.0.6) Φ(t, u) = X F (Φ(t, u)), Φ(0, u) = u, where X F is the Hamiltonian vector field associated to F . Then χ F (u) = Φ(1, u) is a canonical transformation, defined on a neighborhood of zero in H s (S 1 , C), with χ(0) = 0, and one wants to choose F so that Θ s (u) = Θ 0 s • χ F (u) satisfies, for a given arbitrary κ,

d dt Θ s (u(t, •)) = O( u(t, •) κ+2 H s ) |Θ s (u) -Θ 0 s (u)| = O( u(t, •) 3 H s ).
(0.0.7)

These two equalities imply that, for small enough Cauchy data, u(t, •) H s stays bounded by Cǫ over an interval of time of length cǫ -κ . One wants to apply a Birkhoff method. Since by (0.0.2) u = X G (u(t, •)), one has (0.0.8)

d dt Θ 0 s • χ F (u(t, •)) = {Θ 0 s • χ F , G}(u(t, •)) = {Θ 0 s , G • χ -1 F }(χ F (u(t, •))),
and one would like to choose F so that {Θ 0 s , G • χ -1 F }(u) vanishes at order κ + 2 when u → 0. If F satisfies convenient smoothness assumptions, one may deduce from Taylor expansion that (0.0.9) G•χ -1

F (u) = κ-1 k=0 Ad k F k! •G(u)+ 1 (κ -1)! 1 0 (1-τ ) κ-1 (Ad κ F •G)(Φ(-τ, u))dτ,
where AdF • G = {F, G}. When considering semi-linear equations, one looks for F = κ-1 ℓ=1 F ℓ (u, ū), with F ℓ homogeneous of degree ℓ + 2, such that (0.0.10)

¶ Θ 0 s , κ-1 k=0 Ad k F k! • G(u) = O( u(t, •) κ+2 H s ), u → 0.
Decomposing the second argument of the above Poisson bracket in terms of increasing degree of homogeneity, one gets

G 0 + ℓ≥1 ({F ℓ , G 0 } + H ℓ ),
where G 0 (u) = S 1 (Λ m u)ūdx and where H ℓ is homogeneous of degree ℓ + 2, and depends on the homogeneous component G k of degree k of G, for k = 1, . . . , ℓ and on F 1 , . . . , F ℓ-1 . In that way, (0.0.10) can be reduced to (0.0.11) {Θ 0 s , {F ℓ , G 0 } + H ℓ } = 0, ℓ = 1, . . . , κ -1.

This homological equation can easily be solved in the semi-linear case, as soon as the parameter m in Λ m = -∂ 2

x + m 2 is taken outside a subset of zero measure, to avoid resonances.

Let us examine now the quasi-linear case, i.e. the case when G is given by (0.0.3). Equation (0.0.11) for ℓ = 1 may be written (0.0.12) {Θ 0 s , {F 1 , G 0 } + G 1 } = 0, where (0.0.13) G 1 (u, ū) = Re ( B1 (u, ū)u)udx, where Ã1 , B1 are operators depending on u, ū to be determined. We have

¶ S 1 ( Ã1 (u, ū)u)ūdx, G 0 = i S 1 [ Ã1 (u, ū)Λ m -Λ m Ã1 (u, ū)]u ūdx +i S 1 [∂ u Ã1 (u, ū) • Λ m u -∂ ū Ã1 (u, ū) • Λ m ū]u ūdx (0.0.15)
and

¶ S 1 ( B1 (u, ū)u)udx, G 0 = i S 1 [ B1 (u, ū)Λ m + Λ m B1 (u, ū)]u udx +i S 1 ([∂ u B1 (u, ū) • Λ m u -∂ ū B1 (u, ū) • Λ m ū]u)udx.
(0.0.16)

Let us try to solve (0.0.12) finding F 1 such that {F 1 , G 0 } + G 1 = 0. It would be enough to determine Ã1 , B1 such that, according to (0.0.13), (0.0.15), (0.0.16),

i[ Ã1 , Λ m ] + i∂ u Ã1 (u, ū) • (Λ m u) -i∂ ū Ã1 (u, ū) • (Λ m ū) = -a 1 (u, ū)Λ m i[ B1 Λ m + Λ m B1 ] + i∂ u B1 (u, ū) • (Λ m u) -i∂ ū B1 (u, ū) • (Λ m ū) = -b 1 (u, ū)Λ m .
(0.0.17)

Note that if Ã1 (resp. B1 ) is an operator of order α (resp. β), then

∂ u Ã1 (u, ū)•(Λ m u), ∂ ū Ã1 (u, ū) • (Λ m ū) (resp. ∂ u B1 (u, ū) • (Λ m u), ∂ ū B1 (u, ū) • (Λ m ū)
) is also of order α (resp. β), since the loss of one derivative coming from Λ m affects the smoothness of the coefficients, and not the order of the operator. On the other hand [ Ã1 , Λ m ] (resp.

[ B1 Λ m + Λ m B1 ]) is of order α (resp. β + 1). Since the right hand sides on (0.0.17) are operators of order 1, we may expect, if we can solve (0.0.17), to find Ã1 of order 1 and B1 of order zero. This would give F 1 by expression (0.0.14). Let us switch to (0.0.11) for ℓ = 2. Then H 2 will contain, because of (0.0.10), a contribution of form {F 1 , G 1 }. Denote to simplify notations

A 1 = 1 2 (a 1 (u, ū)Λ m + Λ m a 1 (u, ū)), B 1 (u, ū) = b 1 (u, ū)Λ m .
Let us compute the Poisson brackets (0.0.15), (0.0.16) with G 0 replaced by G 1 : ¶ S 1 ( Ã1 (u, ū)u)ūdx, S 1 (A 1 (u, ū)u)ūdx + 1 2 S 1 (B 1 (u, ū)u)udx + Note that since Ã1 and B 1 are of order 1, the right hand side of (0.0.18) has a structure similar to G 1 , except that the expressions which are bilinear in u or in ū are now of order 2. In other words, if we solve (0.0.12) for a quasi-linear Hamiltonian, we get in (0.0.11) with ℓ = 2 a contribution to H 2 which loses two derivatives, instead of just one. Obviously, if we repeat the process, we shall loose one new derivative at each step, which apparently ruins the method. Observe nevertheless that we can avoid such losses if, in a first attempt, we choose F ℓ in order to eliminate in (0.0.10) only those terms homogeneous of degree 1, 2, . . . , κ -1 coming from the second contribution on the right hand side of (0.0.13). In other words, we look for F 1 given by (0.0.14) with Ã1 = 0, and want to solve only the second equation in (0.0.17). As already noticed, we shall find an operator B1 of order zero. If we look at the contribution induced by this B1 at the following step, we have to consider (0.0.19), whose right hand side may be written essentially

S 1 ( Ã2 (u, ū)u)ūdx + S 1
( B2 (u, ū)u)udx + other terms where Ã2 = (B 1 + t B 1 )( t B1 + B1 ) and B2 = B1 A 1 + t A 1 B1 are of order 1. We obtain again an expression of type (0.0.14), without any loss of derivatives, and a gain on the degree of homogeneity. Of course, we have completed only part of our objective, since the b 1 contribution to (0.0.13) has been removed, but not the a 1 one. In other words, the best we may expect is to choose F in such a way that in (0.0.10) (0.0.20)

κ-1 k=0 Ad k F k! • G(u) = κ-1 k=0 G ′ k (u) + R κ (u), with G ′ 0 = G 0 and G ′ k (u) = Re S 1 (A ′ k (u, ū)u)ūdx, with A ′ k operator of order 1, homogeneous of degree k in (u, ū). The remainder R κ will be of type (0.0.21) Re S 1 (A ′ κ (u, ū)u)ūdx + Re S 1 (B ′ κ (u, u)u)udx, with A ′ κ , B ′ κ of order 1, homogeneous of degree κ.
The reduction to such a form, for the true problem we study, will be performed in section 5.2 of the paper.

The next step is to eliminate in (0.0.21) the B ′ κ contribution. We cannot repeat the preceding method, as it would induce another remainder of the same type, with an higher degree of homogeneity. Instead, we shall use a diagonalization process. When one wants to obtain an energy inequality for an equation of type (0.0.4), the bcontributions of the right hand side already cause trouble. Actually, if one multiplies (0.0.4) by Λ 2s m ū, integrates on S 1 and takes the real part, the contributions coming from the a-term is controlled by some power of u H s , since it may be written in terms of the commutator [a + ā, Λ m ]. On the other hand, the contribution coming from b cannot be expressed in such a way, and loses one derivative. The way to avoid such a difficulty is well-known: one writes the system in (u, ū) corresponding to equation (0.0.4), diagonalizes the principal symbol of the right hand side, and performs the energy method on the diagonalized system. We adapt here a similar strategy to the Hamiltonian framework: We look for a change of variable close to zero in

H s , (v, v) → (u = ψ(v), ū = ψ(v)), to transform (0.0.21) into (0.0.22) Re S 1 (A ′′ κ (v, v)v)vdx,
where A ′′ κ is an operator of order 1. This is done looking for ψ(v) = (Id + R(v, v))v, where R is some operator, determined by a symbol diagonalizing the principal symbol of the Hamiltonian equation associated to (0.0.20). Since we need to preserve the Hamiltonian structure, i.e. to construct ψ as an (almost) canonical transformation, this diagonalization has to be performed in an (almost) symplectic way. The argument is given in section 5.3, using the results obtained in chapter 4 concerning symplectic reductions. To exploit this, we shall consider instead of Θ s

(u) = Θ 0 s • χ F (u) in (0.0.7), (0.0.8) a quantity Θ s (u) = Θ 1 s • ψ -1 • χ F (u)
, for some Θ 1 s that will be chosen later on. Then (0.0.10) has to be replaced by

(0.0.23) ¶ Θ 1 s • ψ -1 , κ-1 k=0 Ad k F k! • G = O( u κ+2 H s ). Because of (0.0.20), this is equivalent to ¶ Θ 1 s • ψ -1 , κ-1 k=0 G ′ k (u) + R κ (u) = O( u κ+2 H s )
, and since ψ is canonical, this is also equivalent to

(0.0.24) ¶ Θ 1 s , κ-1 k=0 G ′ k (ψ(v)) + R κ (ψ(v)) = O( v κ+2 H s ). The remainder R κ (ψ(v)
) is given by (0.0.22). Since Θ 1 s will be constructed under the form (Ω(v, v)v)vdx, where Ω is a self-adjoint operator of order 2s, {Θ 1 s , R κ (ψ(v))} will be seen to be controlled by the right hand side of (0.0.24) (again, the structure of Θ 1 s and of (0.0.22) allows one to express the Poisson bracket from a commutator [Ω, A ′′ κ ] of order 2s, vanishing at order κ at v = 0). Similar statements hold for

G ′ k (ψ(v)) -G ′ k (v), so that (0.0.24) is equivalent to (0.0.25) ¶ Θ 1 s , κ-1 k=0 G ′ k (v) = O( v κ+2 H s
). We are reduced to finding Θ 1 s (v), equivalent to v 2 H s for small v's, such that (0.0.25) holds when all G ′ k are of type Re S 1 (A ′ k (v, v)v)vdx. If we look for Θ 1 s = Θ s 0 • χ H , for some auxiliary function H, we get formally by (0.0.9), (0.0.10), that (0.0.25) is equivalent to

(0.0.26) ¶ Θ 0 s , κ-1 k=0 Ad k H k! • G ′ = O( v κ+2 H s ).
with

G ′ = κ-1 k=0 G ′ k (v).
As in (0.0.11), (0.0.12), this equality may be reduced to a family of homological equations, the first one being (0.0.27)

{Θ 0 s , {H 1 , G ′ 0 } + G ′ 1 } = 0.
The gain in comparison to (0.0.12), (0.0.13), is that

G ′ 1 is given by Re S 1 (A ′ 1 (v, v)v)vdx, i.e. does not contain any component in S 1 (B ′ 1 (v, v)v)vdx. If one looks for some H 1 of type Re S 1 ( Ã′ 1 (v, v)v)vdx,
with Ã′ 1 of order 1, all Poisson brackets involved in (0.0.27) may be expressed from commutators, so that the overall order never increases. In particular, the second homological equation may be written

{Θ 0 s , {H 2 , G ′ 0 } + G′ 2 } = 0, where G′
2 is given in terms of G ′ 2 and of the Poisson brackets of H 1 , G 1 , and so is still of the form Re S 1 (A ′ 2 (v, v)v)vdx with A ′ 2 of order 1. In other words, the reduction performed in the first two steps of the proof made disappear the terms of higher order in (0.0.18). In that way, one determines recursively H 1 , H 2 ,. . . , all of these functions being expressed from quantities Re S 1 (A ′ j (v, v)v)vdx with A ′ j of order 1. There is nevertheless a technical difficulty in the implementation of this strategy: it turns out that one cannot define the canonical transformation χ H from some Hamiltonian H, as the value at time 1 of the solution of (0.0.6) (with F replaced by H). Actually, since H is given in terms of quantities S 1 ( Ã′ (v, v)v)vdx, with Ã′ an operator of order 1, X H (v) is given by an operator of order 1 acting on v, so that Φ(t, v) = X H (Φ(t, v)) is no longer an ordinary differential equation. We get around this difficulty in section 5.3, defining a substitute to χ H in terms of expressions involving finitely many Poisson brackets, which allows us to proceed as described above, without constructing the flow of X H .

Let us conclude this introduction with some more technical details. As explained above, our quasi-linear Birkhoff normal forms method uses Hamiltonians given by expressions of form S 1 (A(u, ū)u)ūdx, S 1 (B(u, ū)u)udx, where A, B are operators depending on u, ū. Chapters 2 and 3 are devoted to the construction of the classes of operators that we need. These are para-differential operators on S 1 , whose symbols depend multilinearly on u, ū. Such classes have been already introduced in [START_REF] Delort | Long-time Sobolev stability for small solutions of quasi-linear Klein-Gordon equations on the circle[END_REF] (see also [START_REF] Delort | Long-time existence for small data nonlinear Klein-Gordon equations on tori and spheres[END_REF]). We have to modify here their definition for the following technical reason. When one uses a Birkhoff normal form method in the semi-linear case, one does not need to know much about the structure of the remainder given by the integral in (0.0.9). On the other hand, for quasi-linear problems, we need to be able to write for the remainder a quite explicit expression, of the form of (0.0.21). It is not clear how to do so from the integral expression in (0.0.9), as it involves the flow Φ of X F . To overcome this difficulty, we use instead of (0.0.9) a full Taylor expansion of

G • χ -1 F . The remainder is then +∞ κ Ad k F k!
• G(u), and we need estimates to make converge the series. Since F, G are expressed in terms of para-differential operators, we have to introduce classes of symbols a k (u, ū; x, n), which vanish at order k at u = 0, and are controlled by C k k! u k H s . Each a k is itself an infinite sum of the type j≥k a j k (u, ū; x, n), where a j k is homogeneous of degree j in (u, ū) and satisfies bounds of the form B j k! (For technical reasons, the actual (j, k)-dependence of our bounds will be more involved than that). The construction of these classes of symbols, the study of their symbolic calculus and of the Poisson brackets of functions defined in terms of the associated operators, occupies chapters 2 and 3 of this paper.

Finally, let us mention that an index of notations is provided at the end of the paper.

CHAPTER 1 ALMOST GLOBAL EXISTENCE

Statement of the main theorem

Let H(x, X, Y ) be a polynomial in (X, Y ) with real coefficients which are smooth functions of x ∈ S 1 . Assume that (X, Y ) → H(x, X, Y ) vanishes at least at order 3 at zero. Let m ∈]0, +∞[. For s a large enough real number, (v 0 , v 1 ) an element of the unit ball of

H s+ 1 2 (S 1 ; R)×H s-1 2 (S 1 ; R), ǫ ∈]0, 1[, consider the solution (t, x) → v(t, x) defined on [-T, T ] × S 1 for some T > 0 of the equation (∂ 2 t -∂ 2 x + m 2 )v = ∂ ∂x ∂H ∂Y (x, v, ∂ x v) - ∂H ∂X (x, v, ∂ x v) v| t=0 = ǫv 0 ∂ t v| t=0 = ǫv 1 . (1.1.1)
The right hand side of the first equation in (1.1.1) is a quasi-linear non-linearity. Its special form will allow us to write (1.1.1) as a Hamiltonian equation in section 1.2 below. Note that the only semi-linear non-linearities of the form of the right hand side of (1.1.1) are those depending only on v. Our main result is:

Theorem 1.1.1.
-There is a subset N ⊂]0, +∞[ of zero measure and, for any H as in (1.1.1), for any m ∈]0, +∞[-N , for any κ ∈ N, there is s 0 ∈ N such that for any integer s ≥ s 0 , there are ǫ 0 ∈]0, 1[, c > 0, satisfying the following: For any ǫ ∈]0, ǫ 0 [, for any pair

(v 0 , v 1 ) in the unit ball of H s+ 1 2 (S 1 ; R) × H s-1 2 (S 1 ; R), equation (1.1.1) has a unique solution v, defined on ] -T ǫ , T ǫ [×S 1 with T ǫ ≥ cǫ -κ ,
and belonging to the space

C 0 b (] -T ǫ , T ǫ [, H s+ 1 2 (S 1 ; R)) × C 1 b (] -T ǫ , T ǫ [, H s-1 2 (S 1 ; R)) (where C j b (] -T ǫ , T ǫ [, E
) denotes the space of C j functions on the interval ] -T ǫ , T ǫ [ with values in the space E, whose derivatives up to order j are bounded in E uniformly on ] -T ǫ , T ǫ [).

Remarks. -As pointed out in the introduction, when ∂H ∂Y ≡ 0 theorem 1.1.1 is well-known. It is stated in Bourgain [START_REF] Bourgain | Construction of approximative and almost periodic solutions of perturbed linear Schrödinger and wave equations[END_REF] and a complete proof has been given by Bambusi [START_REF] Bambusi | Birkhoff normal form for some nonlinear PDEs[END_REF], Bambusi-Grébert [START_REF] Bambusi | Birkhoff normal form for partial differential equations with tame modulus[END_REF] (see also the lectures of Grébert [START_REF] Grébert | Birkhoff normal form and Hamiltonian PDEs[END_REF]).

-Results involving a semi-linear non-linearity depending also on first order derivatives (i.e. equation (1.1.1) in which the right hand side is replaced by f (v, ∂ t v, ∂ x v)) have been obtained by Delort and Szeftel [START_REF] Delort | Long-time existence for small data nonlinear Klein-Gordon equations on tori and spheres[END_REF][START_REF] Delort | Long-time existence for semi-linear Klein-Gordon equations with small Cauchy data on Zoll manifolds[END_REF], included for equations on S d , (d ≥ 1) instead of S 1 . One obtains then a lower bound for the existence time in terms of some non-negative power of ǫ -better (when convenient assumptions are satisfied) than the one given by local existence theory -depending on the order of vanishing of the non-linearity at zero. In particular, one does not get almost global solutions for such non-linearities. For some examples of polynomial non-linearities depending on v and its first order derivatives, the lower bound of the existence time given by local existence theory (namely T ǫ ≥ cǫ -a when v vanishes at order a + 1 at zero) is even optimal.

-In the same way, for more general quasi-linear equations than (1.1.1), it is shown in [START_REF] Delort | Long-time Sobolev stability for small solutions of quasi-linear Klein-Gordon equations on the circle[END_REF] that the existence time is bounded from below by cǫ -2a when the non-linearity vanishes at some even order a + 1 at zero.

-The proofs of the almost global existence results of Bourgain, Bambusi, Bambusi-Grébert refered to above rely in an essential way on the fact that the equation under consideration may be written as a Hamiltonian system. This is also the key to extend these lower bounds on the time of existence of solutions to the case of equations on S d , as in Bambusi, Delort, Grébert and Szeftel [START_REF] Bambusi | Almost global existence for Hamiltonian semi-linear Klein-Gordon equations with small Cauchy data on Zoll manifolds[END_REF]. In our problem (1.1.1), we shall use the special form of the non-linearity to write the equation as a Hamiltonian system.

Hamiltonian formulation

We shall describe here the Hamiltonian formulation of our problem. Let us introduce some notation. Set (1.2.1)

J = ñ 0 -1 1 0 ô , and if Z, Z ′ are two L 2 -functions on S 1 with values in R 2 , define (1.2.2) ω 0 (Z, Z ′ ) = t JZ, Z ′ = Z, JZ ′
where •, • stands for the L 2 (S 1 ; R 2 ) scalar product. Let s ≥ 0, U be an open subset of H s (S 1 ; R 2 ) and F : U → R be a C 1 map. Assume that for any u ∈ U , dF (u) extends as a bounded linear map on L 2 (S 1 ; R 2 ). We define then X F (u) as the unique element of L 2 (S 1 ; R 2 ) such that for any

Z ∈ L 2 (S 1 ; R 2 ) (1.2.3) ω 0 (X F (u), Z) = dF (u) • Z.
In an equivalent way

(1.2.4) X F (u) = J∇F (u).
If G : U → R is another function of the same type, we set

(1.2.5) {F, G} = dF (u) • X G (u) = dF (u)J∇G(u).
Let us rewrite equation (1.1.1) as a Hamiltonian system. Set

(1.2.6) Λ m = -∆ + m 2 on S 1 . If v solves (1.1.1), define (1.2.7) u(t, x) = ñ Λ -1/2 m ∂ t v Λ 1/2 m v ô = ñ u 1 u 2 ô . For u ∈ H s (S 1 ; R 2 ) with s > 1 set (1.2.8) G(u) = 1 2 Λ m u, u + S 1 H(x, Λ -1/2 m u 2 , ∂ x Λ -1/2 m u 2 )dx. By (1.2.7), (1.2.8), equation (1.1.1) is equivalent to ∂ t u = X G (u) u| t=0 = ǫu 0 (1.2.9) where u 0 (t, x) = ñ Λ -1/2 m v 1 Λ 1/2 m v 0 ô is in H s (S 1 ; R 2 ).
To prove theorem 1.1.1, it is enough to get a priori uniform bounds for the Sobolev norm u(t, •) H s when s is large enough. We shall do that designing a Birkhoff normal forms method adapted to quasi-linear Hamiltonian equations.

Let us end this section writing equation (1.2.9) in complex coordinates. We identify

H s (S 1 ; R 2 ) to H s (S 1 ; C) through the map (1.2.10) u = ñ u 1 u 2 ô → w = √ 2 2 [u 1 + iu 2 ].
More precisely, we identify H s (S 1 ; R 2 ) to the submanifold

{w 1 = w 2 } inside the product H s (S 1 ; C) × H s (S 1 ; C) through (1.2.11) u = ñ u 1 u 2 ô → ñ w = √ 2 2 [u 1 + iu 2 ] w = √ 2 2 [u 1 -iu 2 ] ô . If we set for a real C 1 function F defined on an open subset U of H s (S 1 ; R 2 ) d w F = √ 2 2 (d u 1 F -id u 2 F ), d w F = √ 2 2 (d u 1 F + id u 2 F ) ∇ w F = √ 2 2 (∇ u 1 F -i∇ u 2 F ), ∇ w F = √ 2 2 (∇ u 1 F + i∇ u 2 F ) (1.2.12)
we see that the identification (1.2.11) sends

∇ u F to ñ ∇ w F ∇ w F ô and X F (u) to i ñ ∇ w F -∇ w F ô . If Z = ñ c cô and Z ′ = ñ c ′ c′ ô are two vector fields tangent to {w 2 = w 1 } in H s (S 1 ; C) × H s (S 1 ; C), the symplectic form coming from ω 0 through (1.2.11), computed at (Z, Z ′ ), is given by (1.2.13) ω 0 (Z, Z ′ ) = 2Im S 1 c(s)c ′ (x)dx.
Moreover, if F and G are two C 1 functions on U , whose differentials extend to bounded linear maps on L 2 (S 1 ; R 2 ), we have

{F, G} = [d w F d w F ] ñ i∇ w G -i∇ w G ô = i(d w F • ∇ w G -d w F • ∇ w G). (1.2.14)
Finally, if G is a C 1 function on U , the Hamiltonian equation u = X G (u) may be written in complex coordinates (1.2.15) ẇ = i∇ w G(w, w).

CHAPTER 2 SYMBOLIC CALCULUS

We shall introduce in this chapter classes of symbols of para-differential operators in the sense of Bony [START_REF] Bony | Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires[END_REF]. These symbols will be formal power series of multilinear functions on C ∞ (S 1 ; R 2 ), the general term of theses series obeying analytic estimates that will ensure convergence on a neighborhood of zero in a convenient Sobolev space.

Multilinear para-differential symbols and operators

Let us introduce some notations. If a : Z → C is a function, we define the finite difference operator (2.1.1)

∂ n a(n) = a(n) -a(n -1), n ∈ Z.

Its adjoint, for the scalar product

+∞ n=-∞ a(n)b(n), is (2.1.2) ∂ * n a(n) = -(∂ n a)(n + 1) = -τ -1 • ∂ n a(n)
where for j, n ∈ Z we set τ j b(n) = b(nj). We have

∂ * n [a(-n)] = (∂ n a)(-n) ∂ n [ab] = (∂ n a)b + (τ 1 a)(∂ n b). (2.1.3)
Let us remark that the second formula above may be written

∂ n [ab] = (∂ n a)b + a(∂ n b) -(∂ n a)(∂ n b).
We generalize this expression to higher order derivatives in order to obtain a Leibniz formula.

Lemma 2.1.1. -For any integer β ∈ N, there are real constants ‹ C β β1,β2,β3 , indexed by integers β 1 , β 2 , β 3 satisfying

β 1 + β 2 = β, 0 ≤ β 3 ≤ β, such that for any functions a, b from Z to C, any β ∈ N * ∂ β n [ab] = (∂ β n a)b + a(∂ β n b) + β1>0,β2>0 β1+β2=β 0≤β3≤β ‹ C β β1,β2,β3 (1 -τ 1 ) β3 ∂ β1 n a ∂ β2 n b . (2.1.4) Proof. -For β ∈ N, β 1 ≤ β 2 denote by C β1,β2 β the value at X = -1 of (2.1.5) (-1) β1+β2 (X β1 ∂ β1 X )(X β2 ∂ β2 X ) β 1 !β 2 ! [(1 + X) β ].
When

β 1 > β 2 , set C β1,β2 β = C β2,β1 β . Let us show that ∂ β n [ab] = β1≥0 β2≥0 C β1,β2 β (∂ β1 n a)(∂ β2 n b).
Since by definition C β1,β2 β = 0 when β 1 + β 2 < β and when β 1 > β or β 2 > β, the sum in the above expression is actually for

β ≤ β 1 + β 2 , β 1 ≤ β, β 2 ≤ β. By (2.1.1), Id -∂ n = τ 1 , so that ∂ β n [ab] = [Id -τ 1 ] β (ab) = β β ′ =0 Ç β β ′ å (-1) β ′ τ β ′ 1 [ab] = β β ′ =0 Ç β β ′ å (-1) β ′ (τ β ′ 1 a)(τ β ′ 1 b) whence ∂ β n [ab] = β β ′ =0 β ′ β1=0 β ′ β2=0 (-1) β ′ +β1+β2 Ç β β ′ åÇ β ′ β 1 åÇ β ′ β 2 å (∂ β1 n a)(∂ β2 n b) = β1 β2 C β1,β2 β (∂ β1 n a)(∂ β2 n b) (2.1.6) with C β1,β2 β = (-1) β1+β2 max(β1,β2)≤β ′ ≤β (-1) β ′ Ç β β ′ åÇ β ′ β 1 åÇ β ′ β 2 å . Since X β2 ∂ β2 X [(1 + X) β ] = β2≤β ′ ≤β β β ′ β ′ ! (β ′ -β2)! X β ′ , this coefficient is the value at X = -1 of (2.1.5). In (2.1.6), we have 0 ≤ β 1 ≤ β, 0 ≤ β 2 ≤ β, β 1 + β 2 ≥ β. When β 1 + β 2 > β, we write ∂ β1 n a∂ β2 n b = [(Id -τ 1 ) β1+β2-β ∂ β-β2 n ]a (∂ β2 n b
) which shows that the corresponding contributions to (2.1.6) may be written as one of the terms on (2.1.4), up to a change of notations. When β 1 + β 2 = β, we get the first two terms of the right hand side of (2.1.4) when β 1 = 0 or β 2 = 0 and contributions to the sum in that formula. This concludes the proof.

For n ∈ Z, we denote by θ n (x) the function on S 1 defined by (2.1.7) θ n (x) = e inx √ 2π and for α ∈ Z and x = 0 mod 2π we put

(2.1.8) θ n,α (x) = θ n (x) (1 -e -ix ) α . When α ∈ Z, β ∈ N we have (2.1.9) ∂ β n θ n,α = θ n,α-β . If u ∈ L 2 (S 1 ; R) (resp. u ∈ L 2 (S 1 ; R 2 )) we set û(n) = S 1 e -inx u(x) dx and Π n u = S 1 u(y)θ -n (y)dyθ n (x) = û(n) e inx 2π
the orthonormal projection on the subspace of

L 2 (S 1 ; C) (resp. L 2 (S 1 ; C 2 )) spanned by θ n (resp. θ n ñ 1 0 ô and θ n ñ 0 1 ô ).
Let us introduce some notations and definitions. Let (x, n) → a(x, n), (x, n) → b(x, n) be two C ∞ functions on S 1 × Z. By formula (2.1.4) and the usual Leibniz formula for ∂ x -derivatives, there are real constants ‹

C α,β α ′ ,β ′ ,γ indexed by α, β ∈ N, α ′ , β ′ , γ ∈ N with 0 ≤ α ′ ≤ α, 0 ≤ β ′ ≤ β, 0 ≤ γ ≤ β, 0 < α ′ + β ′ < α + β such that for any a, b as above, any α, β ∈ N ∂ α x ∂ β n [ab(x, n)] = (∂ α x ∂ β n a)b + a(∂ α x ∂ β n b) + 0≤α ′ ≤α 0≤β ′ ≤β 0≤γ≤β 0<α ′ +β ′ <α+β ‹ C α,β α ′ ,β ′ ,γ [(Id -τ 1 ) γ (∂ α ′ x ∂ β ′ n a)](∂ α-α ′ x ∂ β-β ′ n b).
(2.1.10)

We shall fix some C ∞ 0 (R) functions χ, χ, χ 1 with 0 ≤ χ, χ, χ 1 ≤ 1, with small enough supports, identically equal to one close to zero. We denote by C • (χ 1 ) a sequence of positive constants such that for any n ∈ Z, any λ ∈ R, any γ ∈ N

∂ γ n χ 1 λ n ≤ C γ (χ 1 ) n -γ .
Moreover, we define from χ the kernel (2.1.12)

|∂ γ n K n (z)| ≤ C γ,M (χ) n 1-γ (1 + n |z|) -M . Definition 2.1.2.
-Let Υ, M ∈ R + be given. We say that a sequence (D p ) p∈N of positive constants is a "(Υ, M )-conveniently increasing sequence" if (D p ) p∈N is an increasing sequence of real numbers with D 0 ≥ 1, satisfying the following three inequalities: For any p ∈ N, for any α, β ∈ N with α + β = p,

(2.1.13) 2 p 0≤α ′ ≤α 0≤β ′ ≤β 0≤γ≤β 0<α ′ +β ′ <p ‹ C α,β α ′ ,β ′ ,γ (2 p ) Υ+pM D α ′ +β ′ D p-α ′ -β ′ ≤ D p , (2.1.14) 0<β ′ <β 0≤γ≤β ‹ C α,β α,β ′ ,γ (4 p ) Υ+pM C β-β ′ (χ 1 )D α+β ′ ≤ D p , (2.1.15) 0<β ′ ≤β 0≤γ≤β ‹ C α,β 0,β ′ ,γ (4 p ) p [C β ′ ,2 (χ) + C β ′ ,2 ( χ)]D p-β ′ ≤ D p .
Note that since the left hand side of the above three equations depends only on D 0 , . . . , D p-1 , we may always construct a conveniently increasing sequence whose terms dominate those of a given sequence.

We shall use several times that if j ′ , j ′′ , k ′ , k ′′ are in N * ,

(k ′ + j ′ -1)! (j ′ + 1)! (k ′′ + j ′′ -1)! (j ′′ + 1)! ≤ (k ′ + k ′′ + j ′ + j ′′ -2)! (j ′ + 1)(j ′ + j ′′ )!(j ′′ + 1) ≤ 1 (j ′ + 1)(j ′′ + 1) (k ′ + k ′′ + j ′ + j ′′ -1)! (j ′ + j ′′ + 1)! .
(2.1.16)

We set for j ∈ N, c 1 (j) = 1 8(π+1) 1 1+j 2 , so that for any j ∈ Z, c 1 * c 1 (j) ≤ c 1 (j). For K 0 a constant that will be chosen later on large enough, we put c(j) = K -1 0 c 1 (j). Then for any j ∈ Z (2.1.17) 1.18) which are j-linear and symmetric in (u 1 , . . . , u j ), such that there is a constant C > 0 so that for any u 1 , . . . , u j ∈ C ∞ (S 1 ; R 2 ), any n 1 . . . , n j ∈ Z,

c * c(j) ≤ K -1 0 c(j). Definition 2.1.3. -Let d ∈ R, ν ∈ R + , ζ ∈ R + , σ ∈ R with σ ≥ ν + ζ + 2, j, k ∈ N * , j ≥ k, N 0 ∈ N, B ∈ R * + , D • = (D p ) p∈N a (ν +|d|+σ, N 0 +1)-conveniently increasing sequence. We denote by Σ d,ν (k,j),N0 (σ, ζ, B, D • ) the set of all maps (u 1 , . . . , u j ) → ((x, n) → a(u 1 , . . . , u j ; x, n)) C ∞ (S 1 ; R 2 ) j → C ∞ (S 1 × Z; C) (2.
(2.1.19) a(Π n1 u 1 , . . . , Π nj u j ; x, n) ≡ 0 if max |n ℓ | > 1 4 |n|,
and for any p ∈ N, any

σ ′ ∈ [ν + ζ + 2, σ], any (x, n) ∈ S 1 × Z sup α+β=p |∂ α x ∂ β n a(Π n1 u 1 , . . . , Π nj u j ; x, n)| ≤ C (k + j -1)! (j + 1)! c(j)D p B j n d-β+(α+ν+N0β-σ ′ )+ j ℓ=1 n ℓ σ ′ Π n ℓ u ℓ L 2 , (2.1.20)
and for any ℓ = 1, . . . , j

sup α+β=p |∂ α x ∂ β n a(Π n1 u 1 , . . . , Π nj u j ; x, n)| ≤ C (k + j -1)! (j + 1)! c(j)D p B j n d-β+α+ν+N0β+σ ′ × 1≤ℓ ′ ≤j ℓ ′ =ℓ n ℓ ′ σ ′ Π n ℓ ′ u ℓ ′ n ℓ -σ ′ Π n ℓ u ℓ L 2 .
( -When N 0 = 0, the above inequalities define a class of para-differential symbols: by (2.1.20), if u 1 , . . . , u j belong to some Sobolev space H s , then the symbol a(u 1 , . . . , u j ; x, n) obeys estimates of pseudo-differential symbols as long as the number of x-derivatives is smaller than s -1 2ν. For higher order derivatives, one loses a power of n . Moreover (2.1.21) shows that if one of the u ℓ is in a Sobolev space of negative index H -s , one gets estimates of symbols of order essentially d + s, with a loss of one extra power for each ∂ x -derivative.

-The precise form of the factors (k+j-1)! (j+1)! in the above definitions is not essential. The important fact is that these quantities are bounded by k! (times a power k + j of some fixed constant). For u ∈ H s , with s large enough and u H s small enough, this will allow us to make converge the sum in j ≥ k of such quantities, and to obtain bounds in C k k! u k H s i.e. bounds verified by the derivatives at zero of an analytic function defined on a neighborhood of zero.

We shall define below other classes of symbols given by infinite series whose general terms will be given from elements of Σ d,ν (k,j),N0 (σ, ζ, B, D • ). We shall need precise dependence of the constants in (2.1.20), (2.1.21) in j, k to obtain convergence of these series. But we shall also use polynomial symbols, defined as finite sums, for which explicit dependence of the constants is useless. Because of that we introduce another notation.

Definition 2.1.4. -Let d ∈ R, ν, ζ ∈ R + , N 0 ∈ N, j ∈ N.
We denote by Σ d,ν (j),N0 (ζ) the space of j-linear maps (u 1 , . . . , u j ) → ((x, n) → a(u 1 , . . . , u j ; x, n)) defined on C ∞ (S 1 ; R 2 ) j with values in C ∞ (S 1 × Z; C) satisfying the following conditions:

• For any n 1 , . . . , n j , n with max

|n ℓ | > 1 4 |n|, for any u 1 , . . . , u j in C ∞ (S 1 ; R 2 ), (2.1.24)
a(Π n1 u 1 , . . . , Π nj u j ; x, n) ≡ 0.

• For any α, β ∈ N, any σ ≥ ν + ζ + 2, there is a constant C > 0 such that for any n 1 , . . . , n j , n ∈ Z, any x ∈ S 1 , any u 1 , . . . , u j in C ∞ (S 1 ; R), (2.1.25)

|∂ α x ∂ β n a(Π n1 u 1 , . . . , Π nj u j ; x, n)| ≤ C n d-β+(α+ν+N0β-σ)+ j ℓ=1 n ℓ σ Π n ℓ u ℓ L 2 ,
and for any ℓ = 1, . . . , j

|∂ α x ∂ β n a(Π n1 u 1 , . . . , Π nj u j ; x, n)| ≤C n d-β+α+ν+N0β+σ × 1≤ℓ ′ ≤j ℓ ′ =ℓ n ℓ ′ σ Π n ℓ ′ u ℓ ′ n ℓ -σ Π n ℓ u ℓ L 2 .
(2.1.26)

Let us now define from the preceding classes symbols depending only on one argument u.

Definition 2.1.5. -Let d ∈ R, ν, ζ ∈ R + , N 0 ∈ N, σ ∈ R, σ ≥ ν + ζ + 2, k ∈ N * , B > 0, D • a (ν + |d| + σ, N 0 + 1)-conveniently increasing sequence. We denote by S d,ν (k),N0 (σ, ζ, B, D • ) the set of formal series depending on u ∈ C ∞ (S 1 , R 2 ), (x, n) ∈ S 1 × R, (2.1.27) a(u; x, n) def = j≥k a j (u, . . . , u j ; x, n)
where

a j ∈ Σ d,ν (k,j),N0 (σ, ζ, B, D • ) are such that (2.1.28) N d,ν (k),N0 (σ, ζ, B, D • ; a) def = sup j≥k N d,ν (k,j),N0 (σ, ζ, B, D • ; a j ) < +∞. Note that if s 0 > ν + ζ + 5
2 and if u stays in B s0 (R), the ball of center 0 and radius R in H s0 (S 1 , R 2 ), each a j extends as a bounded multilinear map on H s0 (S 1 , R 2 ) and by (2.1.20), one has estimates

|∂ α x ∂ β n a j (u, . . . , u; x, n)| ≤ C α,β (k + j -1)! (j + 1)! c(j)B j n d-β+(α+N0β-2)+ R j ,
so that if 2BR < 1 the sum in j ≥ k of the preceding quantities converges, and is bounded by

C(4RB) k (k -1)!.
We introduce a similar definition for polynomial symbols. where

a j ∈ Σ d,ν (j),N0 (ζ) 
. 

Quantization of symbols Definition 2.1.7. -Let χ ∈ C ∞ 0 (] -1, 1[), χ even. Let a j ∈ Σ d,ν (k,j),N0 (σ, ζ, B, D • ) (resp. a = j≥k a j ∈ S d,ν (k),N0 (σ, ζ, B, D • )). We define a j,χ (u 1 , . . . , u j ; x, n) = χ D n a j (u 1 , . . . , u j ; x, n) a χ (u; x, n) = j≥k a j,χ (u, . . . , u j ; x, n).
N d,ν (k,j),N0 (σ, ζ, B, D • ; a j,χ ) ≤ C 0 N d,ν (k,j),N0 (σ, ζ, B, D • ; a j ) N d,ν (k),N0 (σ, ζ, B, D • ; a χ ) ≤ C 0 N d,ν (k),N0 (σ, ζ, B, D • ; a) (2.1.31)
for a constant C 0 depending only on χ. Actually, if K n (z) is the kernel defined by (2.1.11), and if we set U ′ = (u 1 , . . . , u j ), n ′ = (n 1 , . . . , n j ), Π n ′ U ′ = (Π n1 u 1 , . . . , Π nj u j ), we have

a j,χ (Π n ′ U ′ ; x, n) = χ D n a j (Π n ′ U ′ ; x, n) = K n * a j (Π n ′ U ′ ; •, n)
where the convolution is made with respect to the x-variable on S 1 . By (2.1.10), we may write

∂ α x ∂ β n a j,χ (Π n ′ U ′ ; x, n) = ∂ β n K n * ∂ α x a j (Π n ′ U ′ ; x, n) + K n * ∂ α x ∂ β n a j (Π n ′ U ′ ; x, n) + 0<β ′ <β 0≤γ≤β ‹ C α,β 0,β ′ ,γ [(Id -τ 1 ) γ ∂ β ′ n K n ] * (∂ α x ∂ β-β ′ n a j (Π n ′ U ′ ; x, n)).
(2.1.32)

We may write

|(Id -τ 1 ) γ ∂ β ′ n K n | ≤ 0≤γ ′ ≤γ Ç γ γ ′ å |∂ β ′ n τ γ ′ 1 K n |.
Using (2.1.12) with M = 2, we bound for γ ≤ p, β ′ ≤ p Let us study the L 2 -action of the above operators.

(2.1.33) |(Id -τ 1 ) γ ∂ β ′ n K n | ≤ C β ′ ,2 (χ) 0≤γ ′ ≤γ Ç γ γ ′ å n -γ ′ 1-β ′ (1 + n -γ ′ |z|) -2 Note that (2.1.34) 1 2 γ ′ n ≤ n -γ ′ ≤ 2 γ ′ n so that the L 1 (dz) norm of (2.
Proposition 2.1.9. -Let d ∈ R, ν, ζ ∈ R + , σ ∈ R, σ ≥ ν + ζ + 2, N 0 ∈ N, j, k ∈ N * , j ≥ k, B > 0, D • a (ν +|d|+σ, N 0 +1)-conveniently increasing sequence. There is a universal constant C 0 such that for any a ∈ Σ d,ν (k,j),N0 (σ, ζ, B, D • ), any n 0 , . . . , n j+1 ∈ Z, any u 1 , . . . , u j ∈ C ∞ (S 1 ; R 2 ), any N ∈ N, any σ ′ ∈ [ν + ζ + 2, σ], Π n0 Op χ [a(Π n1 u 1 , . . . , Π nj u j ; •)]Π nj+1 L(L 2 ) ≤ C 0 D N N d,ν (k,j),N0 (σ, ζ, B, D • ; a) (k + j -1)! (j + 1)! c(j)B j × n j+1 d+(ν+N -σ ′ )+ n 0 -n j+1 N j ℓ=1 n ℓ σ ′ Π n ℓ u ℓ L 2 ×1 {|n0-nj+1|< 1 4 nj+1 ,max(|n1|,...,|nj |)≤ 1 4 |nj+1|}
(2.1.38)

and for any ℓ = 1, . . . , j, 

Π n0 Op χ [a(Π n1 u 1 , . . . , Π nj u j ; •)]Π nj+1 L(L 2 ) ≤ C 0 D N N d,ν (k,j),N0 (σ, ζ, B, D • ; a) (k + j -1)! (j + 1)! c(j)B j × n j+1 d+ν+N +σ ′ n 0 -n j+1 N 1≤ℓ ′ ≤j ℓ ′ =ℓ n ℓ ′ σ ′ Π n ℓ ′ u ℓ ′ L 2 n ℓ -σ ′ Π n ℓ u ℓ L 2 × 1 {|n0-nj+1|<
| a χ (Π n ′ U ′ ; k, n)| ≤ C 0 N d,ν (k,j),N0 (σ, ζ, B, D • ; a) (k + j -1)! (j + 1)! c(j)B j D N × n d+(N +ν-σ ′ )+ k -N j ℓ=1 n ℓ σ ′ Π n ℓ u ℓ L 2
for some universal constant C 0 . This gives inequality (2.1.38). Estimate (2.1.39) follows in the same way from (2.1.21).

We shall use some remainder operators that we now define.

Definition 2.1.10. -Let ν, ζ ∈ R + , d ∈ R + , σ ∈ R + , σ ≥ ν + 2 + max(ζ, d 3 ), B > 0, j, k ∈ N * , j ≥ k. One denotes by Λ d,ν (k,j) (σ, ζ, B) the set of j-linear maps M from C ∞ (S 1 ; R 2 ) j to L(L 2 (S 1 ; R 2 )
), the space of bounded linear operators on L 2 (S 1 ; R 2 ), such that there is a constant C > 0 and for any u 1 , . . . , u j ∈ C ∞ (S 1 ; R 2 ), any n 0 , . . . , n j+1 ∈ Z, any ℓ = 0, . . . , j + 1, any

σ ′ ∈ [ν + 2 + max(ζ, d 3 ), σ], Π n0 M (Π n1 u 1 , . . . , Π nj u j )Π nj+1 L(L 2 ) ≤ C (k + j -1)! (j + 1)! c(j)B j n ℓ -3σ ′ +ν+d j+1 ℓ ′ =0 n ℓ ′ σ ′ j ℓ ′ =1 Π n ℓ ′ u ℓ ′ L 2 . (2.1.40)
The best constant C > 0 in the above estimate will be denoted by

N d,ν (k,j) (σ, ζ, B; M ).
We also define operators depending on a sole argument.

Definition 2.1.11. -Let ν, ζ ∈ R + , d ∈ R + , σ ∈ R + , σ ≥ ν + 2 + max(ζ, d 3 ), B > 0, k ∈ N * . One denotes by L d,ν (k) (σ, ζ, B) the space of formal series of elements of L(L 2 (S 1 ; R 2 )) depending on u ∈ C ∞ (S 1 ; R 2 ) (2.1.41) M (u) = j≥k M j (u, . . . , u j )
where

M j ∈ Λ d,ν (k,j) (σ, ζ, B), such that (2.1.42) N d,ν (k) (σ, ζ, B; M ) def = sup j≥k N d,ν (k,j) (σ, ζ, B; M j ) < +∞.
Let us give an example of an operator belonging to the preceding classes. Consider an element a j ∈ Σ d,ν (k,j),N0 (σ, ζ, B, D • ) for some d ≥ 0, some ζ ∈ R + . Let χ be as in definition 2.1.8 and take

χ 1 ∈ C ∞ 0 (] -1, 1[), χ 1 ≡ 1 close to zero. Define a j,1 (u 1 , . . . , u j ; x, n) = (1 -χ 1 ) D n [a j (u 1 , . . . , u j ; x, n)].
Then it follows from (2.1.20) that a j,1 satisfies estimates of the same form, with (d, ν) replaced by (dγ, ν + γ) for any γ ≥ 0, any

σ ′ ∈ [ν + ζ + 2, σ]. We thus get for the operator M (u 1 , . . . , u j ) = Op χ [a j,1 (u 1 , . . . , u j ; •)] bounds of type (2.1.38) with N = 0 Π n0 M (Π n1 u 1 , . . . , Π nj u j )Π nj+1 L(L 2 ) ≤ C (k + j -1)! (j + 1)! c(j)B j n j+1 d-γ+(ν+γ-σ ′ )+ j ℓ=1 n ℓ σ ′ Π n ℓ u ℓ L 2 (2.1.43) for any σ ′ ∈ [ν + ζ + 2, σ]. Take γ = σ ′ -ν and assume σ ′ ≥ ν + 2 + max(ζ, d 3 
). We get a bound of type

C (k + j -1)! (j + 1)! c(j)B j n j+1 -2σ ′ +ν+d n 0 -σ ′ j+1 ℓ ′ =0 n ℓ ′ σ ′ j ℓ ′ =1 Π n ℓ ′ u ℓ ′ L 2 .
Since by (2.1.38), n 0 ∼ n j+1 , this gives an estimate of form (2.1.40) for ℓ = 0 and ℓ = j + 1. To obtain the same estimate when ℓ ∈ {1, . . . , j} we remind that because of the cut-off in (2.1.38), we may assume n j+1 ≥ c n ℓ , ℓ = 1, . . . , j which shows that in any case we obtain estimates of an element of Λ d,ν (k,j) (σ, ζ, B) since -3σ ′ + ν + d ≤ 0. We also define the polynomial counterpart of the preceding remainder classes.

Definition 2.1.12. -Let ν, ζ ∈ R + , d ∈ R + , j, k ∈ N * . We define Λd,ν (j) (ζ) to be the space of j-linear maps from C ∞ (S 1 ; R 2 ) j to L(L 2 (S 1 ; R 2 )) satisfying for any σ ′ ≥ ν + 2 + max(ζ, d
3 ) estimates of form (2.1.40) with an arbitrary constant instead of (k+j-1)! (j+1)! c(j)B j . We denote by

L d,ν (k) (ζ) the space of finite sums M (u) = j≥k M j (u, . . . , u) where M j ∈ Λd,ν (j) (ζ).
We have defined operators as formal series in (2.1.37), (2.1.41). Let us show that for u in a small enough ball of a convenient Sobolev space, these series do converge.

Proposition 2.1.13. -Let d ∈ R, ν, ζ ∈ R + , σ ∈ R + , σ ≥ ν + ζ + 2, B > 0, N 0 ∈ N, D • a (|d| + ν + σ, N 0 + 1)-conveniently increasing sequence, k ∈ N * .
(i) Let δ > 0 be a small positive number. There are constants r > 0, C > 0,

depending only on B, ν, ζ, δ, such that if u ∈ H ν+ζ+ 5 2 +δ (S 1 ; R 2 ) and u H ν+ζ+ 5 2 +δ < r, Op χ [a(u; •)] defines a bounded linear map from H s (S 1 ; R 2 ) to H s-d (S 1 ; R 2 ) for any s ∈ R, and one has the estimate (2.1.44) Op χ [a(u; •)] L(H s ,H s-d ) ≤ C(s)( CB) k (k -1)!N d,ν (k),N0 (σ, ζ, B, D • ; a) u k H ν+ζ+ 5 2 +δ
for some constant C(s). The same estimate holds for Op χ [∂ u a(u;

•) • V ] L(H s ,H s-d ) if V ∈ H ν+ζ+ 5 2 +δ , with u k H ν+ζ+ 5 2 +δ replaced by u k-1 H ν+ζ+ 5 2 +δ V H ν+ζ+ 5 2 +δ . (ii) Let σ ′ ∈ [ν + ζ + 2, σ -1 2 [ and δ > 0 such that σ ′ + 1 2 + δ < σ. There are C > 0, r > 0 depending only on σ ′ , δ, B such that for any u ∈ H σ ′ + 1 2 +δ with u H σ ′ + 1 2 +δ < r, any V ∈ H -σ ′ + 1 2 +δ , the operator Op χ [∂ u a(u; •) • V ] defines for any s ∈ R a bounded linear map from H s (S 1 ; R 2 ) to H s-(d+ν+σ ′ +2) (S 1 ; R 2 ) with an estimate Op χ [∂ u a(u; •) • V ] L(H s ,H s-(d+ν+σ ′ +2) ) ≤ C(s)( CB) k (k -1)!N d,ν (k),N0 (σ, ζ, B, D • ; a) × u k-1 H σ ′ + 1 2 +δ V H -σ ′ + 1 2 +δ .
(2.1.45) Moreover, for any δ > 0, there are C, ρ 0 > 0 depending on δ, ν, B, such that for any u ∈ H ν+ζ+ 5 2 +δ with u H ν+ζ+ 5 2 +δ < ρ 0 , any s > ν

+ ζ + 3 2 , any V ∈ H -s (S 1 ; R 2 ), Op χ [∂ u a(u; •) • V ] defines a bounded linear map from H s to H -d-ν-5 2 -δ with an estimate Op χ [∂ u a(u; •) • V ] L(H s ,H -d-ν-5 2 -δ ) ≤ C(s)( CB) k (k -1)!N d,ν (k),N0 (σ, ζ, B, D • ; a) × u k-1 H ν+ζ+ 5 2 +δ V H -s . (2.1.46) (iii) Assume d ≥ 0, σ > ν + 5 2 + max(ζ, d 3 ). Let σ ′ ∈ [ν + 2 + max(ζ, d 3 ), σ -1 2 [ and δ > 0 such that σ ′ + 1 2 + δ < σ. There are C > 0, r > 0 depending only on σ ′ , δ, B, such that for any u ∈ H σ ′ + 1 2 +δ with u H σ ′ + 1 2 +δ < r, any M ∈ L d,ν (k) (σ, ζ, B), the operator M (u) defines a bounded linear map from H σ ′ + 1 2 +δ to H 2σ ′ -ν-1 2 -δ-d with the estimate (2.1.47) M (u) L(H σ ′ + 1 2 +δ ,H 2σ ′ -ν-1 2 -δ-d ) ≤ C(σ ′ )( CB) k (k -1)!N ν (k) (σ, ζ, B; M ) u k H σ ′ + 1 2 +δ .
In addition, for any

V ∈ H σ ′ + 1 2 +δ , ∂ u M (u)•V is a bounded linear map from H σ ′ + 1 2 +δ to H 2σ ′ -ν-1 2 -δ-d
and its operator norm is smaller than the right hand side of (2.1.47) with u k

H σ ′ + 1 2 +δ replaced by u k-1 H σ ′ + 1 2 +δ V H σ ′ + 1 2 +δ . Moreover, for any s ∈]ν + d + 3 2 , σ[ satisfying s > ν + 5 2 + max(ζ, d 3 ), there are C, ρ 0 > 0 depending on s, ν, B such that for any u ∈ H s satisfying u H s < ρ 0 , the linear maps M (u) and V → (∂ u M (u) • V )u belong to L(H -s , H -(2+ν+d)
) and satisfy

M (u) • V H -2-ν-d + ((∂ u M (u)) • V )u H -2-ν-d ≤ C( CB) k (k -1)!N ν (k) (σ, ζ, B; M ) u k H s V H -s .
(2.1.48)

Proof. -(i) We write a = j≥k a j with a j ∈ Σ d,ν (k,j),N0 (σ, ζ, B, D • ). We ap- ply (2.1.38) with σ ′ = ν + ζ + 2, N = 2 and estimate n ℓ σ ′ Π n ℓ u ℓ L 2 by n ℓ -1 2 -δ c n ℓ u ℓ H ν+ζ+ 5 2 +δ for a sequence (c n ℓ ) n ℓ in the unit ball of ℓ 2 . Summing (2.1.38) in n 1 , . . . , n j we obtain Π n0 Op χ [a j (u, . . . , u; •)]Π nj+1 w L 2 ≤ C 0 D 2 N d,ν (k,j),N0 (σ, ζ, B, D • ; a j )2 k+j-1 (k -1)!B j C ′ 0 u H ν+ζ+ 5 2 +δ j × Π nj+1 w L 2 n j+1 d n 0 -n j+1 -2 1 |n0-nj+1|< 1 4 nj+1
for some uniform constant C ′ 0 . We deduce from this and (2.

1.28) that Op χ [a(u; •)] L(H s ,H s-d ) ≤ C(s)2 k (k -1)!N d,ν (k),N0 (σ, ζ, B, D • ; a) × j≥k (2BC ′ 0 u H ν+ζ+ 5 2 +δ ) j
which gives the first conclusion of (i). The second one is obtained in the same way.

(ii) We decompose again a = j≥k a j , and write ∂ u a j (u, •) • V as a sum of j terms (2.1.49) a j (u, . . . , u, V, u, . . . , u; x, n).

We apply estimate (2.1.39) with N = 2, the special index ℓ corresponding to the place where is located

V . We bound Π n ℓ ′ u L 2 n ℓ ′ σ ′ ≤ c n ℓ ′ n ℓ ′ -1 2 -δ u H σ ′ + 1 2 +δ , Π n ℓ V L 2 n ℓ -σ ′ ≤ c n ℓ n ℓ -1 2 -δ V H -σ ′ + 1 2
+δ , for sequences (c n ℓ ) n ℓ in the unit ball of ℓ 2 . Summing (2.1.39) in n 1 , . . . , n j and taking into account the fact that we have j terms of form (2.1.49), we get

Π n0 Op χ [∂ u a j (u, . . . , u; •) • V ]Π nj+1 L(L 2 ) ≤ C 0 D 2 N d,ν (k,j),N0 (σ, ζ, B, D • ; a j )2 k+j-1 (k -1)!B j u j-1 H σ ′ + 1 2 +δ (C ′ 0 ) j × V H -σ ′ + 1 2 +δ n j+1 d+ν+σ ′ +2 n 0 -n j+1 -2 1 |n0-nj+1|< 1 4 nj+1
for some uniform constant

C ′ 0 . Summing in j ≥ k when u H σ ′ + 1 2
+δ is small enough, we get estimate (2.1.45).

To obtain (2.1.46), we apply again (2.1.39) with σ ′ = ν + ζ + 2, N = 2, the special index being located on the V term. We bound for ℓ

′ = ℓ n ℓ ′ σ ′ Π n ℓ ′ u ℓ ′ L 2 ≤ c n ℓ ′ n ℓ ′ -1 2 -δ u H σ ′ + 1 2 +δ and n ℓ -σ ′ Π n ℓ V L 2 ≤ c n ℓ n ℓ -σ ′ +s+ 1 2 +δ V H -s n ℓ -1 2 -δ with ℓ 2 sequences (c n ℓ ) n ℓ , (c n ℓ ′ ) n ℓ ′ . Using that n ℓ ≤ n j+1 , we get summing (2.1.39) in n 1 , . . . , n j Π n0 Op χ [∂ u a j (u, . . . , u; •) • V ]Π nj+1 L(L 2 ) ≤ C 0 D 2 N d,ν (k,j),N0 (σ, σ, B, D • ; a j )2 k+j-1 (k -1)!B j u j-1 H σ ′ + 1 2 +δ (C ′ 0 ) j × V H -s n j+1 d+ν+s+ 5 2 +δ n 0 -n j+1 -2 1 |n0-nj+1|< 1 2 nj+1
. We sum next in j ≥ k for u H ν+ζ+ 5 2 +δ small enough. We obtain the bound of (2.1.46) for the

L(H s , H -d-ν-5 2 -δ )-norm of Op χ [∂ u a(u; •) • V ]. (iii) We decompose M = j≥k M j with M j ∈ Λ d,ν (k,j) (σ, ζ, B). We apply estimate (2.1.40) with ℓ = 0, bounding Π n ℓ ′ u ℓ ′ L 2 n ℓ ′ σ ′ by n ℓ ′ -1 2 -δ u ℓ ′ H σ ′ + 1 2 +δ c n ℓ ′ for a sequence (c n ℓ ′ ) n ℓ ′ in the unit ball of ℓ 2 . Summing in n 1 , . . . , n j we get Π n0 M j (u, . . . , u)Π nj+1 L(L 2 ) ≤ (k -1)!2 k+j-1 n 0 -2σ ′ +ν+d n j+1 σ ′ × N ν (k,j) (σ, ζ, B; M j )(C ′ 0 u H σ ′ + 1 2 +δ ) j B j (2.1.50)
for some constant C ′ 0 . If we make act the resulting operator on some w in

H σ ′ + 1 2 +δ
and sum in n j+1 and in j ≥ k, we get that

M (u) L(H σ ′ + 1 2 +δ ,H 2σ ′ -ν-1 2 -δ-d ) ≤ C(σ ′ )N d,ν (k) (σ, ζ, B; M )( CB) k (k -1)! u k H σ ′ + 1 2 +δ if u H σ ′ + 1 2 +δ < r small enough. To estimate ∂ u M (u)
• V , we have to study expressions of form (2.1.50), with one of the arguments u replaced by V . The rest of the computation is identical.

We still have to prove (2.1.48). We write again M = j≥k M j and use estimate (2.1.40), taking for n ℓ the index for which |n ℓ | ≥ |n ℓ ′ |, ℓ ′ = 0, . . . , j + 1. We obtain if we take in (2.1.40)

σ ′ = s -1 2 -δ for some δ > 0 small enough Π n0 M j (Π n1 u 1 , . . . , Π nj u j )Π nj+1 V L 2 ≤ C(k -1)!2 k+j-1 N d,ν (k) (σ, ζ, B; M )B j × j ℓ ′ =1 n ℓ ′ -1 2 -δ c ℓ ′ n ℓ ′ n j+1 s c j+1 nj+1 j 1 u ℓ ′ H s V H -s × n 0 s-1 2 -δ n j+1 s-1 2 -δ n ℓ -3s+ 3 2 +3δ+ν+d (2.1.51) where (c ℓ ′ n ℓ ′ ) n ℓ ′ ℓ ′ = 1, . . . , j + 1 are ℓ 2 sequences. We obtain a bound in terms of a constant times 2 k (k -1)!(2B) j j 1 u ℓ ′ H s V H -s N d,ν (k) (σ, ζ, B; M ) times j+1 ℓ ′ =1 n ℓ ′ -1 2 -δ c ℓ ′ n ℓ ′ [ n j+1 2s n 0 s-1 2 -δ n ℓ -3s+ 3 2 +3δ+ν+d ].
Because of the choice of n ℓ , and since s > d + ν + 3 2 , the factor between brackets is bounded by n 0 1+ν+2δ+d ≤ n 0 3 2 +3δ+ν+d cn0 with an ℓ 2 -sequence (c n0 ) n0 . Summing in n 0 , . . . , n j+1 we obtain

M j (u) • V H -ν-2-d ≤ CN d,ν (k) (σ, ζ, B; M )(2B u H s ) j V H -s (k -1)!2 k
. Summing in j ≥ k when u H s is small enough, we get the wanted upper bound. To estimate in the same way (∂ u M (u) • V )u, we remark that we have to estimate j expressions of form (2.1.51), except that the argument V replaces now one of the u j , so that in the right hand side of (2.1.51) we have to exchange the roles of n j+1 and of one of the n ℓ ′ . The rest of the proof is identical.

Substitution in symbols

In this section, we shall study the effect of substituting a multi-linear map to one or several arguments inside a multi-linear symbol.

Let us fix some notations.

Let B > 0, ν, ζ ∈ R + , σ ≥ ν + ζ + 2, d ∈ R, N 0 ∈ N, D • a (|d| + ν + σ, N 0 + 1)-conveniently increasing sequence. Let b ∈ S d,ν (κ),N0 (σ, ζ, B, D • ) for some κ ∈ N * . According to definition 2.1.5, we decompose b(u; x, n) = j≥κ b j (u, . . . , u j ; x, n) with b j ∈ Σ d,ν (κ,j),N0 (σ, ζ, B, D • ). For u 1 , . . . , u j+1 ∈ C ∞ (S 1 , R 2 ) we set (2.2.1) V j (u 1 , . . . , u j+1 ) = Op χ [b j (u 1 , . . . , u j ; •)]u j+1 or (2.2.2) V j (u 1 , . . . , u j+1 ) = t Op χ [b j (u 1 , . . . , u j ; •)]u j+1 where χ ∈ C ∞ 0 (] -1 4 , 1 4 
[), χ even, χ ≡ 1 close to zero. Let us apply inequalities (2.1.38) and (2.1.39) with N = 2. There is a sequence (Q n ) n in the unit ball of ℓ 1 and for any s ∈ R a constant K 2 ≥ 1, depending only on s and D 2 , such that for any

σ ′ ∈ [ν + ζ + 2, σ] one has estimates n 0 s-d Π n0 V j (Π n1 u 1 , • • • , Π nj+1 u j+1 ) L 2 ≤ K 2 N d,ν (κ,j),N0 (σ, ζ, B, D • ; b j ) (κ + j -1)! (j + 1)! c(j)B j Q n0-nj+1 × j ℓ=1 n ℓ σ ′ Π n ℓ u ℓ L 2 n j+1 s Π nj+1 u j+1 L 2 × 1 {|n0-nj+1|< 1 4 nj+1 ,max(|n1|,...,|nj |)≤ 1 4 |nj+1|} (2.2.3)
and for any ℓ = 1, . . . , j

n 0 s-d Π n0 V j (Π n1 u 1 , • • • , Π nj+1 u j+1 ) L 2 ≤ K 2 N d,ν (κ,j),N0 (σ, ζ, B, D • ; b j ) (κ + j -1)! (j + 1)! c(j)B j Q n0-nj+1 × 1≤ℓ ′ ≤j ℓ ′ =ℓ n ℓ ′ σ ′ Π n ℓ ′ u ℓ ′ L 2 ( n ℓ -σ ′ Π n ℓ u ℓ L 2 ) × n j+1 s+σ ′ +ν+2 Π nj+1 u j+1 L 2 .
(2.2.4)

Set now when d = 0, ζ = 0, N 0 = 0, κ = k 0 ≥ 1 (2.2.5) V (u) = u + j≥k0 V j (u, . . . , u j+1 )
as a formal series of homogeneous terms. Note that by (2.2.3) with

σ ′ = ν + 2, we have if u ∈ H ν+ 5 2 +δ ∩ H s for some δ > 0 that V j (u) H s ≤ C u j H ν+ 5 2 +δ (2B) j u H s , so that (2.2.5) is actually converging in H s if u H ν+ 5 2 +δ is small enough relatively to 1/B. Proposition 2.2.1. -Let d ∈ R, ν, ζ ∈ R + , k ∈ N * , a ∈ S d,ν (k),0 (σ, ζ, B, D • ). Define (2.2.6) c(u; x, n) = a(V (u); x, n).
Assume that the constant K 0 in (2.1.17) is large enough with respect to σ, D 2 and

N 0,ν (1),0 (σ, 0, B, D • ; b). Then c ∈ S d,ν (k+k0-1),0 (σ, ζ, B, D • ). Moreover (2.2.7) N d,ν (k+k0-1),0 (σ, ζ, B, D • ; c) ≤ CN d,ν (k),0 (σ, ζ, B, D • ; a)N 0,ν (k0),0 (σ, 0, B, D • ; b)
with a constant C depending only on N 0,ν (1),0 (σ, 0, B, D • ; b).

Proof. -We decompose a(u; x, n) = i≥k a i (u, . . . , u; x, n) so that c is by definition the formal series j≥k c j (u, . . . , u; x, n) where

(2.2.8) c j (u 1 , . . . , u j ; x, n) = j i=k j1+•••+ji=j-i a i (V j1 (U j1 ), . . . , V ji (U ji ); x, n) S
where we used the following notations:

If j = 0, V 0 (u) = u. If j ℓ > 0, we have set (2.2.9) U j ℓ = (u j1+•••+j ℓ-1 +ℓ , . . . , u j1+•••+j ℓ +ℓ ), ℓ = 1, . . . , i
and S in (2.2.8) denotes symmetrization in (u 1 , . . . , u j ). To further simplify notations set

n j ℓ = (n j ℓ 1 , . . . , n j ℓ j ℓ +1 ) ∈ Z j ℓ +1 with n j ℓ q = n j1+•••+j ℓ-1 +ℓ+q-1 , 1 ≤ q ≤ j ℓ + 1 (2.2.10) and (2.2.11) Π n j ℓ U j ℓ = (Π n j ℓ q u n j ℓ q ) 1≤q≤j ℓ +1 .
We shall estimate c j (u 1 , . . . , u j ; x, n)a j (u 1 , . . . , u j ; x, n), which is given by (2.2.8) where the (j 1 , . . . , j i ) sum is taken only for

j 1 + • • • + j i > 0. Then, for α + β = p, (2.2.12) ∂ α x ∂ β n [(c j -a j )(Π n1 u 1 , . . . , Π nj u j ; x, n)]
will be given by the sum (2.2.13)

j i=k 0<j1+•••+ji=j-i n j 1 0 • • • n j i 0 ∂ α x ∂ β n a i (Π n j 1 0 V j1 (Π n j 1 U j1 ), . . . , Π n j i 0 V ji (Π n j i U ji ); x, n)
where we no longer write symmetrization. We apply (2.1.20) to a i and (2.2.3) with s = σ ′ to V j ℓ to bound the modulus of the general term of (2.2.13) by the product of

N d,ν (k),0 (σ, ζ, B, D • ; a)N 0,ν (1),0 (σ, 0, B, D • ; b) ĩ-1 N 0,ν (k0),0 (σ, 0, B, D • ; b)D p
(where ĩ is the number of j ℓ = 0, so that 1 ≤ ĩ ≤ i) and of

(k 0 + j 1 -1)! j 1 ! (k + i -1)! (i + 1)! c(i) i ℓ=1 1 (j ℓ + 1) c(j ℓ )B j K ĩ 2 n d-β+(α+ν-σ ′ )+ × i ℓ=1 Q n j ℓ 0 -n j ℓ j ℓ+1 j ℓ=1 n ℓ σ ′ Π n ℓ u ℓ L 2 .
(2.2.14) (We have considered V j1 as defined in terms of a symbol of valuation k 0 and V j2 , . . . , V ji as defined by symbols of valuation 1 or 0, assuming that j 1 > 0). We sum in n j1 0 , . . . , n ji 0 . We use also that by (2.1.16)

1 (i + 1) i 1 (j ℓ + 1) ≤ 1 j + 1 (k 0 + j 1 -1)! j 1 ! (k + i -1)! i! ≤ (k + (k 0 -1) + i + j 1 -1)! (j 1 + i)! ≤ (k + k 0 -1 + j -1)! j! to bound (2.2.13) by N d,ν (k),0 (σ, ζ, B, D • ; a) times D p B j (k + (k 0 -1) + j -1)! (j + 1)! j i=k max[1, N 0,ν (1),0 (σ, 0, B, D • ; b)] i-1 N 0,ν (k0),0 (σ, 0, B, D • ; b) × K i 2 j1+•••+ji=j-i c(i) i ℓ=1 c(j ℓ ) n d-β+(α+ν-σ ′ )+ j ℓ=1 n ℓ σ ′ Π n ℓ u ℓ L 2 .
(2.2.15)

with a new value of K 2 . By (2.1.17), the inner sum in (2.2.15) is bounded by c(i)c(j-i)

K i-1 0 .
If we assume that K 0 is large enough so that

K 2 max[1, N 0,ν (1),0 (σ, 0, B, D • ; b)] < K 0 we obtain the bounds (2.1.20) for a symbol in Σ d,ν (k+k0-1,j),N0 (σ, ζ, B, D • ).
Let us get bounds of type (2.1.21) for (2.2.13), when for instance the special index ℓ corresponds to one of the arguments of U j1 . We apply to a i estimate (2.1.21) with ℓ = 1. This obliges us to bound n j1

0 -σ ′ Π n j 1 0 V j1 (Π n j 1 U j1 ) L 2 .
We control this expression using (2.2.3) (resp. (2.2.4)) with s = -σ ′ if we want to make appear the power n j1 ℓ -σ ′ with ℓ = j 1 + 1 (resp. 1 ≤ ℓ ≤ j 1 ). We obtain a bound of type (2.2.14), except that the power of n is now n d-β+α+ν+σ ′ and that one of the 

n ℓ σ ′ Π n ℓ u ℓ L 2 is replaced by n ℓ -σ ′ Π n ℓ u ℓ L 2 .
q | ≤ 1 4 |n j ℓ j ℓ+1 |, q = 1, . . . , j ℓ , |n j ℓ j ℓ+1 | ≤ 2|n j ℓ 0 | because of the cut-off in (2.2.
3). This implies that (2.2.12) is supported for |n ℓ | ≤ 1 4 |n|, ℓ = 1, . . . , j as wanted.

Our next goal is to study quantities of form

∂ u a(u; x, n) • V (u) where a belongs to some S d ′ ,ν (k ′ ),N0 (σ, ζ, B, D • ) and V is defined by a formula of type (2.2.5). Proposition 2.2.2. -Let d ′ , d ′′ ∈ R, d ′′ ≥ 0, d = d ′ + d ′′ , ι = min(1, d ′′ ), ν, ζ ∈ R + , σ ≥ ι + ν + ζ + 2, k ′ , k ′′ ∈ N * , N 0 ∈ N, B > 0, D • a (ν + |d ′ | + |d ′′ | + σ, N 0 + 1)- conveniently increasing sequence. Define (2.2.16) V (u) = j ′′ ≥k ′′ V j ′′ (u, . . . , u j ′′ +1
) (as a formal series), where V j ′′ is defined by (2.2.1) from the components of a symbol b

= j ′′ ≥k ′′ b j ′′ satisfying b ∈ S d ′′ ,ν (k ′′ ),N0 (σ, ζ, B, D • ).
Let also a be an element of

S d ′ ,ν (k ′ ),N0 (σ, ζ, B, D • ). Then (2.2.17) c(u; x, n) = ∂ u a(u; x, n) • V (u) defines an element of S d-ι,ν+ι (k ′ +k ′′ ),N0 (σ, ζ, B, D • ). Proof. -We decompose a(u; x, n) = j ′ ≥k ′ a j ′ (u, . . . , u; x, n). Since ∂ u a j ′ (u, . . . , u; x, n) • V (u) = j ′ a j ′ (V (u), u, . . . , u; x, n),
we may write with

k = k ′ + k ′′ c(u, : x, n) = j≥k c j (u, . . . , u; x, n) c j (u 1 , . . . , u j ; x, n) = j ′ +j ′′ =j j ′ ≥k ′ ,j ′′ ≥k ′′ j ′ a j ′ (V j ′′ (u 1 , . . . , u j ′′ +1 ), u j ′′ +2 , . . . , u j ; x, n) S (2.2.18)
where S stands again for symmetrization. Write

∂ α x ∂ β n c j (Π n1 u 1 , . . . , Π nj u j ; x, n) as +∞ n0=-∞ j ′ +j ′′ =j j ′ ∂ α x ∂ β n a j ′ (Π n0 V j ′′ (Π n1 u 1 , . . . ,Π n j ′′ +1 u j ′′ +1 ), Π n j ′′ +2 u j ′′ +2 , . . . , Π nj u j ; x, n) S .
( We also need to prove bounds of form (2.1.21). Consider first the case when the special index ℓ in (2.1.21) is between j ′′ + 2 and j, for instance ℓ = j. We apply (2.1.21) to a j ′ and (2.2.3) to V j ′′ , taking s = σ ′ + d ′′ . We get a bound given by

N d ′ ,ν (k ′ ,j ′ ),N0 (σ -ι, ζ, B, D • ; a j ′ )N d ′′ ,ν (k ′′ ,j ′′ ),N0 (σ, ζ, B, D • ; b j ′′ ) times n0 j ′ +j ′′ =j K 2 j ′ (k ′′ + j ′′ -1)! (j ′′ + 1)! (k ′ + j ′ -1)! (j ′ + 1)! B j c(j ′ )c(j ′′ )Q n0-n j ′′ +1 × n d-ι-β+(α+ν+ι+N0β-σ ′ ) j ℓ=1 n ℓ σ ′ Π n ℓ u ℓ L 2 (2.2.21) using that n 0 d ′′ -σ ′ ≤ n d ′′ -ι n 0 ι-σ ′ because of (
N d ′ ,ν (k ′ ,j ′ ),N0 (σ, ζ, B, D • ; a j ′ )N d ′′ ,ν (k ′′ j ′′ ),N0 (σ, ζ, B, D • ; b j ′′ ) times n0 j ′ +j ′′ =j K 2 j ′ (k ′′ + j ′′ -1)! (j ′′ + 1)! (k ′ + j ′ -1)! (j ′ + 1)! B j c(j ′ )c(j ′′ )Q n0-n j ′′ +1 × n d ′ -β+α+ν+N0β+σ ′ n j ′′ +1 d ′′ j-1 ℓ ′ =1 n ℓ ′ σ ′ Π n ℓ ′ u ℓ ′ L 2 n j -σ ′ Π nj u j L 2 .
( 

= -σ ′ + d ′′ to V j ′′ . Since n 0 ∼ n j ′′ +1 , we get a bound of form (2.2.22) with n j ′′ +1 σ ′ +d ′′ (resp. n j -σ ′ ) replaced by n j ′′ +1 -σ ′ +d ′′ (resp. n j σ ′
) and conclude as above. If the special index ℓ is between 1 and j ′′ , we apply (2.1.21) to a j ′ (taking the negative power -σ ′ on n 0 ) and (2.2.4) with s = -σ ′ + d ′′ . We obtain the upper bound

n0 j ′ +j ′′ =j K 2 j ′ (k ′′ + j ′′ -1)! (j ′′ + 1)! (k ′ + j ′ -1)! (j ′ + 1)! B j c(j ′ )c(j ′′ )Q n0-n j ′′ +1 × n d ′ -β+α+ν+N0β+σ ′ 1≤ℓ ′ ≤j ℓ ′ =j ′′ +1 ℓ ′ =ℓ n ℓ ′ σ ′ Π n ℓ ′ u ℓ ′ L 2 n ℓ -σ ′ Π n ℓ u ℓ L 2 × n j ′′ +1 ν+d ′′ +2 Π n j ′′ +1 u j ′′ +1 L 2 .
We write using the support condition ( We shall need a version of proposition 2.2.2 when V j ′′ in (2.2.16) is replaced by a multi-linear map defined in a slightly different way. If V j is defined by (2.2.1), let W j (u 1 , . . . , u j+1 ) be the multi-linear map given by (2.2.23)

W j (u 1 , . . . , u j+1 ), u 0 = V j (u 0 , u 2 , . . . , u j+1 ), u 1 for any u 0 , . . . , u j+1 in C ∞ (S 1 , R 2 ). Let us prove: Lemma 2.2.3. -For any σ ′ ∈ [ν + ζ + 2, σ] there is a constant K 2 , depending only on σ ′ , such that for any u 1 , . . . , u j+1 in C ∞ (S 1 , R 2 ), any n 0 , . . . , n j+1 ∈ Z, Π n0 W j (Π n1 u 1 , . . . , Π nj+1 u j+1 ) L 2 is bounded from above by the product of (2.2.24) K 2 N d,ν (k,j),N0 (σ, ζ, B, D • ; b j ) (k + j -1)! (j + 1)! c(j)B j times (2.2.25) n 0 -σ ′ n j+1 d+ν-σ ′ j+1 ℓ ′ =1 n ℓ ′ σ ′ Π n ℓ ′ u ℓ ′ L 2
resp. times, for any ℓ = 1, . . . , j

(2.2.26) n 0 σ ′ n j+1 d+ν-σ ′ 1≤ℓ ′ ≤j+1 ℓ ′ =ℓ n ℓ ′ σ ′ Π n ℓ ′ u ℓ ′ L 2 n ℓ -σ ′ Π n ℓ u ℓ L 2 .
Moreover, on the support of

Π n0 W j (Π n1 u 1 , . . . , Π nj+1 u j+1 ) (2.2.27) max(|n 0 |, |n 2 |, . . . , |n j |) < 1 4 |n j+1 |, |n 1 -n j+1 | ≤ 1 4 n j+1 . Finally, if χ ∈ C ∞ 0 (] -1 4 , 1 4 
[), and if C γ,2 ( χ) is defined by (2.1.12), we may bound for any γ ∈ N,

β ′ ∈ N, γ ≤ p, β ′ ≤ p (2.2.28) (Id -τ 1 ) γ ∂ β ′ n Π n0 W j (Π n1 u 1 , . . . , Π nj+1 χ D n u j+1 ) L 2
by the product of ( 

0 L 2 ≤ 1 (2.2.30) | Op χ [b j (Π n0 u 0 , Π n2 u 2 , . . . , Π nj u j ; •)]Π nj+1 u j+1 , Π n1 u 1 |.
We apply (2.1.39) with N = 0, taking for the special index the one corresponding to the first argument of b j , and we get the bound

C 0 D 0 N d,ν (k,j),N0 (σ, ζ, B, D • ; b j ) (k + j -1)! (j + 1)! c(j)B j × n j+1 d+ν+σ ′ n 0 -σ ′ Π n0 u 0 L 2 j ℓ ′ =2 Π n ℓ ′ u ℓ ′ L 2 n ℓ ′ σ ′ Π nj+1 u j+1 L 2 Π n1 u 1 L 2 .
(2.2.31)

Since |n 1n j+1 | ≤ 1 4 n j+1 , we obtain (2.2.25) with a constant K 2 depending only on σ ′ .

To obtain (2.2.26), we use (2.1.39) with N = 0 and the special index corresponding to one of the arguments u 2 , . . . , u j of b j in (2.2.30), for instance ℓ = 2. We get a bound given by the first line of (2.2.31) times 

n j+1 d+ν+σ ′ n 0 σ ′ Π n0 u 0 L 2 n 2 -σ ′ Π n2 u 2 L 2 × j ℓ ′ =3 Π n ℓ ′ u ℓ ′ L 2 n ℓ ′ σ ′ Π nj+1 u j+1 L 2 Π n1 u 1 L 2 . ( 2 
-Let d ′ , d ′′ , ν, ζ, σ, k ′ , k ′′ , N 0 , B, D • , ι be as in the statement of proposition 2.2.2. Assume σ ≥ ν + 3 + max(ζ, d ′ + +d ′′ 3 ). Let a ∈ S d ′ ,ν (k ′ ),N0 (σ, ζ, B, D • ), b ∈ S d ′′ ,ν (k ′′ ),N0 (σ, ζ, B, D • ) and define from W j ′′ given by (2.2.23) (2.2.33) W (u) = j ′′ ≥k ′′ j ′′ W j ′′ (u, . . . , u j ′′ +1
).

There is a symbol c ∈ S d ′ +d ′′ -ι,ν+ι

(k ′ +k ′′ ),N0 (σ, ζ, B, D • ) and a multi-linear map M (u) ∈ L d ′ + +d ′′ ,ν+1 (k ′ +k ′′ ) (σ, ζ, B) such that (2.2.34) Op χ [∂ u a(u; •) • W (u)] = Op χ [c(u; •)] + M (u).
Proof. -Consider the symbol c(u; x, n) = j≥k c j (u, . . . , u; x, n) where . From now on, we no longer write the symmetrization operator. We make

c j (u 1 , . . . , u j ; x, n) = j ′ +j ′′ =j j ′ j ′′ a j ′ [W j ′′ (u 1 , . . . , χ(D/ n )u j ′′ +1 ), u j ′′ +2 , . . . , u j ; x, n] S , (2.2.35) χ being a function in C ∞ 0 (]-
∂ α x ∂ β n act on c j (Π n1 u 1 , . . . , Π nj u j ; x, n) for α + β = p. For 0 ≤ β ′ ≤ β, 0 ≤ γ ≤ β set (2.2.36) W β ′ ,γ j ′′ (n 0 , . . . , n j ′′ +1 , n) = (Id -τ 1 ) γ ∂ β ′ n Π n0 W j ′′ (Π n1 u 1 , . . . , Π n j ′′ +1 χ(D/ n )u j ′′ +1
). We use (2.1.10) to write ∂ α x ∂ β n c j (Π n1 u 1 , . . . , Π nj u j ; x, n) as the sum for j ′ + j ′′ = j and for n 0 ∈ Z of (2.2.37)

j ′ j ′′ (∂ α x ∂ β n a j ′ )[ W 0,0 j ′′ (n 0 , . . . , n j ′′ +1 , n), Π n j ′′ +2 u j ′′ +2 , . . . , Π nj u j ; x, n]
and of 

0<β ′ ≤β 0≤γ≤β ‹ C α,β 0,β ′ ,γ j ′ j ′′ (∂ α x ∂ β-β ′ n a j ′ )[ W β ′ ,γ j ′′ (n 0 , . . . , n j ′′ +1 , n), Π n j ′′ +2 u j ′′ +2 , . . . , Π nj u j ; x, n]. ( 2 
K 2 N d ′ ,ν (k ′ ),N0 (σ, ζ, B, D • ; a)N d ′′ ,ν (k ′′ ),N0 (σ, ζ, B, D • ; b) j ℓ ′ =1 Π n ℓ ′ u ℓ ′ L 2
and of the sum for 0

< β ′ ≤ β, 0 ≤ γ ≤ β of (2.2.41) 2D α+β-β ′ ‹ C α,β 0,β ′ ,γ j ′ (k ′ + j ′ -1)! (j ′ + 1)! j ′′ (k ′′ + j ′′ -1)! (j ′′ + 1)! c(j ′ )c(j ′′ )B j (4 p ) p C β ′ ,2 ( χ) multiplied by 
(2.2.42)

n d ′ -β+(α+ν+N0(β-β ′ )-σ ′ )+ n j ′′ +1 d ′′ +ν-σ ′ j ℓ ′ =1 n ℓ ′ σ ′ .
Since by the cut-off in (2.2.29), |n j ′′ +1 | ≤ n , we bound n j ′′ +1

d ′′ +ν-σ ′ ≤ n d ′′ -ι n j ′′ +1 ν+ι-σ ′ ≤ n d ′′ -ι n j ′′ +1 -2 .
As by (2.2.27), |n j ′′ +1 | ≥ c|n 0 |, the last factor will make converge the n 0 -series. Consequently, the sum for n 0 ∈ Z, j ′ + j ′′ = j of (2.2.38) will be controlled by the product of (2.2.40), of

n d ′ +d ′′ -ι-β+(α+ν+N0β-σ ′ )+ j ℓ ′ =1 n ℓ ′ σ ′
and of the sum for We still have to bound the contribution (2.2.37). We proceed as above, estimating the W 0,0 j ′′ term by the product of (2.2.24) and (2.2.25). We get a bound in terms of the product of (2.2.40) multiplied by

j ′ + j ′′ = j, 0 < β ′ ≤ β, 0 ≤ γ ≤ β
D p j ′ (k ′ + j ′ -1)! (j ′ + 1)! j ′′ (k ′′ + j ′′ -1)! (j ′′ + 1)! c(j ′ )c(j ′′ )B j
and by (2.2.42) with β ′ = 0. We end the computation as above.

Let us prove that (2.1.21) is valid for c j . Take first the special index ℓ in this estimate be equal to some index between 1 and j ′′ + 1, for instance ℓ = 1. We apply (2.1.21) to a j ′ , making appear the -σ ′ exponent on the index corresponding to the first argument of c j ′ . We obtain an upper bound in terms of

n 0 -σ ′ W β ′ ,γ
j ′′ (n 0 , . . . , n j ′′ +1 , n) L 2 that we bound using the product of (2.2.24), (2.2.26) (with ℓ = 1) and (2.2.29). We obtain for (2.2.38) an estimate in terms of the product of (2.2.40) by the sum for 0

< β ′ ≤ β, 0 ≤ γ ≤ β of (2.2.41) multiplied by n d ′ -β+α+ν+N0(β-β ′ )+σ ′ n j ′′ +1 d ′′ +ν+σ ′ j ℓ ′ =2 n ℓ ′ σ ′ n 1 -σ ′ .
Bounding as above the last factor before the product by n d ′′ -ι n j ′′ +1 -2 , we obtain a control of the sum in n 0 , j ′ + j ′′ = j of (2.2.38) by the product of (2.2.40), of (2.2.43)

n d ′ +d ′′ -ι-β+α+N0β+σ ′ j ℓ ′ =2 n ℓ ′ σ ′ n 1 -σ ′
and of the sum for j ′ + j ′′ = j, 0 < β ′ ≤ β, 0 ≤ γ ≤ β of (2.2.41). We again deduce from that the looked for estimate of type (2.1.21). The contribution coming from (2.2.37) is treated similarly. We still have to obtain an estimate of form (2.1.21) when the special index ℓ is between j ′′ + 2 and j, say ℓ = j. We apply (2.1.21) to a j ′ , with ℓ = j corresponding to the last argument, and obtain a bound in terms of (2.2.39), that we control from (2.2.24), (2.2.25), (2.2.29). We get then similar bounds as in the case ℓ = 1, except that in (2.2.43)

n j σ ′ n 1 -σ ′ has to be replaced by n j -σ ′ n 1 σ ′
. This concludes the proof of the fact that c belongs to S d-ι,ν+ι

(k ′ +k ′′ ),N0 (σ, ζ, B, D • ). Define now c(u; x, n) = j≥k cj (u, . . . , u; x, n) cj (u 1 , . . . , u j ; x, n) = j ′ +j ′′ =j j ′ j ′′ a j ′ W j ′′ u 1 , . . . , u j ′′ , (1 -χ) D n u j ′′ +1 , u j ′′ +2 , . . . , u j ; x, n S (2.2.44)
and set

M j (u 1 , . . . , u j ) = Op χ [c j (u 1 , . . . , u j ; •)] M (u) = j≥k M j (u, . . . , u j ). (2.2.45) Let σ ′ ≥ ν + 3 + max(ζ, d ′ + +d ′′ 3 ). Using (2.1.38) for Op χ [a j ′ (u; •)], we bound (2.2.46) Π n0 M j (Π n1 u 1 , . . . , Π nj u j )Π nj+1 L(L 2 )
by the sum for j ′ + j ′′ = j and

n ′ 0 ∈ Z of (2.2.47) C 0 D N N d ′ ,ν (k ′ ),N0 (σ, ζ, B, D • ; a)j ′ j ′′ (k ′ + j ′ -1)! (j ′ + 1)! c(j ′ )B j ′ n j+1 d ′ +(ν+N -σ ′ )+ n 0 -n j+1 N multiplied by n ′ 0 σ ′ Π n ′ 0 W j ′′ (Π n1 u 1 , . . . , Π n j ′′ u j ′′ , (1 -χ) D n j+1 Π n j ′′ +1 u j ′′ +1 ) L 2 × j ℓ ′ =j ′′ +2 n ℓ ′ σ ′ Π n ℓ ′ u ℓ ′ L 2 .
( 

|n ′ 0 |, |n 2 |, . . . , |n j ′′ | ≤ C n j ′′ +1 and n j ′′ +1 ∼ n 1 .
Finally, the cut-off 1χ in (2.2.48) implies that |n j ′′ +1 | ≥ c n j+1 for some c > 0. Altogether, these inequalities show that n j ′′ +1 ≥ c n ℓ for any ℓ = 0, . . . , j.

Consequently, to prove that M j (u 1 , . . . , u j ) is in Λ

d ′ + +d ′′ ,ν+1 (k,j) (σ, ζ, B) we have to obtain (2.1.40) with ℓ = j ′′ + 1, ν replaced by ν + 1.
We estimate (2.2.48) using (2.2.26) with ℓ = 1. We obtain a bound given by (2.2.24) multiplied by

n ′ 0 2σ ′ n j ′′ +1 d ′′ +ν-σ ′ n 1 -2σ ′ j ℓ ′ =1 n ℓ ′ σ ′ Π n ℓ ′ u ℓ ′ L 2 .
By (2.2.50), n j ′′ +1 ∼ n 1 . Going back to the estimate of (2.2.46) by the product of (2.2.47) -where we take N = 0 -and of (2.2.48), we see that

Π n0 M j (Π n1 u 1 , . . . , Π nj u j )Π nj+1 L(L 2
) is bounded by the sum for j ′ + j ′′ = j and n ′ 0 ∈ Z of the product of

K 2 C 0 D 0 N d ′ ,ν (k ′ ),N0 (σ, ζ, B, D • ; a)N d ′′ ,ν (k ′′ ),N0 (σ, ζ, B, D • ; b) ×j ′ j ′′ (k ′ + j ′ -1)! (j ′ + 1)! (k ′′ + j ′′ -1)! (j ′′ + 1)! c(j ′ )c(j ′′ )B j (2.2.51)
and of (2.2.52)

n j+1 d ′ n ′ 0 2σ ′ n j ′′ +1 d ′′ +ν-3σ ′ n 0 -σ ′ n j+1 -σ ′ j+1 ℓ ′ =0 n ℓ ′ σ ′ j ℓ ′ =1 Π n ℓ ′ u ℓ ′ L 2 .
Using that by (2.2.49) 

n ′ 0 ≤ n j+1 ∼ n 0 , the sum in n ′ 0 of n ′ 0 2σ ′ n 0 -σ ′ n j+1 -σ ′ is smaller than C n j+1 ≤ C n j ′′ +1 . If

Composition and transpose of operators

In this section, we shall study Op χ [a(u;

•)] • Op χ [b(u; •)] and t Op χ [a(u; •)] where a ∈ S d ′ ,ν (k ′ ),N0 (σ, ζ, B, D • ) and b ∈ S d ′′ ,ν (k ′′ ),N0 (σ, ζ, B, D • ). Theorem 2.3.1. -Let d ′ , d ′′ ∈ R, N 0 ∈ N, ν, ζ ∈ R + , k ′ , k ′′ ∈ N * , σ ∈ R with σ ≥ N 0 +ν +ζ +2, B > 0. Let D • be a (ν +|d ′ |+|d ′′ |+σ, N 0 +1)-conveniently increasing sequence. Assume that the constant K 0 in (2.1.17) satisfies K 0 ≥ 100(2D 0 + 1). (i) For any a ∈ S d ′ ,ν (k ′ ),N0 (σ, ζ, B, D • ), b ∈ S d ′′ ,ν (k ′′ ),N0 (σ, ζ, B, D • ), the product ab ∈ S d,ν (k),N0 (σ, ζ, B, D • ) with d = d ′ + d ′′ , k = k ′ + k ′′ . Moreover (2.3.1) N d,ν (k),N0 (σ, ζ, B, D • ; ab) ≤ 1 100 N d ′ ,ν (k ′ ),N0 (σ, ζ, B, D • ; a)N d ′′ ,ν (k ′′ ),N0 (σ, ζ, B, D • ; b). (ii) Assume σ ≥ N 0 +ν+5+max(ζ, d+ 3 ). There is a (ν+N 0 +3+|d ′ |+|d ′′ |+σ, N 0 +1)- conveniently increasing sequence D• , a symbol e ∈ S d-1,ν+N0+3 (k),N0 (σ, ζ, B, D• ) and an operator M ∈ L d+,ν+N0+3 (k) (σ, ζ, B) such that (2.3.2) Op χ [a(u; •)] • Op χ [b(u; •)] = Op χ [ab(u; •)] + Op χ [e(u; •)] + M (u).
Proof of (i). -Decompose a(u; x, n) = j ′ ≥k ′ a j ′ (u, . . . , u; x, n), b(u; x, n) = j ′′ ≥k ′′ b j ′′ (u, . . . , u; x, n) according to definition 2.1.5. Then

ab = j≥k c j (u, . . . , u; x, n) with c j (u 1 , . . . , u j ; x, n) = j ′ +j ′′ =j [a j ′ (u 1 , . . . , u j ′ ; x, n)b j ′′ (u j ′ +1 , . . . , u j ; x, n)] S
where S stands for symmetrization in (u 1 , . . . , u j ). Let α, β ∈ N with α + β = p, and compute ∂ α x ∂ β n (a j ′ b j ′′ ) using (2.1.10). Let us prove upper bounds of type (2.1.20).

Let σ ′ ∈ [ν + ζ + 2, σ]. When we estimate (∂ α x ∂ β n a j ′ )b j ′′ or a j ′ (∂ α x ∂ β n b j ′′ ) from (2.1.20
) for a j ′ , b j ′′ , we get a bound given by the product of

(2.3.3) N d ′ ,ν (k ′ ),N0 (σ, ζ, B, D • ; a)N d ′′ ,ν (k ′′ ),N0 (σ, ζ, B, D • ; b) and of (k ′ + j ′ -1)! (j ′ + 1)! (k ′′ + j ′′ -1)! (j ′′ + 1)! B j c(j ′ )c(j ′′ )D p D 0 n d-β+(α+ν+N0β-σ ′ )+ × j ℓ=1 n ℓ σ ′ Π n ℓ u ℓ L 2 .
(2.3.4)

If we sum for j ′ + j ′′ = j and use (2.1.16) and (2.1.17), we obtain a bound given by the product of (2.3.3) and of (2.3.5)

D 0 K 0 (k + j -1)! (j + 1)! B j c(j)D p n d-β+(α+ν+N0β-σ ′ )+ j ℓ=1 n ℓ σ ′ Π n ℓ u ℓ L 2 .
Consider now a contribution to ∂ α x ∂ β n (a j ′ b j ′′ ) corresponding to terms in the sum in (2.1.10) i.e.

(2.3.6)

| ‹ C α,β α ′ ,β ′ ,γ ||(Id -τ 1 ) γ ∂ α ′ x ∂ β ′ n a j ′ ||∂ α-α ′ x ∂ β-β ′ n b j ′′ |.
By (2.1.20) for a j ′ and (2.1.34)

|(Id -τ 1 ) γ ∂ α ′ x ∂ β ′ n a j ′ | ≤ γ γ ′ =0 Ç γ γ ′ å N d ′ ,ν (k ′ ),N0 (σ, ζ, b, D • ; a) (k ′ + j ′ -1)! (j ′ + 1)! D α ′ +β ′ ×c(j ′ )B j ′ n -γ ′ d ′ -β ′ +(α ′ +ν+N0β ′ -σ ′ )+ ≤ 2 γ N d ′ ,ν (k ′ ),N0 (σ, ζ, b, D • ; a)(2 γ ) |d ′ |+β ′ +(α ′ +ν+N0β ′ -σ ′ )+ (k ′ + j ′ -1)! (j ′ + 1)! D α ′ +β ′ ×c(j ′ )B j ′ n d ′ -β ′ +(α ′ +ν+N0β ′ -σ ′ )+ (2.3.7)
Using also (2.1.20) to estimate the b j ′′ contribution, we bound (2.3.6) by the product of (2.3.3) and of

2 p | ‹ C α,β α ′ ,β ′ ,γ |(2 γ ) |d ′ |+β ′ +(α ′ +ν+N0β ′ -σ ′ )+ D α ′ +β ′ D p-(α ′ +β ′ ) × (k ′ + j ′ -1)! (j ′ + 1)! (k ′′ + j ′′ -1)! (j ′′ + 1)! c(j ′ )c(j ′′ )B j n d-β+(α+ν+N0β-σ ′ )+ × j ℓ=1 n ℓ σ ′ Π n ℓ u ℓ L 2 (2.3.8) 
where we have used

(α ′ + ν + N 0 β ′ -σ ′ ) + + (α ′′ + ν + N 0 β ′′ -σ ′ ) + ≤ (α + ν + N 0 β -σ ′ ) + since σ ′ ≥ ν.
Remark that the first line in (2.3.8) is smaller than

2 p | ‹ C α,β α ′ ,β ′ ,γ |(2 p ) |d ′ |+ν+p(N0+1) D α ′ +β ′ D p-(α ′ +β ′ )
and so the sum in α ′ , β ′ , γ of these quantities will be bounded, according to (2.1.13) and the assumptions by D p . Summing also (2.3.8) for j ′ + j ′′ = j, we get a bound of form (2.3.5) with D0 K0 replaced by 

α-α ′ x ∂ β-β ′ n b j ′′ .
This concludes the proof of assertion (i) of the theorem.

Remark. -When we estimate the sum for j ′ + j ′′ = j in (2.3.4), (2.3.8), we may use the first inequality in (2.1.16). In that way, we get a bound for c j in terms of

(k-1+j-1)! (j+1)!
i.e. we have, instead of (2.3.1)

(2.3.9) N d,ν (k-1),N0 (σ, ζ, B, D • ; ab) ≤ N d ′ ,ν (k ′ ),N0 (σ, ζ, B, D • ; a)N d ′′ ,ν (k ′′ ),N0 (σ, ζ, B, D • ; b).
Before proving (ii) of the theorem, let us establish some intermediate results. 

u; x, ℓ, n) = j ′ ≥k ′ ãj ′ (u, . . . , u j ′ ; x, ℓ, n), b(u; x, y, n) = j ′′ ≥k ′′ bj ′′ (u, . . . , u j ′′ ; x, y, n)
be formal series defined in terms of multi-linear maps satisfying the following conditions:

∂ α x ∂ β1 n ∂ β2 ℓ ãj ′ (Π n1 u 1 , . . . , Π n j ′ u j ′ ; x, ℓ, n) with β 1 + β 2 = β, α + β = p (resp. ∂ α1 x ∂ α2 y ∂ β n bj ′′ (Π n1 u 1 , . . . , Π n j ′′ u j ′′ ; x, y, n) with α 1 + α 2 = α, α + β = p) satisfies (2.1.20) and (2.1.21) with d, j, k, ν replaced by d′ , j ′ , k ′ , ν ′ (resp. d′′ , j ′′ , k ′′ , ν ′ ). Assume moreover that ãj ′ (Π n1 u 1 , . . . , Π n j ′ u j ′ ; x, ℓ, n) ≡ 0 (resp. bj ′′ (Π n1 u 1 , . . . , Π n j ′′ u j ′′ ; x, y, n) ≡ 0) if max i=1,...,j ′ (|n i |) > 1 2 |n| or if |ℓ| > 1 2 n (resp. if max i=1,...,j ′′ (|n i |) > 1 4 |n|).
Assume also that the x-Fourier transform of these functions is supported in the interval of Z of center 0, and radius 1 2 n . Define Proof. -We define cj (u 1 , . . . ,

u j ; x, n) = j ′ +j ′′ =j j ′ ≥k ′ ,j ′′ ≥k ′′ +∞ ℓ=-∞ 1 2π S 1 e -iℓy [ã j ′ (u 1 , . . . , u j ′ ; x, ℓ, n) × bj ′′ (u j ′ +1 , . . . , u j ; x, y, n)] S dy (2.3.12)
where S denotes symmetrization in (u 1 , . . . , u j ). Let p ∈ N and for (α,

β) ∈ N × N with α + β = p, 0 ≤ α ′ ≤ α, 0 ≤ β ′ ≤ β, 0 ≤ γ ≤ β, set Γ α,β,ℓ α ′ ,β ′ ,γ (ã j ′ , bj ′′ ) = S 1 e -iℓy [(Id -τ 1 ) γ ∂ α ′ x ∂ β ′ n ãj ′ (u 1 , . . . , u j ′ ; x, ℓ, n)] ×∂ α-α ′ x ∂ β-β ′ n bj ′′ (u j ′ +1 , . . . , u j ; x, y, n)dy (2.3.13) when 0 < α ′ + β ′ < p, (2.3.14) Γ α,β,ℓ 0,0 (ã j ′ , bj ′′ ) = S 1
e -iℓy ãj ′ (u 1 , . . . , u j ′ ; x, ℓ, n)∂ α x ∂ β n bj ′′ (u j ′ +1 , . . . , u j ; x, y, n)dy and denote by Γ α,β,ℓ α,β (ã j ′ , bj ′′ ) the quantity of the same form obtained when all derivatives fall on ãj ′ . By (2.1.10)

∂ α x ∂ β n cj (u 1 , . . . , u j ; x, n) = 1 2π j ′ +j ′′ =j +∞ ℓ=-∞ Γ α,β,ℓ 0,0 (ã j ′ , bj ′′ ) + Γ α,β,ℓ α,β (ã j ′ , bj ′′ ) + 0≤α ′ ≤α,0≤β ′ ≤β 0≤γ≤β,0<α ′ +β ′ <p ‹ C α,β α ′ ,β ′ ,γ Γ α,β,ℓ α ′ ,β ′ ,γ (ã j ′ , bj ′′ ) . (2.3.15)
Let us estimate (2.3.15). We make in (2.3.13), (2.3.14) two integrations by parts using the vector field L = 1-ℓDy 1+ℓ 2 . In that way, we gain a ℓ -2 factor in the integral and lose on bj ′′ up to two 

∂ y -derivatives. We use that (Id -τ 1 ) γ ∂ α ′ x ∂ β ′ n ãj ′ (resp. ∂ α ′′ x ∂ β ′′ n ∂ δ y bj ′′ (δ = 0, 1, 2 
(k ′ ),N0 (σ, ζ, B, D • ; ã)N d′′ ,ν (k ′′ ),N0 (σ, ζ, B, D • ; b) and of C(p) ℓ -2 c(j ′ ) (k ′ + j ′ -1)! (j ′ + 1)! B j ′ D α ′ +β ′ n d′ -β ′ +(α ′ +ν ′ +N0β ′ -σ ′ )+ ×c(j ′′ ) (k ′′ + j ′′ -1)! (j ′′ + 1)! B j ′′ D α ′′ +β ′′ +2 n d′′ -β ′′ +(α ′′ +2+ν ′ +N0β ′′ -σ ′ )+ × j ℓ ′ =1 n ℓ ′ σ ′ Π n ℓ ′ u ℓ ′ L 2 (2.3.17)
for some constant C(p) depending on d′ , d′′ , ν, σ, N 0 and for any σ ′ in the interval

[ν ′ + ζ + 2, σ]. We remark that (2.3.18) (α ′ +ν ′ +N 0 β ′ -σ ′ ) + +(α ′′ +2+ν ′ +N 0 β ′′ -σ ′ ) + ≤ (α +ν ′ +2+N 0 β -σ ′ ) + since σ ′ ≥ ν ′ . Summing (2.
3.17) for j ′ + j ′′ = j, ℓ ∈ Z, using (2.1.16), (2.1.17) we obtain a bound given by the product of (2.3.16) and of

c(j) j (k + j -1)! (j + 1)! B j Dp n d-β+(α+N0β+ν ′ +2-σ ′ )+ × j ℓ ′ =1 n ℓ ′ σ ′ Π n ℓ ′ u ℓ ′ L 2 (2.3.19)
for a new constant Dp depending on p but not on j. This gives an estimate of type (2.1.20) for cj . To get an estimate of form (2.1.21), we argue in the same way, bounding either a j ′ or b j ′′ using (2.1.20) and the other one using (2.1.21). The only difference is that we have to replace (2.3.18) by either

(α ′ + ν ′ + N 0 β ′ -σ ′ ) + + α ′′ + ν ′ + N 0 β ′′ + 2 + σ ′ ≤ α + ν ′ + 2 + N 0 β + σ ′ or α ′ + ν ′ + N 0 β ′ + σ ′ + (α ′′ + 2 + ν ′ + N 0 β ′′ -σ ′ ) + ≤ α + ν ′ + 2 + N 0 β + σ ′
which again holds true because σ ′ ≥ ν ′ . This concludes the proof of the proposition.

End of proof of theorem 2.3.1. -(ii) We have by definition

Op χ [a(u; •)] • Op χ [b(u; •)] = Op[c(u; •)] where (2.3.20) c(u; x, n) = 1 2π +∞ ℓ=-∞ e -iℓy a χ (u; x, n -ℓ)b χ (u; x -y, n)dy.
Since the Fourier transform of x → b χ (u; x, n) is supported inside {ℓ; ℓ n ∈ Supp χ}, we may insert inside the sum in (2.3.20) 

a factor χ(ℓ/ n ) for some cut-off function χ ∈ C ∞ 0 (] -1/2, 1/2[), χ ≡ 1 close to Supp χ. We may then write c(u; x, n) -(a χ b χ )(u; x, n) = 1 2π +∞ ℓ=-∞ e -iℓy χ ℓ n a χ (u; x, n -ℓ)[b χ (u; x -y, n) -b χ (u; x, n)]dy. (2.3.21) Define b(u; x, y, n) = b χ (u; x -y, n) -b χ (u; x, n) 1 -e -iy ã(u; x, ℓ, n) = ∂ ℓ χ ℓ n a χ (u; x, n -ℓ) (2 
; x, n) = n1 • • • nj θ max(|n 1 |, . . . , |n j |) n c(Π n1 u 1 , . . . , Π nj u j ; x, n) where θ ∈ C ∞ 0 (]-1 4 , 1 4 [), θ ≡ 1 close to zero, 0 ≤ θ ≤ 1.
Then, at the difference of c, e j satisfies the support condition (2.1.19). Moreover, if we apply (2.1.39) to a = cje j , choosing as a special index ℓ one for which |n ℓ | ≥ c n , we deduce from (2.1.39) a bound of type (2.1.40), so that Op χ [c(u;

•)] -Op χ [e(u; •)] is of form M (u).
To show that (2.3.24) holds true, it remains to prove, because of (2.3.23), that

(2.3.25) Op[a χ b χ (u; •)] -Op χ [ab(u; •)]
may be written as another contribution of type M (u). Since

a χ b χ -(ab) χ = [a χ b χ -(a χ b χ ) χ ] + [(a χ -a)b χ ] χ + [a(b χ -b)] χ
and since we may again apply to the first term in the right hand side and to a χa, b χb the example following definition 2.1.11, we conclude again that (2.3.25) contributes to M (u) in (2.3.2). This ends the proof of the theorem.

Let us study transpose of operators.

Proposition 2.3.3. -Let d ∈ R, ν, ζ ∈ R + , k ∈ N * , N 0 ∈ N, σ ≥ ν + N 0 + 5 + max(ζ, d+ 3 ), B > 0, D • a (|d| + σ + ν, N 0 + 1)-conveniently increasing sequence. Let a ∈ S d,ν (k),N0 (σ, ζ, B, D • ) and denote (2.3.26) a ∨ (u; x, n) = a(u; x, -n).
There is a (|d| + σ + ν + N 0 + 3, N 0 + 1)-conveniently increasing sequence D• , depending only on D • , d, ν, σ, N 0 , a symbol e in S d-1,ν+N0+3

(k),N0 (σ, ζ, B, D• ) and M ∈ L d+,ν+N0+3 (k) 
(σ, ζ, B) such that

(2.3.27) t Op χ [a(u; •)] = Op χ [a ∨ (u; •)] + Op χ [e(u; •)] + M (u).
Proof. -We may write t Op χ [a(u;

•)] = Op[c(u; •)] where (2.3.28) c(u; x, n) = 1 2π +∞ ℓ=-∞ S 1
e -iℓy a χ (u; xy, -n + ℓ)dy.

We have (2.3.29)

c(u; x, n) -a ∨ χ (u; x, n) = 1 2π +∞ ℓ=-∞ S 1 e -iℓy [a χ (u; x -y, -n + ℓ) -a χ (u, x, -n + ℓ)]dy. Define ã(u; x, y, n) = aχ(u;x-y,n)-aχ(u;x,n) 1-e -iy
. Then (2.3.29) may be written 

(2.3.30) 1 2π +∞ ℓ=-∞ S 1 e -iℓy ∂ ℓ [ã(u; x, y, -n + ℓ)]dy. Since in (2.3.29), χ ∈ C ∞ 0 (] -1 4 , 1 4 [),
ℓ -2 Cc(j) (k + j -1)! (j + 1)! D p+4 B j n d-1-β+(α+3+ν+N0+N0β-σ ′ )+ × j ℓ ′ =1 Π n ℓ ′ u ℓ ′ L 2 n ℓ ′ σ ′
where the replacement of ν by ν + N 0 + 3 comes from the losses due to one ∂ ℓ and up to three ∂ y derivatives. We get in that way the estimate (2.1.20) of a symbol in Σ d-1,ν+N0+3 with e, M satisfying the conditions of the statement of the proposition.

(k,j),N0 (σ, 

Analytic functions of zero order symbols

We shall establish a stability property for symbols of order zero under composition with an analytic function. Let k ∈ N * be given, ν ∈ R + , σ ≥ ν + 2, B > 0, D • a (ν + σ, 1)-conveniently increasing sequence. If a symbol a is in S 0,ν (k),0 (σ, 0, B, D • ), we may also consider it as an element of S 0,ν (1),0 (σ, 0, 2B, D • ) since in (2.1.20), (2.1.21) we may write

(k + j -1)! (j + 1)! B j ≤ (k -1)! j + 1 2 k-1 (2B) j
and we have

(2.4.1) N 0,ν (1),0 (σ, 0, 2B, D • ; a) ≤ (k -1)!2 k-1 N 0,ν (k),0 (σ, 0, B, D • ; a).
Proposition 2.4.1. -Let F be an analytic function defined on a neighborhood of zero in C, satisfying

F (0) = 0, |F (ℓ) (0)| ≤ R -ℓ-1 ℓ! for some R > 0. Let a ∈ S 0,ν (k),0 (σ, 0, B, D • ) with N 0,ν (k),0 (σ, 0, B, D • ; a)(k-1)!2 k-1 < R. Assume that the constant K 0 of (2.1.17) satisfies K 0 ≥ 2D 0 + 1. Then F (a) ∈ S 0,ν (k),0 (σ, 0, 2B, D • ). Proof. -We write (2.4.2) F (a) = +∞ ℓ=1 F (ℓ) (0) ℓ! a ℓ .
According to (2.4.1), we may consider, in a product a ℓ , one of the factors as an element of S 0,ν (k),0 (σ, 0, B, D • ) and the other ones as symbols in S 0,ν (1),0 (σ, 0, 2B, D • ), so that, by (i) of theorem 2.3.1 and (2.3.9), a ℓ ∈ S 0,ν (k),0 (σ, 0, 2B,

D • ) with (2.4.3) N 0,ν (k),0 (σ, 0, 2B, D • ; a ℓ ) ≤ [(k -1)!2 k-1 ] ℓ-1 N 0,ν (k),0 (σ, 0, B, D • ; a) ℓ .
We decompose each a ℓ = j≥k a ℓ,j (u, . . . , u; x, n) and write (2.4.4)

F (a) = j≥k c j (u, . . . , u; x, n) with (2.4.5) c j (u 1 , . . . , u j ; x, n) = +∞ ℓ=1 F (ℓ) (0) ℓ! a ℓ,j (u 1 , . . . , u j ; x, n).
We have to show that c j satisfies ( 

|F (ℓ) (0)| ℓ! [(k -1)!2 k-1 ] ℓ-1 N 0,ν (k),0 (σ, 0, B, D • ; a) ℓ × (k + j -1)! (j + 1)! c(j)(2B) j D p n -β+(α+ν-σ ′ )+ j ℓ ′ =0 n ℓ ′ σ ′ Π n ℓ ′ u ℓ ′ L 2
where p = α + β. The choice of R implies convergence of the series. One obtains estimates of type (2.1.21) in the same way.

CHAPTER 3 COMPOSITION AND POISSON BRACKETS

The aim of this chapter is to study composition of operators associated to symbols with remainder maps, and to apply this to Poisson brackets of functions defined in terms of such operators.

External composition with a remainder map

Proposition 3.1.1. -Let d ′ , d ′′ ∈ R + , d = d ′ + d ′′ , ν, ζ ∈ R + , σ ∈ R, σ ≥ ν + 2 + max(ζ, d 3 ), B > 0, k ′ , k ′′ ∈ N * , N 0 ∈ N, D • a (d + ν + σ, N 0 + 1)
-conveniently increasing sequence. Assume that the constant K 0 of (2.1.17) is large enough.

(i) Let M ′ ∈ L d ′ ,ν (k ′ ) (σ, ζ, B), M ′′ ∈ L d ′′ ,ν (k ′′ ) (σ, ζ, B). Then M ′ (u) • M ′′ (u) belongs to L d,ν (k) (σ, ζ, B) where k = k ′ + k ′′ and (3.1.1) N d,ν (k) (σ, ζ, B; M ′ • M ′′ ) ≤ N d ′ ,ν (k ′ ) (σ, ζ, B; M ′ )N d ′′ ,ν (k ′′ ) (σ, ζ, B; M ′′ ). (ii) Let a ∈ S d ′ ,ν (k ′ ),N0 (σ, ζ, B, D • ) and M ′′ ∈ L d ′′ ,ν (k ′′ ) (σ, ζ, B). Then Op χ [a(u; •)] • M ′′ (u) belongs to L d,ν (k) (σ, ζ, B) and (3.1.2) N d,ν (k) (σ, ζ, B; Op χ [a(u; •)] • M ′′ ) ≤ N d ′ ,ν (k ′ ),N0 (σ, ζ, B, D • ; a)N d ′′ ,ν (k ′′ ) (σ, ζ, B; M ′′ ) if K 0 is large enough relatively to D 2 , σ, d. (iii) Under the same assumption as in (ii), M ′′ (u) • Op χ [a(u; •)] belongs to L d,ν (k) (σ, ζ, B) and and N d,ν (k) (σ, ζ, B; M ′′ • Op χ [a(u; •)]
) is bounded by the right hand side of (3.1.2).

Moreover conclusions (i), (ii), (iii) above hold true more generally if we assume that M ′ , M ′′ (resp. a) is given instead of (2.1.41) (resp. (2.1.27)) by a series

M ′ (u) = j ′ ≥k ′ j ′ M ′ j ′ (u, . . . , u), M ′′ (u) = j ′′ ≥k ′′ j ′′ M ′′ j ′′ (u, . . . , u) (resp. a(u; x, n) = j ′ ≥k ′ j ′ a j ′ (u, . . . , u; x, n)) with M ′ j ′ ∈ Λ d ′ ,ν (k ′ ,j ′ ) (σ, ζ, B), M ′′ j ′′ ∈ Λ d ′′ ,ν (k ′′ ,j ′′ ) (σ, ζ, B) (resp. a j ∈ Σ d ′ ,ν (k ′ ,j ′ ),N0 (σ, ζ, B, D • )) satisfying estimates (2.1.42) (resp. (2.1.28)).
Remark. -Let us explain, before starting the proof, why we allow, in the last part of the statement, series of form j ′ j ′ M j ′ , j ′ j ′ a j ′ . It turns out that we shall be using proposition 3.1.1 to estimate Poisson brackets of functions given for instance by expressions of type M ′ (u)u, u . These brackets will be expressed from the (symplectic) gradient of such functions, so in particular from J∇M ′ (u)u, u . Because of the homogeneity of each component of M ′ (u), the gradient acting on it makes lose a factor j ′ on the j ′ -th component.

Proof. -We prove the proposition using for M ′ , M ′′ the more general expressions of the end of the statement.

(i) We decompose

M ′ (u) = j ′ ≥k ′ j ′ M ′ j ′ (u, . . . , u), M ′′ (u) = j ′′ ≥k ′′ j ′′ M ′′ j ′′ (u, . . . , u)
and define

(3.1.3) M j (u 1 , . . . , u j ) = j ′ +j ′′ =j [j ′ M ′ j ′ (u 1 , . . . , u j ′ ) • (j ′′ M ′′ j ′′ (u j ′ +1 , . . . , u j ))] S
where S stands for symmetrization. We bound, denoting

Π n ′ U ′ = (Π n1 u 1 , . . . , Π n j ′ u j ′ ), Π n ′′ U ′′ = (Π n j ′ +1 u j ′ +1 , . . . , Π nj u j )
and forgetting symmetrization to simplify notations

Π n0 M j (Π n1 u 1 , . . . , Π nj u j )Π nj+1 L(L 2 ) ≤ n∈Z j ′ +j ′′ =j j ′ j ′′ Π n0 M ′ j ′ (Π n ′ U ′ )Π n L(L 2 ) Π n M ′′ j ′′ (Π n ′′ U ′′ )Π nj+1 L(L 2 ) . (3.1.4)
We apply (2.1.40) to both factors in the above sum. We bound in this way the right hand side of (3.1.4) by the sum in n and in j ′ + j ′′ = j of the product of the right hand side of (3.1.1) and of

j ′ (k ′ + j ′ -1)! (j ′ + 1)! j ′′ (k ′′ + j ′′ -1)! (j ′′ + 1)! B j c(j ′ )c(j ′′ ) × n 2σ ′ max(|n 0 |, . . . , |n j ′ |, |n|) -3σ ′ +d ′ +ν max(|n|, |n j ′ +1 |, . . . , |n j |) -3σ ′ +d ′′ +ν × j+1 ℓ ′ =0 n ℓ ′ σ ′ j ℓ ′ =1 Π n ℓ ′ u ℓ ′ L 2 .
Since d ′ +d ′′ 3 + ν + 2 ≤ σ ′ , the n sum of the factor between brackets is bounded by

C 0 max(|n 0 |, . . . , |n j |) -3σ ′ +d+ν .
Using then (2.1.16), (2.1.17) when summing for j ′ + j ′′ = j, we conclude that

M j ∈ Λ d,ν (k,j) (σ, ζ, B), and (3.1.1) holds if K -1 0 C 0 ≤ 1.
(ii) We decompose as above M ′′ (u) = j ′′ ≥k ′′ j ′′ M ′′ j ′′ (u, . . . , u) and, according to (2.1.27), a(u, •) = j ′ ≥k ′ j ′ a j ′ (u, . . . , u; •). Set

M j (u 1 , . . . , u j ) = j ′ +j ′′ =j j ′ j ′′ [Op χ [a j ′ (u 1 , . . . , u j ′ ; •)] • M ′′ j ′′ (u j ′ +1 , . . . , u j )] S .
We need to bound, instead of (3.1.4), (3.1.5)

n∈Z j ′ +j ′′ =j j ′ Π n0 Op χ [a j ′ (Π n ′ U ′ ; •)]Π n L(L 2 ) j ′′ Π n M ′′ j ′′ (Π n ′′ U ′′ )Π nj+1 L(L 2 ) .
Let ℓ be such that |n ℓ | ≥ |n ℓ ′ | for any 0 ≤ ℓ ′ ≤ j + 1. To prove for (3.1.5) an estimate of type (2.1.40) when ℓ = 0 or j ′ + 1 ≤ ℓ ≤ j + 1 we apply to the first (resp. second) factor above inequality (2.1.38) with N = 2 (resp. inequality (2.1.40)). We get a bound given by the right hand side of (3.1.2) times

C 0 D 2 j ′ (k ′ + j ′ -1)! (j ′ + 1)! j ′′ (k ′′ + j ′′ -1)! (j ′′ + 1)! B j c(j ′ )c(j ′′ ) n 0 -n -2 × n d ′ n ℓ -3σ+ν+d ′′ j+1 ℓ ′ =0 n ℓ ′ σ j ℓ ′ =1 Π n ℓ ′ u ℓ ′ L 2 (3.1.6) 
(where we have applied (2.1.40) to M ′′ j ′′ with the special index taken to be n ℓ when ℓ = j ′ + 1, . . . , j + 1, and taken to be n when ℓ = 0, using that in this case n 0 ∼ n ), C 0 being a constant depending on σ, ν, d. Since n

d ′ ≤ C n 0 d ′ ≤ C n ℓ d ′
, we obtain summing in n and in j ′ + j ′′ = j, and using (2.1.16), (2.1.17) an estimate of form (2.1.40), if K 0 is large enough relatively to D 2 , σ, d, ν. To conclude the proof, we just need to note that estimate (2.1.40) with ℓ = 0 implies the same estimate for any ℓ between 1 and j ′ , since the support condition (2.1.19) satisfied by a j ′ implies that |n ℓ | ≤ 2|n 0 |, ℓ = 1, . . . , j ′ .

(iii) The proof is similar.

Substitution

We study in this section the effect of substituting to one argument of a symbol a quantity of form M (u)u, where M is a remainder operator.

Proposition 3.2.1. -Let d ′ , d ′′ ∈ R + , d = d ′ + d ′′ , ι = min(1, d ′′ ), ν, ζ ∈ R + , σ ≥ ν + max(ζ, d 3 ) + 3, B > 0, N 0 ∈ N, D • a (σ + d ′ + ν, N 0 + 1)-conveniently increasing sequence, k ′ , k ′′ ∈ N * . For every a ∈ S d ′ ,ν (k ′ ),N0 (σ, ζ, B, D • ), for every M (u) = j ′′ ≥k ′′ j ′′ M j ′′ (u, . . . , u) with M j ′′ ∈ Λ d ′′ ,ν (k ′′ ,j ′′ ) (σ, ζ, B) and 
Ñd ′′ ,ν (k ′′ ) (σ, ζ, B; M ) def = sup j ′′ ≥k ′′ N d ′′ ,ν (k ′′ ,j ′′ ) (σ, ζ, B; M j ′′ ) < +∞, there are a symbol ã ∈ S d-ι,ν+ι (k),N0 (σ, ζ, B, D • ), with ζ = max(ζ, d 3 
), and an operator

M ∈ L d,ν+1 (k) (σ, ζ, B), with k = k ′ + k ′′ , such that (3.2.1) Op χ [∂ u a(u; •) • [M (u)u]] = Op χ [ã(u; •)] + M (u).
Moreover, if the constant K 0 in (2.1.17) is large enough relatively to σ,

N d-ι,ν+ι (k),N0 (σ, ζ, B, D • ; ã) ≤ N d ′ ,ν (k ′ ),N0 (σ, ζ, B, D • ; a) Ñd ′′ ,ν (k ′′ ) (σ, ζ, B; M ) N d,ν+1 (k) (σ, ζ, B; M ) ≤ N d ′ ,ν (k ′ ),N0 (σ, ζ, B, D • ; a) Ñd ′′ ,ν (k ′′ ) (σ, ζ, B; M ). (3.2.2) Proof. -We decompose a = j ′ ≥k ′ a j ′ (u, . . . , u; x, n), M (u) = j ′′ ≥k ′′ j ′′ M j ′′ (u, . . . , u) with a j ′ ∈ Σ d ′ ν (k ′ ,j ′ ),N0 (σ, ζ, B, D • ), M j ′′ ∈ Λ d ′′ ,ν (k ′′ ,j ′′ ) (σ, ζ, B). We write (3.2.3) M j ′′ (u 1 , . . . , u j ′′ ) = M 1 j ′′ (u 1 , . . . , u j ′′ , n) + M 2 j ′′ (u 1 , . . . , u j ′′ , n)
where

M 1 j ′′ (u 1 , . . . , u j ′′ , n) = n0 • • • n j ′′ +1 χ 1 max(|n 0 |, . . . , |n j ′′ +1 |) n ×Π n0 M j ′′ (Π n1 u 1 , . . . , Π n j ′′ u j ′′ )Π n j ′′ +1 (3.2.4) with χ 1 ∈ C ∞ 0 (R), χ 1 ≡ 1 close to zero, Supp χ 1 small enough, 0 ≤ χ 1 ≤ 1. Set M ℓ (u, n) = j ′′ ≥k ′′ M ℓ j ′′ (u, . . . , u, n) and decompose (3.2.5) (∂ u a)(u; x, n) • [M (u)u] = (∂ u a)(u; x, n) • [M 1 (u, n)u] + (∂ u a)(u; x, n) • [M 2 (u, n)u].
We study first M (u) = j≥k M j (u, . . . , u) where (3.2.6)

M j (u 1 , . . . , u j ) = j ′ +j ′′ =j j ′ j ′′ Op χ [a j ′ (u 1 , . . . , u j ′ -1 , M 2 j ′′ (u j ′ , . . . , u j-1 , •)u j ; •)] S
with S denoting symmetrization. Denote U ′ = (u 1 , . . . , u j ′ -1 ), U ′′ = (u j ′ , . . . , u j-1 ), n ′ = (n 1 , . . . , n j ′ -1 ), n ′′ = (n j ′ , . . . , n j-1 ) and use the natural notation 

Π n ′ U ′ , Π n ′′ U ′′ . Applying (2.1.38) with N = 0, we bound Π n0 M j (Π n1 u 1 , . . . , Π nj u j )Π nj+1 L(L 2 ) by the product of N d ′ ,ν (k ′ ),N0 (σ, ζ, B, D • ; a) and of C 0 D 0 +∞ n=-∞ j ′ +j ′′ =j j ′ (k ′ + j ′ -1)! (j ′ + 1)! c(j ′ )B j ′ n j+1 d ′ × j ′ -1 ℓ=1 n ℓ ′ σ ′ Π n ℓ ′ u ℓ ′ L 2 j ′′ n σ ′ Π n M 2 j ′′ (Π n ′′ U ′′ , n j+1 )Π nj u j L 2 . ( 3 
j ′′ (k ′′ + j ′′ -1)! (j ′′ + 1)! B j ′′ c(j ′′ ) n ℓ -3σ ′ +ν+d ′′ n 2σ ′ n 0 -σ ′ n j+1 -σ ′ × j+1 ℓ ′ =0 n ℓ ′ σ ′ j ℓ ′ =1 Π n ℓ ′ u ℓ ′ L 2 .
Plugging in (3.2.7), using (3.2.8), (3.2.9) and (2.1.16), (2.1.17) when summing for j ′ + j ′′ = j, we see that we obtain for Π n0 M j (Π n1 u 1 , . . . , Π nj u j )Π nj+1 L(L 2 ) bounds of form (2.1.40) with ν replaced by ν + 1. If the constant K 0 of (2.1.17) is large enough in function of d, σ, we get the second estimate (3.2.2). We are left with studying the contribution of the first term in the right hand side of (3.2.5) to (3.2.1). Let us show that ãj (u 1 , . . . , u j ; x, n) = j ′ +j ′′ =j j ′ j ′′ [a j ′ (u 1 , . . . , u j ′ -1 , M 1 j ′′ (u j ′ , . . . , u j-1 , n)u j ); x, n] S belongs to Σ d ′ +d ′′ -ι,ν+ι (k,j),N0

(σ, ζ, B, D • ). Forgetting again symmetrization in the notations, we have by (2.1.10), for α

+ β = p ∂ α x ∂ β n ãj (u 1 , . . . , u j ; x, n) = j ′ +j ′′ =j j ′ j ′′ (∂ α x ∂ β n a j ′ )[u 1 , . . . , u j ′ -1 , M 1 j ′′ (u j ′ , . . . , u j-1 , n)u j ; x, n] + j ′ +j ′′ =j 0≤β ′ <β 0≤γ≤β ‹ C α,β α,β ′ ,γ j ′ ((Id -τ 1 ) γ ∂ α x ∂ β ′ n a j ′ )[u 1 , . . . , u j ′ -1 , j ′′ ∂ β-β ′ n M 1 j ′′ (u j ′ , . . . , u j-1 , n)u j ); x, n].
(3.2.10)

We replace u ℓ by Π n ℓ u ℓ in (3.2.10), ℓ = 1, . . . , j. We note that if Supp χ 1 is small enough, the support property (2.1.19) will be verified by ãj . We write in (3.2.10)

M 1 j ′′ = n0 Π n0 M 1 j ′′ and note that by (3.2.4) ∂ β-β ′ n Π n0 M 1 j ′′ (Π n ′′ U ′′ , n)Π nj L(L 2 ) ≤ C β-β ′ (χ 1 ) n -(β-β ′ ) Π n0 M j ′′ (Π n ′′ U ′′ )Π nj L(L 2 ) (3.2.11)
for some sequence C • (χ 1 ) depending only on χ 1 , with C 0 (χ 1 ) = 1.

Let us bound the first term in the right hand side of (3.2.10). Let σ ′ ≥ ν + 2 + ι + max(ζ, d

3 ). Using (2.1.20) to estimate a j ′ and (2.1.40) to bound the last factor in (3.2.11), we obtain an estimate by the product of (3.2.12)

N d ′ ,ν (k ′ ),N0 (σ, ζ, B, D • ; a)N d ′′ ,ν (k ′′ ) (σ, ζ, B; M )
and of the sum in n 0 , j ′ + j ′′ = j of

j ′ (k ′ + j ′ -1)! (j ′ + 1)! j ′′ (k ′′ + j ′′ -1)! (j ′′ + 1)! c(j ′ )c(j ′′ )D p B j C 0 (χ 1 ) n d ′ -β+(α+ν+N0β-σ ′ )+ ×[ max(|n 0 |, |n j ′ |, . . . , |n j |) -3σ ′ +ν+d ′′ n 0 2σ ′ ] j ℓ ′ =0 n ℓ ′ σ ′ Π n ℓ ′ u ℓ ′ L 2 (3.2.13)
since by assumption σ ′ ≥ ν + 2 + max(ζ, d ′′ 3 ). Since -3σ ′ + ν + d ′′ ≤ 0, we bound the term between brackets by

C n 0 -σ ′ +ι+ν n 0 d ′′ -ι ≤ C n 0 -σ ′ +ι+ν n d ′′ -ι
(because of the cut-off χ 1 in (3.2.4)). Since σ ′ ≥ ν +ι+2, the sum in n 0 and j ′ +j ′′ = j of (3.2.13) will be smaller, by (2.1.16), (2.1.17) than the product of (3.2.12) and

(3.2.14) 1 2 D p (k + j -1)! (j + 1)! c(j)B j n d-ι-β+(α+ν+N0β-σ ′ )+ j ℓ ′ =0 n ℓ ′ σ ′ Π n ℓ ′ u ℓ ′ L 2
if the constant K 0 of (2.1.17) is large enough. To obtain estimates (2.1.20) for (3.2.10), we have to bound by (3.2.14) the second term in the right hand side of (3.2.10). We write (Id -

τ 1 ) γ = γ γ ′ =0 γ γ ′ (-1) γ ′ τ γ ′ 1
, estimate a j ′ using (2.1.20) and (2.1.34), and bound the right hand side of (3.2.11) using (2.1.40). We get for the second sum in (3.2.10) a bound given by the product of (3.2.12) and of the sum in n 0 and j ′ + j ′′ = j of 

0≤β ′ <β 0≤γ≤β ‹ C α,β α,β ′ ,γ Ç γ γ ′ å (2 γ ) d ′ +(N0+1)p × j ′ (k ′ + j ′ -1)! (j ′ + 1)! j ′′ (k ′′ + j ′′ -1)! (j ′′ + 1)! c(j ′ )c(j ′′ )D α+β ′ B j C β-β ′ (χ 1 ) × n d ′ -β+(α+ν+N0β-σ ′ )+ [ max(|n 0 |, |n j ′ |, . . . , |n j |) -3σ ′ +ν+d ′′ n 0 2σ ′ ] × j ℓ ′ =0 n ℓ ′ σ ′ Π n ℓ ′ u ℓ ′ L 2 . ( 3 
0≤β ′ <β 0≤γ≤β ‹ C α,β α,β ′ ,γ Ç γ γ ′ å (2 γ ) d ′ +(N0+1)p D α+β ′ C β-β ′ (χ 1 ) ≤ D p .
Using again (2.1.16) (2.1.17) we obtain for the sum in n 0 , j ′ + j ′′ = j of ( Π n ℓ u ℓ L 2 . We conclude then as above.

Assume next that the special index ℓ is between j ′ and j. We apply (2.1.21) to a j ′ , but we take the special index in this estimate to be the one corresponding to the last argument of a j ′ . We estimate the first term in the right hand side of (3.2.10). We use (3.2.11) and (2.1.40), in which we make appear the -3σ

′ + ν + d ′′ exponent on n ℓ if |n ℓ | ≥ |n 0 | and on n 0 if |n 0 | ≥ |n ℓ |.
We obtain an upper bound given by the product of (3.2.12) and of the sum in n 0 and j ′ + j ′′ = j of

j ′ (k ′ + j ′ -1)! (j ′ + 1)! j ′′ (k ′′ + j ′′ -1)! (j ′′ + 1)! c(j ′ )c(j ′′ )D α+β B j n d ′ -β+α+ν+N0β+σ ′ × j 1≤ℓ ′ ≤j ℓ ′ =ℓ n ℓ ′ σ ′ Π n ℓ ′ u ℓ ′ L 2 n ℓ -σ ′ Π n ℓ u ℓ L 2 max(|n 0 |, |n ℓ |) -σ ′ +ν+d ′′ . (3.2.17) We write max(|n 0 |, |n ℓ |) -σ ′ +ν+d ′′ ≤ n d ′′ -ι max(|n 0 |, |n ℓ |) -σ ′ +ν+ι
and sum next in n 0 (using σ ′ ≥ ν + ι + 2) and in j ′ + j ′′ = j (using (2.1.16), (2.1.17)) to obtain for (3.2.17) an estimate of type (3.2.14), where the power of n is now

d -ι -β + α + N 0 β + σ ′ + ν.
To estimate the last sum in (3.2.10), we proceed in the same way except that we have to use (3.2.7) to bound the powers of nγ coming from (Idτ 1 ) γ . We obtain an estimate

0≤β ′ <β 0≤γ≤β ‹ C α,β α,β ′ ,γ Ç γ γ ′ å (2 γ ) d ′ +ν+σ ′ +(N0+1)p ×j ′ (k ′ + j ′ -1)! (j ′ + 1)! j ′′ (k ′′ + j ′′ -1)! (j ′′ + 1)! c(j ′ )c(j ′′ )D α+β ′ B j C β-β ′ (χ 1 ) n d ′ -β+α+ν+N0β+σ ′ × j 1≤ℓ ′ ≤j ℓ ′ =ℓ n ℓ ′ σ ′ Π n ℓ ′ u ℓ ′ L 2 n ℓ -σ ′ Π n ℓ u ℓ L 2 max(|n 0 |, |n ℓ |) -σ ′ +ν+d ′′ (3.2.18)
We conclude as after (3.2.17) above, using (2.1.14) to obtain a bound of type (3.2.14) with a power of n given by dι -

β + α + N 0 β + σ ′ + ν.
This concludes the proof of the proposition.

Poisson brackets of functions

This section is devoted to the study of Poisson brackets of functions defined in terms of para-differential operators or of remainder operators. Let us fix some notation. We set (3.3.1)

I ′ = ñ 1 0 0 -1 ô , J = ñ 0 -1 1 0 ô , J ′ = ñ 0 1 1 0
ô so that any 2 × 2 matrix may be written as a scalar combination 

ρ in H s (S 1 ; R 2 ). Proposition 3.3.1. -Let ν ∈ R + , N 0 ∈ R + . There is ν ≥ ν and for any ζ ∈ R + , any d ′ , d ′′ ∈ N with d = d ′ + d ′′ ≥ 1 any σ ≥ ν + 2 + max(ζ, d
3 ), any (σ + ν + d, N 0 + 1)conveniently increasing sequence D • , there is a (σ+ ν +d, N 0 +1)-conveniently increasing sequence D• and for any B > 0, k ′ , k ′′ ∈ N * , for any

A ′ ∈ S d ′ ,ν (k ′ ),N0 (σ, ζ, B, D • ) ⊗ M 2 (R), A ′′ ∈ S d ′′ ,ν (k ′′ ),N0 (σ, ζ, B, D • ) ⊗ M 2 (R) with A ′ ∨ = A ′ , A ′′ ∨ = A ′′ , one may find A 1 ∈ S d,ν (k),N0 (σ, ζ, B, D • ) ⊗ M 2 (R), A 0 ∈ S d-1,ν (k),N0 (σ, ζ, B, D• ) ⊗ M 2 (R) and a map M ∈ L d,ν (k) (σ, ζ, B), with k = k ′ + k ′′ , such that { Op χ [A ′ (u; •)]u, u , Op χ [A ′′ (u; •)]u, u } = Op χ [A 1 (u; •)]u, u + Op χ [A 0 (u; •)]u, u + M (u)u, u (3.3.3)
and

A 1 ∨ = A 1 , A 0 ∨ = A 0 . Moreover (3.3.4) N d,ν (k),N0 (σ, ζ, B, D • ; A 1 ) ≤ N d ′ ,ν (k ′ ),N0 (σ, ζ, B, D • ; A ′ )N d ′′ ,ν (k ′′ ),N0 (σ, ζ, B, D • ; A ′′ ) and for a uniform constant C 0 , N d-1,ν (k),N0 (σ, ζ, B, D• ; A 0 )+N d,ν (k) (σ, ζ, B; M ) ≤ C 0 N d ′ ,ν (k ′ ),N0 (σ, ζ, B, D • ; A ′ )N d ′′ ,ν (k ′′ ),N0 (σ, ζ, B, D • ; A ′′ ). (3.3.5) Remark. -The assumptions A ′ ∨ = A ′ , A ′′ ∨ = A ′′ just mean that the operators Op χ [A ′ (u; •)], Op χ [A ′′ (u; •)
] send real valued functions to real valued functions.

We shall prove first a formula similar to (3.3.3) when the matrices A ′ (, •), A ′′ (u, •) are given by the product of a scalar symbol and a constant coefficient matrix.

Lemma 3.3.2. -Let d ′ , d ′′ ∈ R + , d = d ′ + d ′′ , ι ′ = min(d ′ , 1), ι ′′ = min(d ′′ , 1). Assume σ ≥ ν +ζ +3. Let E ′ , E ′′ be matrices of M 2 (R), e ′ ∈ S d ′ ,ν (k ′ ),N0 (σ, ζ, B, D • ), e ′′ ∈ S d ′′ ,ν (k ′′ ),N0 (σ, ζ, B, D • ).
One may find symbols

(3.3.6) ẽ′ ∈ S d-ι ′′ ,ν+ι ′′ (k),N0 (σ, ζ, B, D • ), ẽ′′ ∈ S d-ι ′ ,ν+ι ′ (k),N0 (σ, ζ, B, D • )
and a remainder map

M (u) ∈ L d,ν+1 (k) 
(σ, ζ, B),

such that { Op χ [e ′ (u; •)]E ′ u, u , Op χ [e ′′ (u; •)]E ′′ u, u } = [(Op χ [e ′ (u; •)]E ′ + t Op χ [e ′ (u; •)] t E ′ )J(Op χ [e ′′ (u; •)]E ′′ + t Op χ [e ′′ (u; •)] t E ′′ )]u, u + [Op χ [ẽ ′ (u; •)]E ′ + Op χ [ẽ ′′ (u; •)]E ′′ ]u, u + M (u)u, u . (3.3.7) Moreover N d-ι ′′ ,ν+ι ′′ (k),N0 (σ, ζ, B, D • ; ẽ′ ) (resp. N d-ι ′ ,ν+ι ′ (k),N0 (σ, ζ, B, D • ; ẽ′′ )) may be esti- mated by C 0 [N d ′ ,ν (k ′ ),N0 (σ, ζ, B, D • ; e ′ )N d ′′ ,ν (k ′′ ),N0 (σ, ζ, B, D • ; e ′′ )] for some universal constant C 0 . Proof. -Denote C 1 (u) = Op χ [e ′ (u; •)]E ′ , C 2 (u) = Op χ [e ′′ (u; •)]E ′′ and set C 1 (u) = C 1 (u) + t C 1 (u), C 2 (u) = C 2 (u) + t C 2 (u).
If we apply (2.2.17) and (2.2.34), we write this as

Op χ [ẽ ′ (u; •)]E ′ u, u + M (u)u, u where ẽ′ ∈ S d-ι ′′ ,ν+ι ′′ (κ),N0 (σ, ζ, B, D • ), M (u) ∈ L d,ν+1 (k) (σ, ζ, B).
This concludes the proof of the lemma.

Proof of proposition 3.3.1. -We decompose the matrices A ′ , A ′′ of the statement using (3.3.2) and apply lemma 3.3.2. The last term in (3.3.7) contributes to the last term in (3.3.3). When d ′′ = 0 (resp. d ′ = 0) the ẽ′ (resp. ẽ′′ ) contribution to (3.3.7) is of the form of the A 1 term in the right hand side of (3.3.3). When d ′′ ≥ 1 (resp. d ′ ≥ 1) we get instead contributions to the A 0 term of (3.3.3). We are left with examining the first duality bracket in the right hand side of (3.3.7). Using theorem 2.3.1, proposition 2.3.3 and proposition 3.1.1, we may write as well this expression as contributions to the three terms in the right hand side of (3.3.3). Note that the decomposition of A ′ , A ′′ using (3.3.2) gives 16 terms of the form of the left hand side of (3.3.7). The first duality bracket in the right hand side of (3.3.7) gives, using the results of symbolic calculus (theorem 2.3.1 and proposition 2.3.3), for each of these terms four contributions of type

Op χ [f (u; •)]F u, u
where F ∈ {I, I ′ , J, J ′ } and f = e ′ e ′′ or e ′∨ e ′′ or e ′ e ′′∨ or e ′∨ e ′′∨ , plus contributions to the last two terms in (3.3.3). Using estimate (2.3.1), we see that we obtain the bound (3.3.4). This concludes the proof of the proposition since the conditions Ā∨ 1 = A 1 , Ā∨ 0 = A 0 may always be satisfied, using that the left hand side of (3.3.3) is real valued, which allows to replace in the right hand side Op χ [A j (u;

•)]u, u by 1 2 [Op χ [A j (u; •)] + Op χ [A j (u; •)]]u, u = Op χ A j (u, •) + A j (u, •) ∨ 2 u, u .
Proposition 3.3.1 provides for the Poisson bracket of two quantities given in terms of symbols of order d ′ , d ′′ an expression involving a symbol of order d ′ +d ′′ . We cannot expect anything better if we consider arbitrary matrices A ′ , A ′′ . On the other hand, if we limit ourselves to matrices that are linear combinations of I and J, we may write the first term in the right hand side of (3.3.3) from a commutator of Op χ [A ′ (u; •)] and Op χ [A ′′ (u; •)], gaining in that way one derivative. We shall develop that below, limiting ourselves to polynomial symbols in u, as this is the only case we shall have to consider in applications. 

Definition 3.3.3. -Let d ∈ R + , k ∈ N * , ν, ζ ∈ R + , N 0 ∈ N, s 0 ∈ R, s 0 > ν + 5 2 + max(ζ, d 3 ) and s 0 ≥ d 2 . (i) One denotes by H ′ d,ν (k),N0 ( 
(u) ∈ L d,ν (k) (ζ) such that for any u ∈ H s0 (S 1 ; R 2 ) (3.3.12) F (u) = 1 2 Op χ [λ(u; •)I + µ(u; •)J]u, u + 1 2 M (u)u, u .
(ii) One denotes by H d,ν (k),N0 (ζ) the space of functions u → F (u) defined on H s0 (S 1 ; R 2 ) with values in R, such that there are a symbol A(u;

•) ∈ S d,ν (k),N0 (ζ) ⊗ M 2 (R) satisfying Ā∨ = A and a map M (u) ∈ L d,ν (k) (ζ) such that (3.3.13) F (u) = 1 2 Op χ [A(u; •)]u, u + 1 2 M (u)u, u .
Remark. -By proposition 2.1.13 (or its special case concerning polynomial symbols) the left half of each duality bracket in (3.3.12), (3.3.13) belongs to H s0-d (S 1 ; R 2 ), so the assumptions made on s 0 show that F (u) is well defined Let us study the stability of the preceding classes under Poisson brackets.

Proposition 3.3.4. -Let d 1 , d 2 ∈ R + , k 1 , k 2 ∈ N * , ν, ζ ∈ R + , N 0 ∈ N. Set ζ = max(ζ, d1+d2 3 
). There is some ν ′ > ν, depending only on ν, N 0 such that for any

s 0 > ν ′ + 5 2 + ζ the following holds: (i) Assume d 1 ≥ 1, d 2 ≥ 1, s 0 ≥ d1+d2-1 2 and take F j ∈ H ′ dj (kj ),N0 (ζ), j = 1, 2. Then {F 1 , F 2 } is in H ′ d1+d2-1,ν ′ (k1+k2),N0 ( ζ). (ii) Assume d 1 , d 2 ∈ N, d 1 + d 1 ≥ 1, s 0 ≥ d1+d2 2 and take F j ∈ H dj ,ν (kj ),N0 (ζ), j = 1, 2. Then {F 1 , F 2 } is in H d1+d2,ν ′ (k1+k2),N0 ( ζ).
Before starting the proof, we study Poisson brackets of quantities involving remainder operators.

Lemma 3.3.5. -Let d ′ , d ′′ ∈ R + , d = d ′ + d ′′ , ν, ζ ∈ R + , σ ≥ ν + 2 + max(ζ, d 3 ), D • a (d + ν + σ, N 0 + 1)-conveniently increasing sequence, k ′ , k ′′ ∈ N * , E ∈ M 2 (R), e ∈ S d ′ ,ν (k ′ ),N0 (σ, ζ, B, D • ), M ′′ ∈ L d ′′ ,ν (k ′′ ) (σ, ζ, B). Denote k = k ′ + k ′′ , ι = min(1, d ′′ ). (i) Assume σ ≥ ν + 3 + max(ζ, d 3 ). There are a symbol ẽ ∈ S d-ι,ν+ι (k),N0 (σ, ζ, B, D • ), with ζ = max(ζ, d 3 ), a remainder operator M ∈ L d,ν+1 (k) (σ, ζ, B) such that (3.3.14) { Op χ [e(u; •)]Eu, u , M ′′ (u)u, u } = Op χ [ẽ(u; •)]Eu, u + M (u)u, u . (ii) Let M ′ ∈ L d ′ ,ν (k ′ ) (σ, ζ, B). There is M ∈ L d,ν (k) (σ, ζ, B) such that (3.3.15) { M ′ (u)u, u , M ′′ (u)u, u } = M (u)u, u .
Finally, if e, M ′ , M ′′ are polynomial i.e. belong to

S d ′ ,ν (k ′ ),N0 (ζ), L d ′ ,ν (k ′ ) (ζ), L d ′′ ,ν (k ′′ ) (ζ), then ẽ ∈ S d-ι,ν+ι (k),N0 ( ζ), M ∈ L d,ν+1 (k) (ζ) in (i) and M ∈ L d,ν (k) (ζ) in (ii).
Proof. -(i) By definitions 2.1.10, 2.1.11, we may write

M ′′ (u)u, u = j ′′ ≥k ′′ L j ′′ (u, . . . , u j ′′ +2
) where L j ′′ is (j ′′ + 2)-linear and satisfies for any

σ ′ ∈ [ν + 2 + max(ζ, d ′′ 3 ), σ] |L j ′′ (Π n0 u 0 , . . . , Π n j ′′ +1 u j ′′ +1 )| ≤ N d ′′ ,ν (k ′′ ) (σ, B; M ′′ ) (k ′′ + j ′′ -1)! (j ′′ + 1)! c(j ′′ )B j ′′ × n ℓ -3σ ′ +ν+d ′′ j ′′ +1 ℓ ′ =0 n ℓ ′ σ ′ Π n ℓ ′ u ℓ ′ L 2
for any ℓ = 0, . . . , j ′′ + 1. This implies that we may write J∇ M ′′ (u)u, u as M ′′ (u)u where

M ′′ (u) = j ′′ ≥k ′′ j ′′ M ′′ j ′′ (u, . . . , u) with M ′′ j ′′ ∈ Λ d ′′ ,ν (k ′′ ,j ′′ ) (σ, ζ, B) with sup j ′′ ≥k ′′ N d ′′ ,ν (k ′′ ,j ′′ ) (σ, B; M ′′ j ′′ ) ≤ CN d ′′ ,ν (j ′′ ) (σ, B; M ′′ ) with a uniform constant C. Denote C ′ (u) = Op χ [e(u; •)]E, C ′ (u) = C ′ (u) + t C ′ (u).
By (1.2.5)

{ C ′ (u)u, u , M ′′ (u)u, u } = ∂ u C ′ (u)u, u • ( M ′′ (u)u) = C ′ (u) • ( M ′′ (u)u), u + [(∂ u C ′ (u)) • ( M ′′ (u)u)]u, u . (3.3.16)
The first bracket in the right hand side may be written

C ′ (u) M ′′ (u)u, u + u, t M ′′ (u)C ′ (u)u
and so, by (ii) and (iii) of proposition 3.1.1, has the structure of the last term in the right hand side of (3.3.14).

The last duality bracket in (3.3.16) is Op χ [∂ u e(u; •) • ( M ′′ (u)u)]Eu, u and so, by proposition 3.2.1, has the structure of the right hand side of (3.3.14). This concludes the proof of (i).

(ii) We have written above J∇ M ′′ (u)u, u = M ′′ (u)u for some M ′′ . We may find in the same way a similar M ′ (u) such that for any v

∂ u ( M ′ (u)u, u ) • v = M ′ (u)u, v .
Consequently, the left hand side of (3.3.15) may be written

M ′ (u)u, M ′′ (u)u = t M ′′ (u) M ′ (u)u, u .
If we apply (i) of proposition 3.1.1, we get the right hand side of (3.3.15). This concludes the proof.

Before giving the proof of proposition 3.3.4, we state and prove a lemma, giving a similar statement, for the more general case when F 1 , F 2 are defined in terms of symbols that are not necessarily polynomial. This shows that DF (u) ∈ L(H -s+d , R). The fact that u → DF (u) is in fact C 1 follows differentiating once more (3.3.26) to (3.3.29) in u, and making act this differential on some W ∈ H s (S 1 , R 2 ). Since a, M are converging series, this just means replacing in the general term of their development one argument u ∈ H s (S 1 ; R 2 ) by W ∈ H s (S 1 ; R 2 ) which does not change the boundedness properties.

Remark. -We shall use below the following consequences of the study of (3.3.28), (3.3.29)

. If F (u) = M (u)u, u with M ∈ L 1,ν (k) (σ, ζ, B) and if s ≥ s 0 is large enough relatively to ν, ζ, then u → ∇F (u) is a C 1 map from B s (ρ) to H s (S 1 ; R 2 ). Actually, in (3.3.28), we have M (u)u ∈ H s by (2.1.47) if s 0 is large enough. Moreover, we have seen in the proof that M (u) • V and (∂ u M (u) • V )u belong to H -s if V ∈ H -s .

Division of symbols

The aim of this section is to construct from a symbol or an operator another symbol or operator defined by division by a convenient function. We recall first some notations and results of [START_REF] Bourgain | Construction of approximative and almost periodic solutions of perturbed linear Schrödinger and wave equations[END_REF], [START_REF] Bambusi | Birkhoff normal form for some nonlinear PDEs[END_REF], [START_REF] Delort | Long-time existence for small data nonlinear Klein-Gordon equations on tori and spheres[END_REF].

If n 0 , . . . , n j+1 ∈ Z, denote 

F ℓ m (n 0 , . . . , n j+1 ) = ℓ ℓ ′ =0 » m 2 + n 2 ℓ ′ - j+1 ℓ ′ =ℓ+1 » m 2 + n 2 ℓ ′ .
It follows from [START_REF] Bourgain | Construction of approximative and almost periodic solutions of perturbed linear Schrödinger and wave equations[END_REF], [START_REF] Bambusi | Birkhoff normal form for some nonlinear PDEs[END_REF] Theorem 6.5, [START_REF] Delort | Long-time existence for semi-linear Klein-Gordon equations with small Cauchy data on Zoll manifolds[END_REF] Proposition 2.2.1 that the following proposition holds true:

Proposition 3.4.1.
-There is a subset N ⊂]0, +∞[ of zero measure, and for every m ∈]0, +∞[-N , there are N 1 ∈ N, c > 0 such that the inequality

(3.4.3) |F ℓ m (n 0 , . . . , n j+1 )| ≥ cµ(n 0 , . . . , n j+1 ) -N1
holds in the following two cases:

• When j is odd, or j is even and ℓ = j 2 , for any (n 0 , . . . , n j+1 ) ∈ Z j+2 . • When j is even and ℓ = j 2 for any (n 0 , . . . , n j+1 ) ∈ Z j+2 -Z(j), where Z(j) = {(n 0 , . . . , n j+1 ) ∈ Z j+2 ; there is a bijection σ : {0, . . . , ℓ} → {ℓ + 1, . . . , j + 1} such that |n σ(j) | = |n j | for any j = 0, . . . , ℓ}.

(3.4.4)

Note that a much better lower bound for |F ℓ m (n 0 , . . . , n j+1 )| holds when the largest two among |n 0 |, . . . , |n j+1 | are much bigger than the other ones, and correspond to square roots affected of the same sign in (3.4.2). To fix ideas, let us assume that ℓ ≥ 1 in (3.4.2). Then for any m > 0, there are constants C > 0, c > 0 such that for any (n 0 , . . . , n j+1 ) ∈ Z j+2 satisfying (3.4.5)

|n 0 | ≥ C(1 + |n 2 | + • • • + |n j+1 |), |n 1 | ≥ C(1 + |n 2 | + • • • + |n j+1 |) one has (3.4.6) |F ℓ m (n 0 , . . . , n j+1 )| ≥ c(1 + |n 0 | + • • • + |n j+1 |).
Recall that we introduced in definitions 2.1.4 and 2.1.12 classes of multi-linear symbols Σ d,ν (j),N0 (ζ) and operators Λd,ν (j) (ζ), which are the building blocks of the polynomial symbols S d,ν (k),N0 (ζ) and operators L d,ν (k) (ζ). These polynomial symbols or operators have arguments (u 1 , . . . , u j ) belonging to C ∞ (S 1 , R 2 ) j . It will be convenient to identify C ∞ (S 1 , R 2 ) to C ∞ (S 1 , C), and so to consider symbols or operators which are functions of arguments in C ∞ (S 1 , C) j . We introduce a special notation for them.

Definition 3.4.2. -(i) Let d ∈ R (resp. d ∈ R + ), ν, ζ ∈ R + , j ∈ N * , N 0 ∈ N. One denotes by C Σ d,ν (j),N0 (ζ) (resp. C Λd,ν (j) (ζ) 
) the space of all C j-linear maps (u 1 , . . . , u j ) → ((x, n) → a(u 1 , . . . , u j ; x, n)) (resp. (u 1 , . . . , u j ) → M (u 1 , . . . , u j )) defined on C ∞ (S 1 , C) j , with values in C ∞ (S 1 × Z, C) (resp. with values in L(L 2 (S 1 ; C), L 2 (S 1 , C))) satisfying conditions (2.1.24), (2.1.25) and (2.1.26) (resp. satisfying estimate (2.1.40) for any σ ′ ≥ ν + 2 + max(ζ, d

3 ), with (k+j-1)! (j+1)! c(j)B j replaced by an arbitrary constant) for any u 1 , . . . , u j ∈ C ∞ (S 1 ; C).

(ii) We denote by

C S d,ν (k),N0 (ζ) (resp. C L d,ν (k) (ζ)) the space of finite sums of form (2.1.29) (resp. (2.1.41)) with a j ∈ C Σ d,ν (j),N0 (ζ) (resp. M j ∈ C Λd,ν (j) (ζ)). 
Let j be an even integer,

ℓ = j 2 , b ∈ C Σ d,ν (j),N0 (ζ). Define (3.4.7) b ′ (u 1 , . . . , u j ; x, n) = ′ n ′ S 1 b(Π n ′ U ′ ; x, n) dx 2π + ′ n ′ S 1 b(Π n ′ U ′ ; x -y, n)e -2iny dy 2π 
where Π n ′ U ′ = (Π n1 u 1 , . . . , Π nj u j ), and where the sum ′ is taken over all indices n ′ = (n 1 , . . . , n j ) ∈ Z j such that there is a bijection θ ′ : {1, . . . , ℓ} → {ℓ + 1, . . . , j} so that

|n θ ′ (ℓ ′ ) | = |n ℓ ′ | for any 1 ≤ ℓ ′ ≤ ℓ. Then b ′ ∈ C Σ d,ν (j),N0 (ζ) 
. Actually, integrations by parts show that the last term in (3.4.7) belongs to C Σ d-N,ν+N (j),N0 (ζ) for any N . We set

(3.4.8) b ′′ (u 1 , . . . , u j ; x, n) = (b -b ′ )(u 1 , . . . , u j ; x, n).
Note that, denoting by F the x Fourier transform,

2πF[Op χ [b ′ (Π n ′ U ′ ; •)]Π nj+1 u j+1 ](n 0 ) = b′ χ (Π n ′ U ′ ; n 0 -n j+1 , n j+1 )û j+1 (n j+1 ) = [δ(n 0 -n j+1 ) bχ (Π n ′ U ′ ; 0, n j+1 ) + δ(n 0 + n j+1 ) bχ (Π n ′ U ′ ; -2n j+1 , n j+1 )]û j+1 (n j+1 ) (3.4.9) so that (3.4.10) Op χ [b ′ (U ′ ; •)]u j+1 = n0,nj+1 |n0|=|nj+1| ′ n ′ Π n0 Op χ [b(Π n ′ U ′ ; •)]Π nj+1 u j+1 . By the support condition (2.1.24), if b(Π n1 u 1 , . . . , Π nj u j ; •, n) ≡ 0, we have |n 1 |, . . . , |n j | ≤ 1 4 |n|.
This shows that the conditions on (n 0 , . . . , n j+1 ) in the sum in (3.4

.10) is equivalent to

There is a bijection θ : {0, . . . , ℓ} → {ℓ + 1, . . . , j + 1} such that

|n θ(ℓ ′ ) | = |n ℓ ′ | for any ℓ ′ ∈ {0, . . . , ℓ}. (3.4.11)
Consequently, we may write as well (3.4.10) as

Op χ [b ′ (U ′ ; •)]u j+1 = ′ n Π n0 Op χ [b(Π n ′ U ′ ; •)]Π nj+1 u j+1
where ′ means the sum over all n = (n 0 , . . . , n j+1 ) satisfying (3.4.11). If ω = (ω 0 , . . . , ω j+1 ) ∈ {-1, 1} j+2 , if (u 1 , . . . , u j ) → A(u 1 , . . . , u j ) is a j-linear map with values in the space of linear maps from

C ∞ (S 1 , C) to C ∞ (S 1 , C), if Λ m = √ -∆ + m 2 , we set L ω (A)(u 1 , . . . , u j ) = ω 0 Λ m A(u 1 , . . . , u j ) + j ℓ ′ =1 ω j A(u 1 , . . . , Λ m u ℓ ′ , . . . , u j ) +ω j+1 A(u 1 , . . . , u j )Λ m .
(3.4.12)

We shall use the following lemma. 

F (ω) m (n 0 , . . . , n j+1 ) = j+1 ℓ ′ =0 ω ℓ » m 2 + n 2 ℓ .
(i) Assume ω 0 ω j+1 = 1. Then for any m ∈]0, +∞[ there is c 0 > 0 and for any γ ∈ N, there is C > 0, such that for any (h, n 1 , . . . , n j+1 ) ∈ Z j+2 with

1 + |n ′ | def = 1 + max(|n 1 |, . . . , |n j |) < c 0 |n j+1 | and |h| < 1 2 n j+1 , (3.4.14) |∂ γ nj+1 [F (ω) m (h + n j+1 , n 1 , . . . , n j+1 )] -1 | ≤ C n j+1 -1-γ . (ii) Assume ω 0 ω j+1 = -1 and #{ℓ ′ ; ω ℓ ′ = -1} = #{ℓ ′ ; ω ℓ ′ = 1}. Then for any m ∈ ]0, +∞[-N , for any γ ∈ N, there is C > 0 such that for any (h, n 1 , . . . , n j+1 ) ∈ Z j+2 with |n ′ | < 1 4 |n j+1 | and |h| < 1 2 |n j+1 | (3.4.15) |∂ γ nj+1 [F (ω) m (h + n j+1 , n 1 , . . . , n j+1 )] -1 | ≤ C h γ n ′ (γ+1)N1 n j+1 -γ . (iii) Assume ω 0 ω j+1 = -1 and #{ℓ ′ ; ω ℓ ′ = -1} = #{ℓ ′ ; ω ℓ ′ = 1}.Then for any m ∈ ]0, +∞[-N , for any γ ∈ N, there is C > 0 such that for any (h, n 1 , . . . , n j+1 ) ∈ Z j+2 with |n ′ | < 1 4 |n j+1 |, |h| < 1 2 |n j+1 | and (h + n j+1 , n 1 , . . . , n j+1 ) ∈ Z(ω), where Z(ω) = {(n 0 , . . . , n j+1 ) ∈ Z j+2 ; there is a bijection θ : {ℓ; ω ℓ = 1} → {ℓ; ω ℓ = -1} with |n θ(ℓ) | = |n ℓ | for any ℓ with ω ℓ = 1}. one has (3.4.16) |∂ γ nj+1 [F (ω) m (h + n j+1 , n 1 , . . . , n j+1 )] -1 | ≤ C h γ n ′ (γ+1)N1 n j+1 -γ .
Proof. -We prove (ii). Since ω 0 ω j+1 = -1 we may write F

(ω) m (n 0 , . . . , n j+1 ) as the sum of a term depending only on n ′ = (n 1 , . . . , n j ) and of a quantity given up to sign by

(n 0 -n j+1 ) 1 0 [m 2 + (tn 0 + (1 -t)n j+1 ) 2 ] -1/2 (tn 0 + (1 -t)n j+1 )dt.
This implies that for any fixed m, any γ ≥ 1, any (h, n 1 , . . . , n j+1 ) as in the statement (3.4.17)

|∂ γ nj+1 [F (ω) m (h + n j+1 , n 1 , . . . , n j+1 )]| ≤ C γ h n j+1 -γ .
From this we deduce by induction that

∂ γ nj+1 [F (ω) 
m (h + n j+1 , n 1 , . . . , n j+1 )] -1 may be written as a linear combination of quantities of form

(3.4.18) Γ γ γ ′ (h, n ′ , n j+1 ) H γ 0 (h, n ′ , n j+1 ) • • • H γ γ ′ (h, n ′ , n j+1 ) where 0 ≤ γ ′ ≤ γ and Γ γ γ ′ , H γ ℓ satisfy |∂ α nj+1 Γ γ γ ′ | ≤ C α h γ n j+1 -γ-α |H γ ℓ (h, n ′ , n j+1 )| ≥ c γ n ′ -N1 |∂ α nj+1 H γ ℓ (h, n ′ , n j+1 )| ≤ C α,γ h n j+1 -α , α > 0. (3.4.19) 
Actually, at the first step of the induction, Γ 0 0 = 1, Let us prove (i). In this case, ω 0 ω j+1 = 1, so that the square roots involving the largest arguments are affected of the same sign. Consequently, if the constant c 0 of the statement is small enough

H 0 0 = F (ω) m (n j+1 + h, n ′ , n j+1
|F (ω) m (n j+1 + h, n 1 , . . . , n j+1 )| ≥ c n j+1 . Moreover |∂ γ nj+1 F (ω) m (n j+1 + h, n 1 , . . . , n j+1 )| ≤ C γ n j+1 1-γ .
These inequalities imply (3.4.14).

Finally, let us show that (iii) holds true. We may apply the proof of statement (ii) if we are able to show that the lower bound of H γ ℓ in (3.4.19) still holds. The functions

H γ ℓ (h, n ′ , n j+1 ) equal either F (ω) m (n j+1 + h, n 1 , . . . , n j+1
), or a translate of such a function obtained replacing n j+1 by n j+1 + λ. Up to a change of notations, inequality (3.4.3) shows that the lower bound of the second line of (3.4.19) holds true for those (h, n ′ , n j+1 ) satisfying the assumptions of the statement (since, changing notations, we may reduce to the case when Z(ω) is given by (3.4.4)). The proof of (ii) applies then without any change and brings (3.4.16).

Proposition 3.4.4. -Let m ∈]0, +∞[ be outside the exceptional subset N of propo- sition 3.4.1. Let j ∈ N * , d ∈ R + , N 0 ∈ N, ν, ζ ∈ R + , (ω 0 , . . . , ω j+1 ) ∈ {-1, 1} j+2 . (i) Assume ω 0 ω j+1 = 1. Let b ∈ C Σ d+1,ν (j),N0 (ζ). There is a ∈ C Σ d,ν+2 (j),N0 (ζ) such that (3.4.20) L ω (Op χ [a(u 1 , . . . , u j ; •)]) -Op χ [b(u 1 , . . . , u j ; •)] belongs to C Λd,ν+2 (j) (ζ) 
. (ii) Assume that ω 0 ω j+1 = -1 and that #{ℓ; (iii) Assume that ω 0 = 1, ω j+1 = -1, that j is even and

ω ℓ = 1} = #{ℓ; ω ℓ = -1}. Then if N 0 ≥ 2(N 1 + 1) (where N 1 is the exponent in (3.4.3)), for any b ∈ C Σ d,ν (j),N0 (ζ), there is a ∈ C Σ d,ν+ζ+N1+2 (j),N0 ( 
ω 1 = • • • = ω j/2 = 1, ω j/2+1 = • • • = ω j = -1. Then if N 0 ≥ 2(N 1 + 1) for any b ∈∈ C Σ d,ν (j),N0 (ζ), there is a ∈ C Σ d,ν+ζ+N1+2 (j),N0 (ζ) such that (3.4.22) L ω (Op χ [a(u 1 , . . . , u j ; •)]) = Op χ [b ′′ (u 1 , . . . , u j ; •)]
where b ′′ is defined by (3.4.8).

Proof.

-(i) Let χ 1 ∈ C ∞ 0 (R), χ 1 ≡ 1 close to zero and decompose b = b 1 + b 2 where b 1 (u 1 , . . . , u j ; x, n) = n1 • • • nj χ 1 max(|n 1 |, . . . , |n j |) n b(Π n1 u 1 , . . . , Π nj u j ; x, n).
If we apply (2.1.39) to a = b 2 , N = 2, and use that if b 2 (Π n1 u 1 , . . . , Π nj u j ; x, n) ≡ 0 there is an index ℓ for which 

|n ℓ | ≥ c n , we see that Op χ [b 2 (u 1 , . . . , u j ; •)] de- fines an element of C Λd,ν+2 (j) 
(Π n1 u 1 , . . . , Π nj u j ; x, n) is not zero, then |n 1 | + • • • + |n j | ≤ c
n for some given positive constant c, we have to find a so that, for any n 0 , . . . , n j+1

Π n0 L ω [Op χ [a(Π n1 u 1 , . . . , Π nj u j ; •)]]Π nj+1 u j+1 = Π n0 Op χ [b(Π n1 u 1 , . . . , Π nj u j ; •)]]Π nj+1 u j+1 . (3.4.23)
If we use the definition (3.4.12) of L ω and Λ m Π n = √ m 2 + n 2 Π n , we may write this equality

F (ω) m (n 0 , . . . , n j+1 )â χ (Π n1 u 1 , . . . , Π nj u j ; n 0 -n j+1 , n j+1 ) = bχ (Π n1 u 1 , . . . , Π nj u j ; n 0 -n j+1 , n j+1 ). (3.4.24)
We solve (3.4.24) defining a by 

a(Π n1 u 1 , . . . , Π nj u j ; x, n j+1 ) = 1 2π h χ h n j+1 S 1 e ihy F (ω) m (h + n j+1 , n 1 , . . . , n j+1 ) -1 × b(Π n1 u 1 , . . . , Π nj u j ; x -y, n j+1 )dy (3.4.25) where χ ∈ C ∞ 0 (] -1 2 , 1 2 [), χ ≡ 1 close to [-1 4 , 1 4 ]. We estimate ∂ α x ∂ β nj+1 a(Π n1 u 1 , . . . , Π nj u j ; x, n j+1 ) from (3.
L = (1 + h 2 ) -1 (1 + h • D y ) to gain a h -2
factor. We obtain estimates of type (2.1.25), (2.1.26) with ν replaced by ν + 2. Since (2.1.24) is also trivially satisfied, we obtain that a ∈ C Σ d,ν+2 (j),N0 (ζ). (ii) Let us define again a from b by (3.4.25). We make act ∂ α x ∂ β nj+1 on a, using the Leibniz formula (2.1.10). We get a sum of contributions with β ′ ∂ nj+1 -derivatives falling on χ(h/ n j+1 )(F (ω) m ) -1 and β ′′ ∂ nj+1 -derivatives falling on b, with β ′ +β ′′ = β. We perform β ′ + 2 integrations by parts using the same vector field as above, to get a h -2 factor to make converge the series. Using (2.1.25) and (3.4.15) we obtain a bound in terms of the sum for

β ′ + β ′′ = β of (3.4.26) n j+1 d-β+(α+β ′ +2+ν+N0β ′′ -σ ′ )+ n 1 (β ′ +1)N1 j ℓ=1 n ℓ σ ′ Π n ℓ u ℓ L 2 for any σ ′ ≥ ν + ζ + 2, if n 1 is the index such that |n 1 | = max(|n 1 |, . . . , |n j |).
We want, to get the conclusion, find a bound in 

(3.4.27) n j+1 d-β+(α+2β ′ (1+N1)+β ′′ N0+2+ν+ζ+N1-σ)+ j ℓ=1 n ℓ σ Π n ℓ u ℓ L 2 for any σ ≥ ν +ζ +2. If σ ≥ β ′ (1+N 1 )+ν +ζ +2, (3.4.26) applied to σ ′ = σ-β ′ (1+N 1 ) implies (3.4.27). If σ ≤ β ′ (1 + N 1 ) + ν + ζ + 2, ( 3 
n j+1 d-β+α+β ′ +β ′′ N0+2+ν+σ ′ n ′ (β ′ +1)N1 1≤ℓ ′ ≤ℓ ℓ ′ =ℓ n ′ ℓ σ ′ Π n ℓ ′ u ℓ ′ L 2 n ℓ -σ ′ Π n ℓ u ℓ L 2
which implies a bound of type (2.1.26) for a, with ν replaced by ν + N 1 + 2, using that n ′ ≤ C n j+1 and N 0 ≥ N 1 + 1. Since moreover the support condition (2.1.24) is satisfied by a by construction, we get that a ∈ C Σ d,ν+ζ+N1+2 

(j),N0 (ζ) 
F (ω) m (n 0 , . . . , n j+1 )â χ (Π n1 u 1 , . . . , Π nj u j ; n 0 -n j+1 , n j+1 ) = 1 {(n0,...,nj+1) ∈Z(ω)} bχ (Π n1 u 1 , . . . , Π nj u j ; n 0 -n j+1 , n j+1 )
so that in (3.4.25) with b replaced by b ′′ we may insert in the integral the cut-off 1 {(h+nj+1,n1,...,nj+1) ∈Z(ω)} .

The rest of the proof is similar to the case (ii) above, using estimate (3.4.16) instead of (3.4.15). This concludes the proof.

We conclude this section by an analogous of the preceding proposition for remainder operators.

Let d ≥ 0, ν, ζ ∈ R + . When M ∈ C Λd,ν (j) (ζ) 
, ω ∈ {-1, 1} j+2 with j even and when #{ℓ; (i) When j is odd or j is even and #{ℓ; ω ℓ = 1} = #{ℓ; ω ℓ = -1}, there is for any

ω ℓ = 1} = #{ℓ; ω ℓ = -1}, we decompose M = M ′ + M ′′ with M ′ (u 1 , . . . , u j ) = ′ n0,...,nj+1 Π n0 M (Π n1 u 1 , . . . , Π nj u j )Π nj+1
M in C Λd,ν (j) (ζ) an element M ∈ C Λd,ν+N1 (j) 
(ζ) such that L ω ( M ) = M . (ii) When j is even and #{ℓ;

ω ℓ = 1} = #{ℓ; ω ℓ = -1}, there is for any M in C Λd,ν (j) (ζ) an element M ∈ C Λd,ν+N1 (j) 
(ζ) such that L ω ( M ) = M ′′ .
Proof. -(i) The equation to be solved may be written

Π n0 L ω ( M )(Π n1 u 1 , . . . , Π nj u j )Π nj+1 = Π n0 M (Π n1 u 1 , . . . , Π nj u j )Π nj+1
or equivalently (3.4.28)

F (ω) m (n 0 , . . . , n j+1 )Π n0 M (Π n1 u 1 , . . . , Π nj u j )Π nj+1 = Π n0 M (Π n1 u 1 , . . . , Π nj u j )Π nj+1 . If ℓ is such that |n ℓ | = max(|n 0 |, . . . , |n j+1 |), we have by (3.4.3) |F (ω) m (n 0 , . . . , n j+1 )| ≥ cµ(n 0 , . . . , n j+1 ) -N1 ≥ c(1 + |n ℓ |) -N1
. If we use estimate (2.1.40) for the right hand side of (3.4.28), we deduce from this that M satisfies the estimates of an element of C Λd,ν+N1

(j) (ζ).
(ii) The proof is similar, using that on the support of Π n0 M ′′ (Π n1 u 1 , . . . , Π nj u j )Π nj+1 , estimate (3.4.3) holds true.

Structure of the Hamiltonian

In this section, we shall express the Hamiltonian given by (1.2.8) using the classes of operators introduced in section 2.1. Proposition 3.5.1. -Let G be the Hamiltonian (1.2.8). One may find ν > 0 and:

• A symbol e(u; •) in S 1,ν (1) 
,0 (0) satisfying e(u;

•) ∨ = e(u; •), • An element M ∈ L 1,ν (1) (0) 
,

such that if we denote E(u; x, n) = ñ 0 0 0 e(u; x, n) ô , we may write (3.5.1) G(u) = 1 2 Λ m u, u + 1 2 Op χ [E(u; •)]u, u + 1 2 M (u)u, u .
Before starting the proof, we study some multi-linear expressions. Consider a collection of j + 2 ≥ 3 constant coefficient operators (3.5.2)

Q ℓ = Λ -1/2 m or Q ℓ = Λ -1/2 m ∂ x , 0 ≤ ℓ ≤ j + 1 of order -1/2 or 1/2. Let a ∈ C ∞ (S 1 ; R). For any function u ℓ in C ∞ (S 1 ; R 2 ) denote u ℓ = ñ u 1 ℓ u 2 ℓ ô and set v ℓ = u 2 ℓ ∈ C ∞ (S 1 ; R). Consider (3.5.3) S 1 a(x)(Q 0 v 0 ) • • • (Q j+1 v j+1 )dx. Lemma 3.5.2. -Let χ ∈ C ∞ 0 (] -1, 1[),
χ even, χ ≡ 1 close to zero, Supp χ small enough. One may find ν > 0 and for any i, i ′ with 0 ≤ i < i ′ ≤ j + 1 symbols (3.5.4)

a i i ′ (u; x, n) in Σ 1 2 ,ν (j) 
,0 (0) and remainder operators (3.5.5)

M i i ′ (u) ∈ Λ1,ν (j) 
(0) such that (3.5.3) may be written

0≤i<i ′ ≤j+1 (Q i v i )(x)Op χ [a i i ′ (u 0 , . . . , " u i , . . . , u i ′ , . . . , u j+1 ; •)v i ′ dx + 0≤i<i ′ ≤j+1 u i (x)[M i i ′ (u 0 , . . . , " u i , . . . , u i ′ , . . . , u j+1 )u i ′ ]dx (3.5.6) Proof. -We decompose v ℓ = Π n ℓ v ℓ and write Q ℓ Π n ℓ v ℓ = b ℓ (n ℓ )Π n ℓ v ℓ with (3.5.7) b ℓ (n ℓ ) = (m 2 + n 2 ℓ ) -1/2 or b ℓ (n ℓ ) = in ℓ » m 2 + n 2 ℓ .
We may write (3.5.3) as

(3.5.8) 1 (2π) j+2 n0 • • • nj+1 â(-n 0 -• • • -n j+1 ) j+1 ℓ=0 b ℓ (n ℓ )v ℓ (n ℓ ). Let χ 1 ∈ C ∞ 0 (R)
, χ 1 even, χ 1 ≡ 1 close to zero with Supp χ 1 much smaller than Supp χ. Define for 0 ≤ i < i ′ ≤ j + 1 (3.5.9) 

Φ i i ′ (n ℓ ) ℓ =i = χ 1 max ℓ =i,i ′ (|n ℓ |)/ n i ′ ). Decompose (3.
I i i ′ + I ′′ with I i i ′ = 1 (2π) j+2 n0 • • • nj+1 â(-n 0 -• • • -n j+1 ) j+1 ℓ=0 b ℓ (n ℓ )v ℓ (n ℓ )Φ i i ′ I ′′ = 1 (2π) j+2 n0 • • • nj+1 â(-n 0 -• • • -n j+1 ) j+1 ℓ=0 b ℓ (n ℓ )v ℓ (n ℓ ) 1 - i,i ′ ;i<i ′ Φ i i ′ (3.5.11)
• Contribution of I ′′ We write I ′′ as v 0 (x)M (v 1 , . . . , v j )v j+1 dx with

M (v 1 , . . . , v j )v j+1 = 1 (2π) j+2 n0 • • • nj+1 e -in0x â(-n 0 -• • • -n j+1 ) × 1 - i,i ′ ;i<i ′ Φ i i ′ b 0 (n 0 ) j+1 ℓ=1 b ℓ (n ℓ )v ℓ (n ℓ ) (3.5.12) so that Π n0 M (Π n1 v 1 , . . . , Π nj v j )Π nj+1 L(L 2 ) ≤ |â(n 0 -• • • -n j+1 )| 1 - i,i ′ ;i<i ′ Φ i i ′ j+1 ℓ=0 |b ℓ (n ℓ )| j ℓ=1 Π n ℓ v ℓ L 2 . (3.5.13)
We may bound the right hand side by the product of

C j+1 ℓ=0 n ℓ σ j ℓ=1 Π n ℓ v ℓ L 2 times (3.5.14) |â(n 0 -• • • -n j+1 )| 1 - i,i ′ ;i<i ′ Φ i i ′ j+1 ℓ=0 n ℓ -σ+ 1 2
as each b ℓ is a symbol of order at most 1/2. To prove that M defined by (3.5.12) may be written as an element of Λ1,ν (j) (0) for some ν, we just need to bound (3. 

i0 -σ n i ′ 0 -σ n ℓ0 -σ ≤ C n i0 -3σ
. On the other hand, if for any

ℓ = i 0 , i ′ 0 , |n ℓ | is much smaller than |n i0 | ∼ |n i ′ 0 | then Φ i0 i ′ 0
(n 0 , . . . , " n i0 , . . . , n j+1 ) = 1 and Φ i i ′ (n 0 , . . . , " n i , . . . , n j+1 ) = 0 for any (i, i ′ ) = (i 0 , i ′ 0 ), so that the cut-off in (3.5.14) vanishes. This shows that I ′′ contributes to the last sum in (3.5.6).

• Contribution of

I i i ′
We take, to simplify notations, i = 0, i ′ = j + 1, set n ′ = (n 1 , . . . , n j+1 ) and write Φ(n ′ ) instead of Φ 0 j+1 (n ′ ). We decompose I 0 j+1 = I(1) + I(2) where (3.5.15)

I(1) = 1 (2π) j+2 n0 • • • nj+1 â(-n 0 -• • • -n j+1 )Φ(n ′ )χ n 0 + n j+1 n j+1 j+1 ℓ=0 b ℓ (n ℓ )v ℓ (n ℓ ).
We may write I(2) = v 0 (x)M (v 1 , . . . , v j ) • v j+1 dx with

M (v 1 , . . . , v j ) • v j+1 = n0 • • • nj+1 â(-n 0 -• • • -n j+1 )e -in0x × Φ(n ′ ) 1 -χ n 0 + n j+1 n j+1 b 0 (n 0 ) j+1 ℓ=1 b ℓ (n ℓ )v ℓ (n ℓ ).
(3.5.16)

We thus get for M a bound of type (3.5.13) except that (1 -Φ i i ′ ) has to be replaced by Φ(n ′ ) 1-χ n0+nj+1 nj+1

. To show that M may be written as an element of Λ1,ν (j) (0), we just need to bound (3.5.17) shows that I 2 contributes to the second sum in (3.5.6).

|â(n 0 -• • • -n j+1 )|Φ(n ′ ) 1 -χ n 0 -n j+1 n j+1 j+1 ℓ=0 n ℓ -σ+ 1
We are left with studying quantity (3.5.15). Let us define (j),0 (0). Moreover

a 0 j+1 (v 1 , . . . , v j ; x, n) = 1 (2π) j n1 • • • nj e ix(n1+•••+nj ) a(x) ×Φ(n 1 , . . . , n j , n) j ℓ=1 b ℓ (n ℓ )v ℓ (n ℓ )b j+1 (n).
â0 j+1 (v 1 , . . . , v j ; n 0 , n) = 1 (2π) j n1 • • • nj â(n 0 -n 1 -• • • -n j )Φ(n 1 , . . . , n j , n) × j ℓ=1 b ℓ (n ℓ )v ℓ (n ℓ )b j+1 (n) so that if w 0 = b 0 (D)v 0 w 0 , Op χ [a 0 j+1 (Π n1 v 1 , . . . ,Π nj v j ; •)]v j+1 = 1 (2π) 2 n0 nj+1 ŵ(n 0 )χ n 0 + n j+1 n j+1 × â0 j+1 (Π n1 v 1 , . . . , Π nj v j ; -n 0 -n j+1 , n j+1 )v j+1 (n j+1 ) = I(1).
This shows that I(1) may be written as a contribution to the first sum in (3.5.6) and concludes the proof of the lemma.

Proof of proposition 3.5.1. -According to (1.2.8), G(u) is the sum of 1 2 Λ m u, u and of quantities of form (3.5.3) with v ℓ = u 2 the second component of u. By lemma 3.5.2, these quantities may be written as a contribution to the last term in (3.5.1) and to expressions of form (3.5.19)

u 2 Q[Op χ [ẽ(u; •)]]u 2 dx
where Q is a constant coefficients operator of order 1/2, and where ẽ ∈ S 1 2 ,ν (j),0 (0) for some ν. By theorem 2.3.1, (3.5.19) may be written as contributions to the last two terms of (3.5.1), replacing eventually ν by some larger value.

CHAPTER 4 SYMPLECTIC REDUCTIONS

The goal of this chapter is to construct an almost symplectic change of variables in a neighborhood of zero in H s (S 1 ; R 2 ) such that a Hamiltonian of form Op χ [E(u; •)]u, u , where E is a 2 × 2 matrix of symbols of order one, be transformed, up to remainders, into Op χ [E ′ (u; •)]u, u where the matrix E ′ is a linear combination of I, J with coefficients symbols of order one.

Symplectic diagonalization of principal symbol

Let B > 0, ν > 0, σ ∈ R, σ ≥ ν + 2 be given. Let D • be a (σ + ν + 1, 1)-conveniently increasing sequence. Let κ be a positive integer. We set λ 0 (u; x, n) = λ 0 (n) def = m 2 + n 2 , µ 0 (u; x, n) ≡ 0 and assume given for 1 ≤ k ≤ κ -1 elements λ k , µ k of S 1,ν (k),0 (σ, 0, B, D • ), such that (4.1.1)

λ k (u; x, n) ∨ = λ k (u; x, n), µ k (u; x, n) ∨ = µ k (u; x, n) and that (4.1.2) λ k (u; x, n) -λ ∨ k (u; x, n), µ k (u; x, n) + µ ∨ k (u; x, n) belong to S 0,ν+1 (k) 
,0 (σ, 0, B, D • ). Let Ω be an element of S 1,ν (κ),0 (σ, 0, B, D 3) imply in view of proposition 2.3.3 that these operators are self-adjoint at leading order. According to proposition 2.1.13 (i), if s 0 > ν + 5 2 is fixed, there is r > 0 such that if u belongs to the ball B s0 (r) of center 0 and radius r in H s0 (S 1 ; R 2 ), then Op χ [λ k (u; •)I + µ k (u; •)J]u and Op χ [Ω(u; •)]u are well defined and belong to H s0-1 (S 1 ; R 2 ). This allows us to consider for u in such a ball (4.1.4)

• ) ⊗ M 2 (R) satisfying (4.1.3) Ω(u; x, n) ∨ = Ω(u; x, n), and t Ω ∨ (u; x, n) -Ω(u; x, n) ∈ S 0,ν+1 (κ) 
G ′ (u) = 1 2 κ-1 k=0 Op χ [λ k (u; •)I + µ k (u; •)J]u, u + 1 2 Op χ [Ω(u; •)]u, u .
In this section, we want to "diagonalize" the Ω contribution, i.e. replace Ω by a matrix which is a linear combination of I and J, up to lower order terms. Moreover, we want to do that in an approximately symplectic way. -There are a constant B ′ > B and a symbol q belonging to S 0,ν (κ),0 (σ, 0, B ′ , D • ) ⊗ M 2 (R) satisfying q∨ = q such that if we set

(4.1.5) a ′ (u; x, n) = κ-1 k=0 (λ k (u; x, n)I + µ k (u; x, n)J) + Ω(u; x, n)
and p(u; x, n) = I + q(u; x, n) the following properties hold: 

(i) t p ∨ (u; x, n)Jp(u; x, n) -J ∈ S -1,ν (κ),0 (σ, 0, B ′ , D • ) ⊗ M 2 (R). (ii) There are scalar symbols λ κ (u; x, n), µ κ (u; x, n) in S 1,ν (κ),0 (σ, 0, B ′ , D • ) such that λ κ (u; x, n) ∨ = λ κ (u; x, n), µ κ (u; x, n) ∨ = µ κ (u; x, n) λ κ -λ ∨ κ , µ κ + µ ∨ κ belong to S 0,ν+1 (κ) 
Ω(u; x, n) = b 1 (u; x, n)I + b 2 (u; x, n)J + b ′ 1 (u; x, n)I ′ + b ′ 2 (u; x, n)J ′ where b 1 , b ′ 1 , b 2 , b ′
2 are scalar symbols of order 1, formula (4.1.7) asserts that using p, we may transform Ω in a matrix for which b ′ 1 , b ′ 2 are of order zero. Moreover, (i) means that Op χ [p(u; •)] will be a linear symplectic transformation (up to a remainder of order -1).

Let us define some notation. Since λ 0 (n) = √ m 2 + n 2 is invertible, we may set By construction, l , m belong to S 0,ν (1),0 (σ, 0, B, D • ), l ′ , m ′ belong to S 0,ν (κ),0 (σ, 0, B, D 

l k (u; x, n) = λ 0 (n) -1 λ k (u; x, n), k = 1, . . . , κ -1 m k (u; x, n) = λ 0 (n) -1 µ k (u; x, n), k = 1, . . . , κ -1 l κ (u; x, n) = λ 0 (n) -1 b 1 (u; x, n) l ′ (u; x, n) = λ 0 (n) -1 b ′ 1 (u; x, n) m κ (u; x, n) = λ 0 (n) -1 b 2 (u; x, n) m ′ (u; x, n) = λ 0 (n) -1 b ′ 2 (u; x, n) l (u; x, n) = κ k=1 l k (u; x, n) m(u; x, n) = κ k=1 m k (u; x, n).
• ). Moreover, l = l ∨ , m = m∨ , l ′ = l ′∨ , m ′ = m′∨ and l -l ∨ , m + m ∨ , (resp. l ′ -l ′∨ , m ′ - m ′∨ ) are in S -1,ν+1 (1) 
′ (u; x, n) = λ 0 (n)[(1+l (u; x, n))I+m(u; x, n)J +l ′ (u; x, n)I ′ +m ′ (u; x, n)J ′ ]. Set (4.1.12) K = 1 √ 2 ñ 1 i 1 -i ô , K -1 = i t J t KJ = 1 √ 2 ñ 1 1 -i i ô and define (4.1.13) S(u; x, n) = KJa ′ K -1 = iλ 0 ñ 1 + l + im l ′ + im ′ -(l ′ -im ′ ) -(1 + l ) + im ô .
The proof of proposition 4.1.1 will rely on the diagonalization of S(u; x, n). Lemma 4.1.2. -There is a constant B ′ , depending on B and on the quantities N 0,ν (1),0 (σ, 0, B, D • ; l ), N 0,ν (κ),0 (σ, 0, B, D • ; l ′ ), N 0,ν (κ),0 (σ, 0, B, D • ; m ′ ) and there are symbols λ κ , µ κ ∈ S 1,ν (κ),0 (σ, 0, B ′ , D • ), satisfying conditions (4.1.6), and a matrix of symbols q ∈ S 0,ν (κ),0 (σ, 0,

B ′ , D • ) ⊗ M 2 (R), satisfying K -1 q∨ K -K -1 qK ∈ S -1,ν+1 (κ),0 (σ, 0, B ′ , D • ) ⊗ M 2 (R) t J t (I + q) ∨ J(I + q) -I ∈ S -1,ν+1 (κ),0 (σ, 0, B ′ , D • ) ⊗ M 2 (R) (4.1.14) such that (4.1.15) t J t (I + q) ∨ JS(I + q) -i ñ ( κ 0 λ k ) + i( κ 1 µ k ) 0 0 -( κ 0 λ k ) + i( κ 1 µ k ) ô belongs to S 0,ν+1 (κ),0 (σ, 0, B ′ , D • ) ⊗ M 2 (R). Proof. -Define (4.1.16) δ(u; x, n) = 1 - l ′2 + m ′2 (1 + l ) 2 -1.
Since l belongs to S 0,ν (1),0 (σ, 0, B, D • ) and l ′ , m ′ belong to S 0,ν (κ),0 (σ, 0, B, D • ), we may consider them as elements of S 0,ν (1),0 (σ, 0, B ′′ , D • ) and S 0,ν (κ),0 (σ, 0, B ′′ , D • ) respectively for any B ′′ > B. If B ′′ is large enough, we may make N 0,ν (1),0 (σ, 0, B ′′ , D • ; l ), N 0,ν (κ),0 (σ, 0, B ′′ , D • ; l ′ ), N 0,ν (κ),0 (σ, 0, B ′′ , D • ; m ′ ) arbitrarily small, so that assumptions of proposition 2.4.1 will be satisfied with B replaced by B ′′ . This proposition implies that δ ∈ S 0,ν (κ),0 (σ, 0, B ′ , D • ) with B ′ = 2B ′′ . Moreover, δ = δ∨ and δδ ∨ belongs to S -1,ν+1 (κ),0 (σ, 0, B ′ , D • ). The eigenvalues of the matrix (4.1.17)

ñ 1 + l + im l ′ + im ′ -(l ′ -im ′ ) -(1 + l ) + im ô are ±(1 + l )(1 + δ) + im. Define q by (4.1.18) (I + q(u; x, n)) = 1 - l ′2 + m ′2 (1 + l ) 2 (2 + δ) 2 -1/2 ñ 1 -l ′ +im ′ (1+l)(2+δ) -l ′ -im ′ (1+l)(2+δ) 1 ô .
Applying again proposition 2.4.1, we see that q belongs to S 0,ν (κ),0 (σ, 0, B ′ , D • )⊗M 2 (R), eventually with a new (larger) value of B ′ . The inverse matrix is (4.1.19) (I + q(u; x, n)) -1 = t J t (Id + q(u; x, n))J.

Moreover since l ′ -l ′∨ , m ′ -m ′∨ , l -l ∨ are of order -1, q -q∨ ∈ S -1,ν+1

(κ),0

(σ, 0, B ′ , D • )⊗ M 2 (R). Since the eigenvectors of (4.1.17) associated to the eigenvalues (1 + l )(1 + δ) + im and -(1

+ l )(1 + δ) + im are collinear respectively to ñ 1 -l ′ -im ′ (1+l)(2+δ) ô and ñ -l ′ +im ′ (1+l)(2+δ)
1 ô , (I + q) diagonalizes (4.1.13), so taking (4.1.19) into account t J t (I + q(u; x, n))JS(u : x, n)(I + q(u; x, n)) 

= iλ 0 ñ (1 + l )(1 + δ) + im 0 0 -(1 + l )(1 + δ) + im ô . ( 4 
±λ 0 (1 + l )(1 + δ) + iλ 0 m = ± κ-1 k=0 λ k + b 1 (1 + δ) + i κ-1 k=1 µ k + b 2
may be written since δ ∈ S 0,ν (κ),0 (σ, 0,

B ′ , D • ), b 1 , b 2 ∈ S 1,ν (κ) 
,0 (σ, 0, B ′ , D • ), and using (i) of theorem 2.3.1 as

±( κ k=0 λ k ) + i( κ k=1 µ k ) with λ κ , µ κ ∈ S 1,ν (κ),0 (σ, 0, B ′ , D • ). Since δ = δ∨ , b 1 = b∨ 1 , b 2 = b∨ 2 , δ -δ ∨ (resp. b 1 -b ∨ 1 , b 2 + b ∨ 2
) is of order -1 (resp. of order 0), conditions (4.1.6) are satisfied by λ κ , µ κ . Since q -q∨ is of order -1, (4. 1.19) and (4.1.20) imply the second relation (4.1.14) and (4.1.15). By a direct computation, K -1 qK = K -1 qK. Since q -q∨ is of order -1, this implies the first relation (4.1.14). The proof is complete.

Proof of Proposition 4.1.1. -We set (4.1.21) q 1 (u; x, n) = K -1 q(u; x, n)K, q(u; x, n) = 1 2 [q 1 (u; x, n) + q∨ 1 (u; x, n)].
By the first relation (4.1.14), qq 1 belongs to S -1,ν+1

(κ),0

(σ, 0, B ′ , D • ) ⊗ M 2 (R) and by construction q is an element of S 0,ν (κ),0 (σ, 0, B, D • ) ⊗ M 2 (R) satisfying q = q∨ . We set p = I + q and show that (i) of proposition 4.1.1 holds. By (4.1.21) and the second relation (4.1.12)

(4.1.22) p(u; x, n) -i t J t KJ(1 + q(u; x, n))K ∈ S -1,ν+1 (κ),0 (σ, 0, B ′ , D • ) ⊗ M 2 (R).
Together with the second relation (4.1.14) and (4.1.12), this implies that 12), we get that t p ∨ a ′ p + i t KJ[ t J t (I + q) ∨ JS(I + q)]K belongs to S 0,ν+1 (κ),0 (σ, 0, B ′ , D • ) ⊗ M 2 (R). Using (4.1.15) and the definition of K, we obtain (4.1.7). This concludes the proof of the proposition.

t p ∨ Jp -J ∈ S -1,ν+1 (κ) 

Symplectic change of coordinates

Our goal is to define from the symbol p = I + q constructed in proposition 4.1.1 an almost symplectic change of variables near the origin in H s (S 1 ; R 2 ) for s large enough.

Proposition 4.2.1. -Let σ > 0, ν > 0, B > 0 be given with σν large enough and let D • be the (σ + ν + 1, 1)-conveniently increasing sequence fixed at the beginning of section 4.1. Let B ′ > B be the constant given in the statement of proposition 4.1.1. There are B ′′ > B ′ , ρ 0 > 0, s 0 > 0 and an element r ∈ S 0,ν (κ),0 (σ, 0,

B ′′ , D • ) such that, if we set for v ∈ B s0 (ρ 0 ) (4.2.1) ψ(v) = (Id + Op χ [r(v; •)])v,
then ψ is for any s ≥ s 0 a C 1 diffeomorphism from a neighborhood U s of 0 in H s (S 1 ; R 2 ) to a neighborhood W s of 0 in the same space, satisfying the equality

(4.2.2) q(ψ(v); x, n) = r(v; x, n).
Moreover, for any v ∈ U s , ψ ′ (v) extends as an element of L(H -s , H -s ). In addition, ψ is almost symplectic in the following sense: for any σ + 1 > s ≥ s 0 + 1, there is C > 0 such that for any v ∈ U s , t ∂ψ(v)Jψ(v) -J extends as a bounded linear map from H s-1 (S 1 ; R 2 ) to H s (S 1 ; R 2 ) with the bounds

(4.2.3) t ∂ψ(v)J∂ψ(v) -J L(H s-1 ,H s ) ≤ C v κ H s .
Remark.

-The gain of one derivative in (4.2.3) above will be essential when applying this proposition to our quasi-linear problem (which loses one derivative).

Let us first construct r through a fixed point argument.

Lemma 4.2.2. -Let q ∈ S 0,ν (κ),0 (σ, 0, B ′ , D • ) ⊗ M 2 (R) be the symbol constructed in proposition 4.1.1. There is a constant B ′′ > B ′ and a symbol r ∈ S 0,ν (κ),0 (σ, 0,

B ′′ , D • )⊗ M 2 (R) such that (4.2.4) q(v + Op χ [r(v; •)]v; x, n) = r(v; x, n).
Proof. -Recall that elements of S 0,ν (κ),0 (σ, 0, B ′ , D • ) are formal series of homogeneous terms, so that (4.2.4) is an equality between formal series. Decompose q(v; x, n) = i≥κ q i (v, . . . , v i , x, n) with q i ∈ Σ 0,ν (κ,i),0 (σ, 0, B ′ , D • ) ⊗ M 2 (R) and look for r as

r(v; x, n) = j≥κ r j (v, . . . , v j , x, n) with r j ∈ Σ 0,ν (κ,j),0 (σ, 0, B ′′ , D • ) ⊗ M 2 (R). We shall define q <i (v; x, n) = κ≤i ′ <i q i ′ (v, . . . , v; x, n) r <j (v; x, n) = κ≤j ′ <j r j ′ (v, . . . , v; x, n).
We construct the r j 's by induction. We first set r κ = q κ . By definition of N 0,ν (κ),0 (•) we have, since κ ≥ 1

N 0,ν (κ,κ),0 (σ, 0, B ′′ , D • ; r κ ) ≤ N 0,ν (κ),0 (σ, 0, B ′′ , D • ; q) ≤ B ′ B ′′ N 0,ν (κ),0 (σ, 0, B ′ , D • ; q) (4.2.5)
If B ′′ is large enough, we may assume that the right hand side of (4.2.5) is smaller than 1. Assume next that r κ , . . . , r j-1 have been constructed such that (4.2.6) N 0,ν (κ),0 (σ, 0, B ′′ , D • ; r <j ) ≤ 1.

Remark that the term homogeneous of degree j in the left hand side of (4.2.4) depends only on r κ , . . . , r j-1 , so that, equating terms of homogeneous degree j in (4.2.4) is equivalent to taking the term homogeneous of degree j in

q(v + Op χ [r <j (v; •)]v; x, n).
We define r j to be this term of degree j. By proposition 2.2.1, we know that

r j (u 1 , . . . , u j ; •) is in Σ 0,ν (κ,j),0 (σ, 0, B ′′ , D • ) ⊗ M 2 (R), or equivalently that r <j+1 is in S 0,ν (κ),0 (σ, 0, B ′′ , D • ) ⊗ M 2 (R), and by (2.2.7) (4.2.7) N 0,ν (κ),0 (σ, 0, B ′′ , D • ; r <j+1 ) ≤ CN 0,ν (κ),0 (σ, 0, B ′′ , D • ; q)
with a constant C depending only on N 0,ν (κ),0 (σ, 0, B ′′ , D • ; r <j ). The induction assumption (4.2.6) shows that C is independent of j, and using the last inequality in (4.2.5), and assuming that B ′′ is taken large enough in function of C, B ′ , N 0,ν (κ),0 (σ, 0, B ′ , D • ; q), we obtain that the left hand side of (4.2.7) is smaller than 1. We have performed the induction hypothesis (4.2.6) at step j + 1. This concludes the proof.

Proof of proposition 4.2.1. -We define ψ(v) by (4.2.1). Note that this is meaningful if v ∈ B s0 (ρ 0 ) for some large enough s 0 and small enough ρ 0 . Actually, if s 0 > ν + 5 2 , (i) of proposition 2.1.13 shows that for v H s 0 small enough and s ≥ s 0

(4.2.8) Op χ [r(v; •)]v H s ≤ C s v κ H s 0 v H s .
Together with the implicit function theorem, this shows moreover that ψ is a local diffeomorphism from a neighborhood of zero in H s (S 1 ; R 2 ) to a neighborhood of zero in H s (S 1 ; R 2 ), for any s ≥ s 0 . Equality (4.2.2) follows from (4.2.4) and the definition of ψ. Let us show that (4.2.3) holds when s ≥ s 0 + 1. By (4.2.1) the differential of ψ acting on a tangent vector V is given by

∂ψ(v) • V = (Id + Op χ [r(v; •)])V + Op χ [∂ v r(v; •) • V ]v = (Id + Op χ [q(ψ(v); •)])V + R(v) • V (4.2.9)
where we used (4.2.2) and defined (4.2.10)

R(v) • V = Op χ [∂ v r(v; •) • V ]v.
From (i) of proposition 2.1.13, we have

(4.2.11) R(v) • V H s ≤ C v κ-1 H s 0 V H s 0 v H s . From estimate (2.1.46), we deduce (4.2.12) R(v) • V H -s 0 ≤ C v κ-1 H s 0 V H -s v H s .
This implies together with (i) of proposition 2.1.13 that ψ ′ (v) extends as an element of L(H -s , H -s ) if s ≥ s 0 large enough. Moreover, by duality 

(4.2.13) t R(v) L(H s 0 ,H s ) ≤ C v κ-1 H s 0 v H s . Let us compute t ∂ψ(v)Jψ(v) = t (Id + Op χ [q(ψ(v); •)])J(Id + Op χ [q(ψ(v); •)]) + t R(v)J(Id + Op χ [q(ψ(v); •)]) + t (Id + Op χ [q(ψ(v); •)])JR(v) + t R(v)JR(v). ( 4 
= I + q t (Id+Op χ [q(u; •)])J(Id + Op χ [q(u; •)]) = Op χ [ t p ∨ (u; •)Jp(u; •)] + Op χ [e(u; •)] + M (u) (4.2.15) with e ∈ S -1,ν ′ (κ),0 (σ, 0, B ′′ , D• ) ⊗ M 2 (R) for some ν ′ ≥ ν, some new sequence D• and M ∈ L 0,ν ′ (κ) (σ, 0, B ′′ )
. By (i) of proposition 4.1.1 and (i) and (iii) of proposition 2.1.13 (in which we take in (2.1.47) σ ′ = s -3 2δ), we obtain if s 0 + 1 ≤ s < σ + 1 that (4.2.15) may be written J + S(u) where S(u) is a bounded operator from H s-1 to H s , with operator norm bounded from above by C u κ H s . Setting u = ψ(v), we get the conclusion of the proposition.

We end this section stating a corollary of proposition 4.1.1 and 4.2.1 that will be needed in the last chapter. 

v ∈ B s0 (ρ 0 ) G ′ (ψ(v)) = 1 2 κ-1 k=0 Op χ [λ k (v; •)I + µ k (v; •)J]v, v + 1 2 Op χ [ λκ (v; •)I + μκ (v; •)J]v, v + L(v). ( 4 
[p(u; •)]Op χ [a ′ (u; •)]Op χ [p(u; •)] = Op χ [ t p ∨ (u; •)a ′ (u; •)p(u; •)] +Op χ [e(u; •)] + M (u) (4.2.23)
where e(u; •) ∈ S 0,ν ′ (κ),0 (σ, 0, B ′′ , D• ) ⊗ M 2 (R) for some ν ′ > ν, σ ≥ ν ′ + 2, and some new sequence D• , and where 

M ∈ L 1,ν ′ (κ) (σ, 0, B ′′ ). Define L(u, v) = Op χ [e(u; •)]v, v + M (u)v, v . It follows from (2.1.44) and (2.1.48) that ∂ v L(u, v) belongs to L(H -s , R) if u, v ∈ H s and
[λ k (ψ(v); •)I + µ k (ψ(v); •)J]v, v .

Note that for any

k = 1, . . . , κ -1 λ k (ψ(v); x, n) = λ k ((I + Op χ [r(v; •)])v; x, n) = λ k (v; x, n) + λk (v; x, n) with λk ∈ S
′ (v) is invertible from H s to H s and from H s-1 to H s-1 for any s ∈ [s 0 + 1, σ + 1[ with s 0 large enough. k 1 , k 2 ∈ N * , F 1 ∈ H ′ d,ν (k1),N0 (ζ), F 2 ∈ H ′ 1,ν (k2),N0 (ζ), their Poisson bracket {F 1 , F 2 } is in H ′ d,ν ′ (k1+k2),N0 ( ζ 
) for some ν ′ ≥ ν depending only on ν, N 0 , and where ζ = max(ζ, d+1 3 ). We shall denote by H ′ d,ν (0),N0 (ζ) the space of functions of form

(5.1.5) α Λ d m u, u + F (u) where α ∈ R, F ∈ H ′ d,ν (1) 
,N0 (ζ). Proposition 3.3.4 extends to the case when

F 1 ∈ H ′ d,ν (0),N0 (ζ), F 2 ∈ H ′ 1,ν (k),N0 (ζ) (k ∈ N * ) and shows that {F 1 , F 2 } is in H ′ 1,ν ′ (k),N0 ( ζ) for some ν ′ ≥ ν.
From now on, we fix a large integer κ. We introduce truncated Poisson brackets.

Definition 5.1.1. -Let F (resp. G) be an element of H ′ 1,ν (1),N0 (ζ) (resp. H ′ d,ν (0),N0 (ζ)) with d ∈ N * , ν > 0, N 0 ∈ N * .
Decompose F and G as sums of homogeneous terms and assume that all components of order larger or equal to κ vanish, (5.1.6)

F (u) = κ-1 k=1 F k (u), G(u) = κ-1 k=0 G k (u).
We define

(5.1.7) {F, G} κ = ℓ+ℓ ′ ≤κ-1 ℓ≥1,ℓ ′ ≥0 {F ℓ , G ℓ ′ }.
We obtain an element of H ′ d,ν ′ (1),N0 ( ζ) for some ν ′ ≥ ν. We set by induction Ad

κ F • G = {F, G} κ Ad κ j F • G = Ad κ F • (Ad κ j-1 F ) • G. (5.1.8)
We have for some increasing sequence ν j depending only on ν, N 0 and for

ζ j = max(ζ, d+j 3 ) (5.1.9) Ad κ j F • G ∈ H ′ d,νj (j),N0 (ζ j ). Finally, we define (5.1.10) exp[T Ad κ F ] • G = +∞ j=0 T j j! Ad κ j • F.
Note that by (5.1.9) and the truncation in definition (5.1.7), the coefficients of T j vanish when j ≥ κ.

Lemma 5.1.2. -Let s ∈ N * , N 0 ∈ N, Θ 0 s (u) = 1 2 Λ s m u, Λ s m u element of H ′ 2s,0 (0),0 (0). Let G ∈ H ′ 1,+∞ (0),N0 (0) def = ∪ ν>0 H ′ 1,ν (0),N0 (0) and let H ∈ H ′ 1,+∞ (1) 
,N0 (0). Assume that G and H have no component homogeneous of order greater than or equal to κ. We have the equality

(5.1.11) {exp(T Ad κ H)Θ 0 s , G} κ = exp(T Ad κ H) • {Θ 0 s , exp(-T Ad κ H)} κ .
Remark that for fixed κ, the functions in the preceding formula are well defined when u ∈ H s with s large enough: the regularity condition of definition 3.3.3 of the class H ′ d,νj (j),N0 (ζ j ), namely

s > ν + 5 2 + max(ζ j , d 3 ) = ν + 5 2 + max(ζ, d + j 3 )
is satisfied for any j = 1, . . . , κ when d = 2s and s is large enough relatively to κ, ν.

Proof. -Since (5.1.11) is an equality between polynomials in T , we just need to check that all T derivatives coincide at T = 0. Note first that

d dT {exp(T Ad κ H) • Θ 0 s , G} κ = {exp(T Ad κ H)Ad κ H • Θ 0 s , G} κ and that d dT [exp(T Ad κ H) • {Θ 0 s , exp(-T Ad κ H) • G} κ ] = exp(T Ad κ H)[Ad κ H • {Θ 0 s , exp(-T Ad κ H) • G} κ -{Θ 0 s , Ad κ H • exp(-T Ad κ H) • G} κ ] = exp(T Ad κ H){Ad κ H • Θ 0 s , exp(-T Ad κ H)•G} κ using the Jacobi identity {{F 1 , F 2 }, F 3 } + {{F 2 , F 3 }, F 1 } + {{F 3 , F 1 }, F 2 } = 0.
Iterating the above two inequalities, we get for any j ∈ N

d j dT j {exp(T Ad κ H) • Θ 0 s , G} κ = {exp(T Ad κ H)Ad κ j H • Θ 0 s , G} κ d j dT j [exp(T Ad κ H) • {Θ 0 s , exp(-T Ad κ H) • G} κ ] = exp(T Ad κ H){Ad κ j H • Θ 0 s , exp(-T Ad κ H) • G} κ .
(5.1.12)

This shows that the two quantities (5.1.12) coincide at T = 0 and concludes the proof.

To write a formula similar to (5.1.2), we introduce if Θ 0 s , G, H are as in the statement of the preceding lemma, the notations

Θ 0 s • χ κ H (u) def = exp(Ad κ H) • Θ 0 s (u) G • (χ κ H ) -1 (u) = exp(-Ad κ H) • G(u)
(5.1.13) so that (5.1.11) may be written at T = 1

(5.1.14)

{Θ 0 s • χ κ H , G} κ = {Θ 0 s , G • (χ κ H ) -1 } κ • χ κ H .
We shall deduce theorem 1.1.1 from the following result.

Theorem 5.1.3. -There is a large enough s 0 ∈ N and N 0 ∈ N and for any s ≥ s 0 there are ρ 0 > 0 and

• A C 1 map F : B s (ρ 0 ) → R, such that u → ∇F (u) is C 1 from B s (ρ 0 ) to H s (S 1 ; R 2 ) and F (0) = 0, ∂F (0) = 0, ∂∇F (0) = 0, • A diffeomorphism ψ from B s (ρ 0 ) to a neighborhood of 0 in H s (S 1 ; R 2 ) with ψ(0) = 0, • An element H ∈ H ′ 1,+∞ (1) 
,N0 (0), such that if we set

(5.1.15) Θ s (u) = (Θ 0 s • χ κ H ) • ψ -1 • χ F (u)
, any solution u of (1.2.9) satisfies, as long as it exists and stays in B s (ρ 0 ), (5.1.16)

d dt Θ s (u(t, •)) ≤ C u(t, •) κ+2 H s
with a uniform constant C > 0.

Remark. -In (5.1.15) note that we use on the one hand the notation χ F to denote the canonical transformation defined after (5.1.1) from a C 1 map on H s such that u → ∇F (u) is also a C 1 map from H s to H s , and on the other hand the notation χ κ H defined by (5.1.13). We could not give a meaning to χ H as a map from a neighborhood of zero in H s to H s solving an equation of form (5.1.1). Nevertheless, notation (5.1.13) is perfectly meaningful since it involves only elements of classes H ′ d,ν (k),N0 (0) for which the stability property with gain of one derivative of proposition 3.3.4 (i) holds.

Let us show that theorem 5.1.3 implies theorem 1.1.1. It is enough to show that if the solution of (1.2.9) exists over some interval [0, T ] and satisfies for t ∈ [0, T ], u(t, •) ∈ B s (ρ 0 ) with a large enough s, then for any t ∈ [0, T ] (5.1.17)

u(t, •) 2 H s ≤ C u(0, •) 2 H s + t 0 u(τ, •) κ+2 H s dτ
with a uniform C > 0. Actually, since u(0, •) H s ≤ Aǫ for some A > 0, a standard continuation argument allows one to deduce from (5.1.17) that there is c > 0 and

A ′ > A such that if T < cǫ -κ and ǫ > 0 is small enough, u(t, •) H s ≤ A ′ ǫ for any t ∈ [0, T ].
This allows one to extend the solution up to a time of magnitude cǫ -κ . Let us deduce (5.1.17) from (5.1.16). By this inequality, as long as

u(t, •) stays in B s (ρ 0 ) and t ∈ [0, T ], Θ s (u(t, •)) ≤ Θ s (u(0, •)) + C t 0 u(τ, •) κ+2 H s dτ.
We just have to find some K > 0 such that for any u ∈ B s (ρ 0 )

(5.1.18)

K -1 u 2 H s ≤ Θ s (u) ≤ K u 2 H s .
Since χ F and ψ are C 1 local diffeomorphisms sending 0 to 0, it is enough to get such an estimate for Θ 0 s • χ κ H . By (5.1.13), (5.1.10) and (5.1.9), Θ 0 s • χ κ H -Θ 0 s belongs to H ′ 2s,νκ (1),N0 (ζ κ ). Definition 3.3.3 of that space and proposition 2.1.13 (in the special case of polynomial symbols) show that

|(Θ 0 s • χ κ H -Θ 0 s )(u)| ≤ C u 3 H s
if s is large enough and u ∈ B s (ρ 0 ). Estimate (5.1.18) follows from that.

We have reduced ourselves to the proof of theorem 5.1.3. In the following three sections we shall construct successively maps F, ψ, H involved in (5.1.15).

First reduction: elimination of low degree non diagonal terms

Let u be a solution of (1.2.9), smooth enough and defined on some interval [0, T ]. Then

d dt Θ s (u(t, •)) = DΘ s (u(t, •)) • X G (u(t, •)) = {Θ s , G}(u(t, •)) = {(Θ 0 s • χ κ H ) • ψ -1 , G • χ -1 F }(χ F (u(t, •)))
(5.2.1) using (5.1.15) and (5.1.2). The aim of this section is to construct F in order to simplify G • χ -1 F up to a given degree of homogeneity κ. By proposition 3.5.1 we may write, using notation (3. where e ∈ S 1,ν (1),0 (0), M ∈ L 1,ν (1) (0) for some ν > 0, e verifying ē∨ = e. We want to choose F in such a way that G • χ -1 F will be given by a similar expression where all contributions in I ′ (or J ′ ) up to order κ + 1 will be removed. In that way, G • χ -1 F will be the sum of 1 2 Λ m u, u , of an element of H ′ 1,ν (1),0 (0) for some new value of ν, and of contributions vanishing at least at order κ + 2 at zero. We shall first compute G • χ -1 F for any given F with a convenient structure and then, in a second step, choose F in order to eliminate all bad terms in the expansion brought by the first step. Remind that we denote by B s (ρ) the open ball of center 0, radius ρ > 0 in H s (S 1 ; R 2 ). Let us note that the map F defined by (5.2.4) satisfies ∇F (u) ∈ H s if u ∈ H s , s ∈ [s 0 , σ[ i.e. that ∂F (u) extends as an element of L(H -s , R). This follows from (i) and (ii) of proposition 2.1.13 if s 0 is large enough (see (2.1.44) and (2.1.46)). Moreover, since F is polynomial in u, these estimates show that u → ∇F (u) and u → X F (u) are C 1 maps from H s (S 1 ; R 2 ) to H s (S 1 ; R 2 ). We may thus consider the flow Φ(τ, u) of (5.1.1), and for u ∈ B s (ρ) with ρ small enough, define (5.2.6) χ F (u) = Φ(1, u), χ -1 F (u) = Φ(-1, u).

As mentioned before the statement of the proposition, the first step of the proof will be the computation of G • χ -1 F for any given F of form (5.2.4).

Lemma 5.2.2. -Let ν 0 > 0, α, β ∈ S 0,ν0 (1),0 (0) be given with ᾱ∨ = α, β∨ = β. One may find s 0 > 0, ρ s0 > 0, ν ≥ ν 0 and for any σ > s 0 a constant B > 0 and a (ν + 1 + σ, 1)-conveniently increasing sequence D • , a symbol gκ ∈ S 1,ν (κ),0 (σ, 0, B, D • ) ⊗ M 2 (R), and a C 1 function u → L(u) defined on B s0 (ρ s0 ), satisfying (5.2.3) such that (5.2.7)

G • χ -1 F (u) = κ-1 k=0 Ad k F k! • G + Op χ [g κ (u; •)]u, u + L(u).
Proof. -Let us show first that we may find s 0 > 0, ρ 0 > 0, ν ≥ ν 0 and for any σ > s 0 a constant B ′ > 0, a (σ + ν + 1, 1)-conveniently increasing sequence D • , a constant C > 0 and • A sequence (g k ) k≥κ of elements of S 1,ν (k),0 (σ, 0, B ′ , D • ) ⊗ M 2 (R) satisfying N 1,ν (k),0 (σ, 0, B ′ , D • ; g k ) ≤ 1,

• A sequence (L k ) k≥κ of C 1 -functions on B s0 (ρ s0 ), such that for any s ∈ [s 0 , σ[ there is ρ s > 0, C s > 0 so that for any u ∈ B s (ρ s ), ∇L k (u) ∈ H s and ∇L k (u)

H s ≤ C s C k k! u k+1 H s ,
Let us prove (5.2.15). Since g k ∈ S 1,ν (k),0 (σ, 0, B ′ , D • ) ⊗ M 2 (R), we decompose using definition 2.1.5 g k (u; x, n) = j≥k g k,j (u, . . . , u; x, n) with g k,j ∈ Σ 1,ν (k,j),0 (σ, 0, B ′ , D • )⊗M 2 (R). Then gκ (u; x, n) = j≥κ gκ,j (u, . . . , u; x, n) with gκ,j (u 1 , . . . , u j ; x, n) = j k=κ 1 k! g k,j (u 1 , . . . , u j ; x, n).

We 

| Op χ [g K+1 (u; •)]u, u | ≤ C( CB) K+1 u K+3
H s 0 K! which shows that (5.2.16) goes to zero when K goes to infinity if u H s 0 < ρ s0 small enough. This concludes the proof of the lemma.

Proof of proposition 5.2.1. -The last two terms in (5.2.7) contribute to the last two terms in (5.2.5), for any F of form (5.2.4). We have to show that we may find such a F so that the sum in the right hand side of (5.2.7) may be written 1 2 Λ m u, u + G ′ (u) with G ′ (u) ∈ H ′ 1,ν (1),0 (0) for some ν, up to remainders contributing to the last two terms in (5.2.5). Let us write (5.2.17)

κ-1 k=0 Ad k F k! • G = G + {F, G 0 } + {F, G -G 0 } + κ-1 k=2 Ad k F k! G
with G 0 (u) = 1 2 Λ m u, u . Since G -G 0 vanishes at least at order three at zero, the contribution to {F, G -G 0 } homogeneous of degree k depends only on F k ′ , k ′ < k. The same is true for the last sum in (5.2.17). Consequently the expression may be written (5.2.18)

G 0 + κ-1 k=1 [G k + {F k , G 0 } + H k ] + k≥κ [G k + H k ]
where the last sum is finite and where H k is homogeneous of degree k + 2 and may be expressed using iterated brackets of F k ′ , k ′ < k, and G k ′ . Consequently, by proposition 3.3.4 (ii), H k belongs to H 

{(Θ 0 s • χ κ H ) • ψ -1 , (G ′ + G′ ) • ψ • ψ -1 }(w) + {(Θ 0 s • χ κ H ) • ψ -1 , L}(w) = ∂[Θ 0 s • χ κ H ](ψ -1 (w)) • ∂ψ -1 (w) • J • t (∂ψ) -1 (w) • ∇[(G ′ + G′ ) • ψ](ψ -1 (w)) +∂[Θ 0 s • χ κ H ](ψ -1 (w)) • ∂ψ -1 (w) • J • ∇L(w).
(5.3.6) By (4.2.20), J = ∂ψ(v)J t (∂ψ(v)) + R 1 (v) where R 1 (v) is a map sending H s-1 to H s , with norm O( v κ H s ). Plugging this into the first term in the right hand side of (5.3.6), we get setting R1 (v) = ∂ψ -1 (ψ(v))R 1 (v) t (∂ψ) -1 (ψ(v))

{(Θ 0 s • χ κ H ), (G ′ + G′ ) • ψ}(ψ -1 (w)) + ∂[Θ 0 s • χ κ H ](ψ -1 (w)) R1 (ψ -1 (w)) ∇[(G ′ + G′ )
• ψ] (ψ -1 (w)).

(5.3.7)

By assumption, Θ 0 s ∈ H ′ 2s,0 (0),0 (0), H ∈ H ′ 1,ν0 (1),N0 (0) for some ν 0 > 0, some N 0 ≥ 0. Consequently (5.1.13), (5.1.10), (5.1.9) imply that Θ 0 s • χ κ H will belong to H ′ 2s,ν ′ 0 (0),N0 ( 2s+κ-1

3

) ⊂ H ′ 2s,ν ′ 0 + κ-1 3 (0),N0 when u remains in some small ball B s (ρ s ). We express in the above formula G ′ • ψ using (4.2.19). Moreover

G′ • ψ(v) = 1 2 κ-1 k=1 M k (ψ(v))ψ(v), ψ(v) .
By definition Φ(v) = ψ(v)v satisfies Φ(v) H s ≤ C v κ+1 H s and ∂Φ(v) extends as an element of L(H -s , H -s ) with ∂Φ(v) L(H -s ,H -s ) ≤ C v κ H s . It follows from this and from the remark after the proof of lemma 3.3.7 that

G′ • ψ(v) = G′ (v) + L(v)
where L satisfies again (5.2.3). Consequently, we may write the right hand side of (5.3.8) as

{Θ 0 s • χ κ H , G ′ 1 + G′ }(ψ -1 (χ F (u(t, •))) + O( u(t, •) κ+2 H s )
holds, so that we just have to check that (5.4.6)

{Θ 0 s • χ κ H , G′ 1 + G′ } -{Θ 0 s • χ κ H , G′ 1 + G′ } κ = O( v κ+2 H s ).
The left hand side of (5.4.6) is made of those contributions to {Θ 0 s • χ κ H , G′ 1 + G′ } which are homogeneous of degree k + 2 with k ≥ κ according to definition (5.1.7) of the truncated bracket. As we have seen in the proof of the preceding lemma, the first argument in the above bracket is in H ′ 2s,ν0 (0),N0 ( 2s 3 ) for some ν 0 . Moreover, G′ 1 + G′ defines an element of H ′ 1,ν (0),0 (0) for some ν. By (i) of proposition 3.3.4 (and the extension of that result to components of order zero discussed in the proof of lemma 5.4.2), (5.4.6) is a finite sum of elements of H ′ 2s,ν ′ (k),0 ( 2s+1 3 ) for some ν ′ and for k ≥ κ. We just have to apply (2.1.44), (2.1.47) to get (5.4.6).

To conclude the proof of our main theorem, we still need to prove proposition 5.4.1.

Proof of proposition 5.4.1. -We decompose G′ 1 + G′ as a sum of homogeneous terms (5.4.7)

G′ 1 + G′ = κ-1 k=0 Q k (v) = Q(v) with Q 0 (v) = 1 2 Λ m v, v and for 1 ≤ k ≤ κ -1 (5.4.8) Q k (v) = 1 2 Op χ [λ k (v; •)I + µ k (v; •)J]v, v + 1 2 M k (v)v, v so that Q k ∈ H ′ 1,ν (k) 
,0 (0) for some ν > 0. According to (5.1.14) (5.4.9)

{Θ 0 s • χ κ H , Q} κ = {Θ 0 s , Q • (χ κ H ) -1 } κ • χ κ H . We shall construct H ∈ H ′ 1,ν0

(1),N0 (0) for some ν 0 , so that {Θ 0 s , Q • (χ κ H ) -1 } κ is zero. This will give the wanted conclusion. By the second relation (5.1.13) and (5. (where the j sum is actually finite). We look for H as H = κ-1 ℓ=1 H ℓ with H ℓ ∈ H ′ 1,ν ℓ (ℓ),N0 (0) for some increasing ν ℓ , ℓ = 1, . . . , κ -1, H ℓ homogeneous of degree ℓ. By (i) of proposition 3.3.4 

{H ℓ1 , {H ℓ2 , • • • , {H ℓp , Q k }} • • • } belongs to H ′ 1,ν ′
Q k -{H k , Q 0 } + K k where K k ∈ H ′ 1,ν ′ k (ℓ),N0 ( 
0) for some increasing ν ′ k , 1 ≤ k ≤ κ -1, K k depending only on H 1 , . . . , H k-1 . To solve the equation

{Θ 0 s , Q • (χ κ H ) -1 } κ = 0
so that we need to find γℓ ∈ C Σ 1,ν+N0 (k),N0 (0), Γ ℓ ∈ C Λ1,ν+N0

(0), Γ ℓ ∈ C Λ1,ν+N0

(0) such that iL ℓ [Op χ (γ ℓ )] = Op χ (γ ′′ ℓ ) iL ℓ ( Γ ℓ ) = Γ ′′ ℓ , iL ℓ ( Γ ℓ ) = Γ ′′ ℓ .

(5.4.24)

By (ii) and (iii) of proposition 3.4.4, we may solve the first equation (5.4.24) if we assume that m is outside the exceptional subset N of the statement of that proposition. We get a symbol γℓ if we assume that N 0 has been taken larger than 2(N 1 + 1).

To solve the equation involving Γ ℓ , Γ ℓ we use proposition 3. Finally, if M (u) = M 1 (u)I + M 2 (u)J + M 1 (u)I ′ + M 2 (u)J ′ , we see that (5.4.19) implies the conclusion (5.4.14). This concludes the proof of the lemma. 

S 1

 1 

S 1 (

 1 b(u, ū)Λ m u)udx where a, b are polynomials in (u, ū) and Λ m = -∂ 2

S 1 (a 1 1 (b 1 1 (

 11111 (u, ū)Λ m u)ūdx + S (u, ū)Λ m u)udx , with a 1 , b 1 homogeneous of degree 1 in u, ū. Let us look for F 1 given by (0.0.14) Re S Ã1 (u, ū)u)ūdx + Re S 1

  z ∈ S 1 identified with [-π, π]. We denote by C •,M (χ) a sequence of positive constants such that for any γ, M ∈ N for any n ∈ Z, z ∈ [-π, π]

Definition 2 . 1 . 6 .

 216 -Let d ∈ R, ν, ζ ∈ R + , N 0 ∈ N, k ∈ N * .We denote by S d,ν (k),N0 (ζ) the space of finite sums (2.1.29) a(u; x, n) = j≥k finite a j (u, . . . , u j ; x, n)

  (2.1.30) Let us remark that a j,χ (resp. a χ ) still belongs to Σ d,ν (k,j),N0 (σ, ζ, B, D • ) (resp. S d,ν (k),N0 (σ, ζ, B, D • )) and that

S 1 e

 1 -iℓy ã(u; x, ℓ, n) b(u; x, y, n)dy. Then c(u; x, n) = j≥k=k ′ +k ′′ cj (u, . . . , u; x, n), where each cj satisfies estimates (2.1.20), (2.1.21) of an element of Σ d,ν ′ +2 (k,j),N0 (σ, ζ, B, D• ) for a new increasing sequence D• , depending on D • , d′ , d′′ , ν, σ, N 0 . Moreover the support condition (2.1.19) is verified with 1 4 |n| replaced by 1 2 |n|.

  .3.22) It follows from the definition of symbols that ã (resp b) satisfies the assumptions of proposition 2.3.2 with d′ = d ′ -1, ν ′ = ν + N 0 (resp. d′′ = d ′′ , ν ′ = ν + 1) and with D • replaced by a new sequence. Thus we may write (2.3.23) c(u; x, n) = (a χ b χ )(u; x, n) + c(u; x, n) for a symbol c satisfying the conclusion of proposition 2.3.2 i.e. c = cj with cj obeying estimates (2.1.20), (2.1.21) of an element of Σ d ′ +d ′′ -1,ν+N0+3 (k,j),N0 (σ, ζ, B, D• ) for some increasing sequence D• , and verifying (2.1.19) with 1 4 |n| replaced by 1 2 |n|. It remains to show that (2.3.24) Op[c(u; •)] = Op χ [ab(u; •)] + Op χ [e(u; •)] + M (u) with the notations of the statement of the theorem. Note first that, by the example following definition 2.1.11, Op[c(u; •)] -Op χ [c(u; •)] may be written as M (u) for someM ∈ L d+,ν+N0+3(k)(σ, ζ, B) (the fact that the support condition verified by cj is (2.1.19) with 1 4 |n| replaced by 1 2 |n| does not affect the result). Moreover, modulo another contribution M (u) of the same type, we may write Op χ [c(u; •)] = Op χ [e(u; •)] for some e ∈ S d-1,ν+N0+3 (k),N0 (σ, ζ, B, D• ): actually, we define e = j≥k e j with e j (u 1 , . . . , u j

( 3 .

 3 3.2) λI + µJ + αI ′ + βJ ′ . We denote by S d,ν (k),N0 (σ, ζ, B, D • ) ⊗ M 2 (R) the space of 2 × 2 matrices whose entries belong to S d,ν (k),N0 (σ, ζ, B, D • ). If A is a matrix valued symbol, we decompose it in terms of scalar symbols according to (3.3.2) and define N d,ν (k),N0 (σ, ζ, B, D • ; A) as the supremum of the four corresponding quantities for the four coefficient in (3.3.2). If s ∈ R, ρ > 0, we denote by B s (ρ) the ball of center 0 and radius

  ζ) the space of functions u → F (u) defined on H s0 (S 1 ; R 2 ) with values in R, such that there are symbols λ(u; •), µ(u; •) belonging to S d,ν (k),N0 (ζ), satisfying λ∨ = λ, μ∨ = µ and an element M

max 2 (

 2 |n 0 |, . . . , |n j+1 |) = max{|n 0 |, . . . , |n j+1 |} -{|n ℓ0 |}) µ(n 0 , . . . , n j+1 ) = 1 + max({|n 0 |, . . . , |n j+1 |} -{|n ℓ0 |, |n ℓ1 |}) (3.4.1) where ℓ 0 is an index such that |n ℓ0 | = max(|n 0 |, . . . , |n j+1 |) and ℓ 1 is an index different from ℓ 0 , such that |n ℓ1 | = max 2 (|n 0 |, . . . , |n j+1 |). In other words, µ(n 0 , . . . , n j+1 ) is essentially the third largest among |n 0 |, . . . , |n j+1 |. If m ∈]0, +∞[, j ∈ N, n 0 , . . . , n j+1 ∈ Z, 0 ≤ ℓ ≤ j + 1 we set (3.4.2)

  ) and the second and third inequalities(3.4.19) are just (3.4.3) and (3.4.17). Estimate (3.4.15) follows from (3.4.18), (3.4.19).

  ζ) such that (3.4.21) L ω (Op χ [a(u 1 , . . . , u j ; •)]) = Op χ [b(u 1 , . . . , u j ; •)].

(

  ζ). Consequently, we just have to find a solving L ω (Op χ (a)) = Op χ (b 1 ). Writing from now on b instead of b 1 i.e. assuming that if b

  4.25), using the Leibniz formula (2.1.10), estimate (3.4.14) and performing two integrations by parts of

  . (iii) We define a by (3.4.25) with b replaced by b ′′ . By (3.4.10), (3.4.11), we have

  where ′ stands for the sum on those indices for which (3.4.11) holds true. Proposition 3.4.5. -Let m ∈]0, +∞[ be outside the exceptional subset N of proposition 3.4.1.

  5.8) as (3.5.10) 0≤i<i ′ ≤j+1

  5.14) by C n ℓ -3σ+ν+1 for any ℓ = 0, . . . , j + 2. If one among |n 0 |, . . . , |n j+1 | is much larger than any other one, the rapid decay of â brings the wanted estimate. If not, and if i 0 < i ′ 0 are those two indices for which |n i0 | and |n i ′ 0 | are the largest two among |n 0 |, . . . , |n j+1 |, we may assume that C -1 |n i0 | ≤ |n i ′ 0 | ≤ C|n i0 | for some constant C > 0. If there is another index ℓ 0 = i 0 , ℓ 0 = i ′ 0 and a positive constant c > 0 such that |n ℓ0 | ≥ c|n i0 |, (3.5.14) has again the wanted estimate as n

2 by

 2 C n ℓ -3σ+ν+1 for any ℓ and some ν. By definition of Φ, on its support |n ℓ | < c 1 n j+1 , ℓ = 1, . . . , j for some small c 1 > 0 depending on Supp χ 1 . If |n 0 | ≫ |n j+1 | or |n j+1 | ≫ |n 0 |, the |â| factor in (3.5.17) gives the wanted estimate. If on the contrary C -1 |n 0 | ≤ |n j+1 | ≤ C|n 0 | for some constant C > 0, and if we use that because of the (1χ) cut-off, we may assume that |n 0n j+1 | ≥ c n j+1 for some small c > 0 much larger than c 1 , we get again from the |â| factor a bound in n j+1 -N ∼ max(|n 0 |, . . . , |n j+1 |) -N for any N . This implies the wanted upper bound, and

( 3 . 5 . 18 )

 3518 Then a 0 j+1 satisfies (2.1.24), (2.1.25), (2.1.26) for N 0 = 0, ζ = 0, some ν and d =

  ,0 (σ, 0, B, D • ) ⊗ M 2 (R). Since for any matrix valued symbol A, Op χ (A)u = Op χ (A ∨ )ū, condition (4.1.1) and the first condition (4.1.3) imply that Op χ (λ k I + µ k J) and Op χ (Ω) send real valued functions to real valued functions. Condition (4.1.2) and the second condition (4.1.

Proposition 4 .

 4 1.1. 

  ,0 (σ, 0, B ′ , D • ) (4.1.6)and t p ∨ (u; x, n)a ′ (u; x, n)p(u; x, n) -κ k=0 (λ k (u; x, n)I + µ k (u; x, n)J) ∈ S 0,ν+1 (κ),0 (σ, 0, B ′ , D • ) ⊗ M 2 (R).

( 4 . 1 . 7 )

 417 Before starting the proof, let us comment on the meaning of the proposition. If we set

  ,0 (σ, 0, B, D • ) (resp. S -1,ν+1 (κ),0 (σ, 0, B, D • )) by (4.1.1), (4.1.2), (4.1.3). According to (4.1.5), (4.1.9) and (4.1.10), we may write (4.1.11) a

, 0 (

 0 σ, 0, B ′ , D • ) ⊗ M 2 (R) i.e. (i) of proposition 4.1.1 is satisfied. If we use (4.1.22), the definition (4.1.13) of S in terms of a ′ and the second equality (4.1.

Corollary

  

2 M

 2 Op χ [e(u; •)]I ′ u, u + 1 (u)u, u (5.2.2)

Proposition 5 . 2 . 1 .( 5 . 2 . 3 )

 521523 -One may find ν > 0, symbols α, β ∈ S 0,ν (1),0 (0)satisfying ᾱ∨ = α, β∨ = β, an element G ′ ∈ H ′ 1,ν(1),0 (0), a large enough number s 0 > 0 and, for anyσ > s 0 , a constant B > 0, a (ν + σ + 1, 1)-conveniently increasing sequence D • , an element gκ ∈ S 1,ν (κ),0 (σ, 0, B, D • ) ⊗ M 2 (R) verifying ḡ∨ κ = gκ , a C 1 function u → L(u)defined on B s0 (ρ) for some ρ 0 > 0, satisfying for any s ∈ [s 0 , σ[∇L(u) ∈ H s (S 1 ; R 2 ) if u ∈ B s (ρ) for a small enough ρ > 0 ∇L(u) H s ≤ C u κ+1 H s such that if we set (5.2.4) F (u) = Op χ [α(u; •)I ′ + β(u; •)J ′ ]u, u we have (5.2.5) G • χ -1 F (u) = 1 2 Λ m u, u + G ′ (u) + Op χ [g κ (u; •)]u, u + L(u).

1,ν ′ 0 (

 0 k),0 (0) for some ν ′ 0 . Moreover, the expressionk≥κ [G k + H k ] belongs to H 1,ν ′ 0 (κ),0(0), so may be incorporated to the last two terms in and conditions (4.1.1), (4.1.2), (4.1.3) are satisfied. Consider ψ the local diffeomorphism constructed in proposition 4.2.1, and let us apply corollary 4.2.3. We write the right hand side of (5.3.1) evaluated at w = χ F (u), according to (5.3.2), (5.3.4),(5.3.5) 

( 2s 3 )

 3 (for a new value ν ′ 0 of ν 0 ). By lemma 3.3.7 ∂[Θ 0 s • χ κ H ] belongs to L(H s , R) and ∇[(G ′ + G′ ) • ψ] belongs to H s-1 (S 1 ; R 2 ).Since R 1 gains one derivative, we see that the last term in (5.3.7) belongs to H s (S 1 ; R 2 ) and has H s -norm O( w κ+2 H s ). A similar property holds for the last term in (5.3.6), so that (5.3.1) may be writtend dt Θ s (u(t, •)) = {Θ 0 s • χ κ H , (G ′ + G′ ) • ψ}(ψ -1 (χ F (u(t, •))))+O( u(t, •) κ+2 H s )(5.3.8) 

ℓ

  (ℓ),N0 (0) for some ν ′ ℓ , withℓ = ℓ 1 + • • • + ℓ p + k (we used again that H ′ 1,ν ′ (ℓ),N0 ( ζ) ⊂ H ′ 1,ν ′ + ζ (ℓ),N0(0)). Consequently the contribution homogeneous of degree k, 1 ≤ k ≤ κ -1 in (5.4.10) may be written(5.4.11) 

4 . 5 . 1 [ 2 1 1

 451211 We set next γ(w, w;•) = k ℓ=0 γℓ (w, . . . , w ℓ , w, . . . , w Ku; x, n) + γ(Ku; x, -n)] μ(u; x, n) = 1 2i [γ(Ku; x, n)γ(Ku; x, -n)] Op χ [γ(w, w; •)]w]wdx = 1 Op χ [ λI + μJ]u, u .In the same way, if we set (u)I + M 2 (u)J)u, u . (u)I ′ + M 2 (u)J ′ )u, u .
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  Finally, we define Opχ [a j (u 1 , . . . , u j ; •)] (resp. Op χ [a(u; •)]) replacing in (2.1.36) (resp.(2.1.37)) a j by a j,χ (resp. a by a χ ).

		1.33) is smaller than
	(2.1.35)	2C β ′ ,2 (χ)(4 p ) p n	-β ′	.
	If we plug this in (2.1.32), use (2.1.20) or (2.1.21) to estimate |∂ α x ∂ β-β ′ n that we assume that ‹ C α,β 0,β ′ ,γ satisfies (2.1.15), we obtain for ∂ α x ∂ β n a j,χ estimates of type a j | and remind
	(2.1.20), (2.1.21) with the constant C replaced by C 0 C, for some uniform C 0 ≥ 6. Let us quantize our symbols.
	Definition 2.1.8. -Let χ ∈ C ∞ 0 (] -1 4 , 1 4 [), 0 ≤ χ ≤ 1, χ even, χ ≡ 1 close to zero. If a j ∈ Σ d,ν (k,j),N0 (σ, ζ, B, D • ) we define for u 1 , . . . , u j+1 ∈ C ∞ (S 1 , R 2 )
	(2.1.36)	Op[a(u 1 , . . . , u j ; •)]u j+1 (x) =	1 2π	+∞ n=-∞	e inx a(u 1 , . . . , u j ; x, n)û j+1 (n).
	If a = series of operators j≥k a j belongs to S d,ν (k),N0 (σ, ζ, B, D • ) we define Op[a(u; •)] as the formal
	(2.1.37)	j≥k	j Op[a j (u, . . . , u	; •)].

  Proof. -We denote U ′ = (u 1 , . . . , u j ), n ′ = (n 1 , . . . , n j ), and set Π n ′ U ′ = (Π n1 u 1 , . . . , Π nj u j ). By definition 2.1.8, the Fourier transform of Op χ [a(Π n ′ U ′ ; •)]u j+1

	(2.1.39)	
		1 4 nj+1 ,max(|n1|,...,|nj |)≤ 1 4 |nj+1|} .
	evaluated at n 0 may be written
	1 2π nj+1	a χ (Π n ′ U ′ ; n 0 -n j+1 , n j+1 )û(n j+1 ).
	By (2.1.30), a χ (Π n ′ U ′ ; k, n j+1 ) is supported for |k| ≤ 1 4 n j+1 and by (2.1.19) it is supported in max(|n 1 |, . . . , |n j |) ≤ 1 4 |n j+1 |. Moreover integrations by parts and estimates (2.1.20) show that

  We conclude as before. We still have to check that the support property (2.1.19) holds. Remark that in (2.2.13) we have |n j ℓ

0 | ≤

1 4 |n| by (2.1.19) for a, and |n j ℓ

  2.1.19). Using (2.1.16) and (2.1.17) with K 0 ≥ K 2 , we obtain an estimate of type (2.1.20) for (2.1.26).

  2.2.22) Moreover, by the cut-off in (2.2.3) n j ′′ +1 ≤ 2 n 0 and by (2.1.19) for a j ′ , |n 0 | ≤ 1 4 |n|. Since d ′′ ≥ 0, we bound n j ′′ +1 d ′′ by (2 n ) d ′′ . Using then as in (2.2.21) inequalities (2.1.16) and (2.1.17), we get a bound of type (2.1.21) for a symbol belonging to Σ d-ι,ν+ι (k ′ +k ′′ ,j),N0 (σ, ζ, B, D • ). Consider now the case when the special index ℓ of (2.1.21) is between 1 and j ′′ + 1. If ℓ = j ′′ + 1, we apply (2.1.21) to a j ′′ taking the negative power -σ ′ on n 0 , and (2.2.3) with s

  .2.32) and we conclude as above. Note that (2.2.26) for ℓ = 1 follows from (2.1.38) and the fact that n 1 ∼ n j+1 . Π nj+1 u j+1 = Kn * Π nj+1 u j+1 where Kn is defined by (2.1.11) with χ replaced by χ. We then make ∂ n -derivatives act and use (2.1.33), (2.1.35) to make appear the gain (2.2.29) in estimates (2.2.31), (2.2.32).

	To estimate (2.2.28), we insert inside (2.2.30) the cut-off χ D n	against u j+1 and
	write χ D n Proposition 2.2.4.	

  1 4 , 1 4 [), with small enough support, χ ≡ 1 close to zero. By (2.1.19) applied to a j ′ and (2.2.27), c j will satisfy (2.1.19) if the support of χ is small enough. Let us prove that ∂ α x ∂ β n c j (Π n1 u 1 , . . . , Π nj u j ; x, n) obeys estimates (2.1.20) and (2.1.21)

  we sum (2.2.51) for j ′ + j ′′ = j using (2.1.16), (2.1.17) we obtain an estimate of form (2.1.40) with d replaced by d ′ + + d ′′ , ν replaced by ν + 1.

  We must next get bound (2.1.21). The proof proceeds in the same way as above, except that one uses an estimate of form (2.1.20) (resp. (2.1.21)) for ∂ α ′ x ∂ β ′ n a j ′ and (2.1.21) (resp. (2.1.20)) for ∂

	1 K0 . If we assume 2D0+1 K0 n c j the estimate (2.1.20), with the bound (2.3.1) for N d,ν x ∂ β ∂ α (k),N0 (σ, ζ, B, D ≤ 1 100 , we obtain for

• ; ab).

  Proposition 2.3.2. -Let d′ , d′′ ∈ R, σ, ν, ζ, B, D • be as in the statement of theorem 2.3.1, set d = d′ + d′′ . Let ν ′ ≥ ν be given, assume σ ≥ ν ′ + ζ + 2 and let (2.3.10) ã(

  )) obeys estimates of type (2.3.7) (resp. (2.1.20)) to bound (2.3.13) by the product of (2.3.16) N

	d′ ,ν

  in the ℓ-sum, |ℓ| stays smaller than n 2 , so we may insert inside the integral (2.3.30) a cut-off χ ℓ We perform next two integrations by parts usingL(ℓ, D y ) = ℓ -2 (1ℓ • D y ).In that way, we gain a ℓ -2 factor, loosing up to two ∂ y derivatives on ã. Making ∂ α x ∂ β n act on (2.3.29), (2.3.30) for α + β = p, we estimate using (2.1.20) the component homogeneous of order j evaluated at (Π n1 u 1 , . . . , Π nj u j ) by the sum in ℓ of

	n	for some χ ∈ C ∞ 0 (] -1 2 , 1 2 [).

  ′ |, . . . , |n j |, |n|) ≥ c n j+1 . Let ℓ be such that |n ℓ | is the largest among |n 0 |, . . . , |n j+1 |. Inequality (3.2.8) shows that we may assume that j ′ ≤ ℓ ≤ j + 1. If we estimate the last factor in (3.2.7) using (2.1.40), we bound the second line of (3.2.7) by

	for any σ ′ ∈ [ν + 2 + ζ, σ]. By (2.1.19) we have on the sum (3.2.8) max(|n 1 |, . . . , |n j ′ -1 |, |n|) < 1 4 |n j+1 |, n 0 ∼ n j+1
	and by (3.2.3), (3.2.4)	
	(3.2.9)	max(|n j
	.2.7)	

  3.2.15) an estimate of form (2.1.20), (3.2.14) if σ ′ ≥ ν + ι + max(ζ, d ′′ 3 ) + 2 and the constant K 0 of (2.1.17) is large enough. Let us prove bounds of type (2.1.21). If the special index ℓ is between 1 and j ′ -1, we bound (3.2.10) computed at (Π n1 u 1 , . . . , Π nj u j ) using (2.1.21) to estimate a j ′ and (3.2.11), (2.1.40) to control M 1 j ′′ . We obtain an upper bound given by the product of (3.2.12) and of (3.2.13) or (3.2.15), where the power of n is now d ′ -β+α+ν+N 0 β+σ ′ and where n ℓ σ ′ Π n ℓ u ℓ L 2 has been replaced by n ℓ

	-σ ′

  .4.26) with σ ′ = σ implies (3.4.27). Assuming N 0 ≥ 2(1 + N 1 ), we obtain estimate (2.1.25) for the symbol a, with ν replaced by ν + ζ + N 1 + 2.

	If we estimate ∂ α x ∂ β ′′ n b using (2.1.26), we get instead of (3.4.26) the bound

  .2.14) Since (Id + Op χ [q(ψ(v); •)]) is bounded on any Sobolev space, (4.2.11) and (4.2.13) imply that the last three terms in (4.2.14) are bounded operators from H s-1 to H s (actually from H s0 to H s ) if s ≥ s 0 + 1, with operator norm smaller than C v κ H s . We apply to the first term in the right hand side of (4.2.14) (ii) of theorem 2.3.1, proposition 2.3.3 and (ii), (iii) of proposition 3.1.1. This allows us to write, since p

  4.2.3. -Let G ′ (u) be given by (4.1.4) and let ψ be the local diffeomorphism constructed in proposition 4.2.1. There are symbols > 0, ρ 0 > 0 and a map v → L(v), defined on B s0 (ρ 0 ), C 1 on a neighborhood of zero in H s (S 1 ; R 2 ), with values in R, with ∇L(u) ∈ H s for any s ∈ [s 0 + 1, σ + 1[, satisfying

	such that for any	
	(4.2.16)	λκ (v; x, n), μκ (v; x, n) in S 1,ν (κ),0 (σ, 0, B ′′ , D • )
	for some B ′′ > B, satisfying
	(4.2.17)	λ∨ κ = λκ , μ∨ κ = μκ
	and there are s 0 (4.2.18)	∇L(u) H s ≤ C u κ+1 H s ,

  ∈ [s 0 + 1, σ + 1[, any v in an H s neighborhood of zero.Remark. -The above corollary states that if we set u = ψ(v) in (4.1.4), the matrixvalued symbol Ω may be replaced by a new symbol, which is a combination of I, J with coefficients scalar symbols of order 1. The remainder L(v) has by (4.2.18) a gradient belonging to H s when v is in H s , while the gradient of the duality brackets in (4.2.19) is only in H s-1 . In that way, we can say that the change of variables ψ diagonalizes the principal part of the Hamiltonian, removing the components of Ω on I ′ and J ′ in a decomposition of type (4.1.9).

	.2.19)		
	Moreover, ψ satisfies	
	(4.2.20)	∂ψ(v)J t ∂ψ(v) -J L(H s-1 ,H s ) ≤ C v κ H s
	for any s Proof. -By (4.2.1) and (4.2.2)
	(4.2.21)		ψ(v) = Op χ [p(ψ(v); •)]v
	with p = I + q. We plug (4.2.21) in (4.1.4), which gives using notation (4.1.5)
	(4.2.22)	G ′ (ψ(v)) =	1 2
	By (4.1.7) and the theorems of symbolic calculus (theorem 2.3.1, proposition 2.3.3
	and proposition 3.1.1) we may write

t Op χ [p(ψ(v); •)]Op χ [a ′ (ψ(v); •)]Op χ [p(ψ(v); •)]v, v . t Op χ

  s is large enough. The same is true for ∂ u L(u, v) by (2.1.46) and (2.1.48). Consequently, since we have seen in proposition 4.2.1 that ψ ′ (v) is in L(H -s , H -s ), we see that L(v) = L(ψ(v), v)satisfies (4.2.18). We deduce from that that the contribution of e, M in (4.2.23) to (4.2.22) give the last term in (4.2.19).

	By (4.1.7), the first term in the right hand side of (4.2.23) brings to (4.2.22) a contri-
	bution of form L(v) (coming from the remainder in (4.1.7)) and the main term
	1 2	κ k=0	Op χ

  1,ν (κ),0 (σ, 0, B ′′ , D • ) by proposition 2.2.1. Since λ κ (ψ(v); •) is also in such a class of symbols by the same proposition, and since similar properties hold true for µ k , we obtain (4.2.19). Finally, property (4.2.20) follows from (4.2.3) and the fact that ψ

  need to check estimates (2.1.20) and (2.1.21) i.e. we have to evaluate We thus obtain for gκ,j estimates of type (2.1.20), (2.1.21) with a new constant B = 4B ′ . We must next verify that L(u) satisfies (5.2.3). This follows from the bounds ∇L k (u) H s ≤ C s C k k! u k+1 H s satisfied by each L k if u H s ≤ ρ s small enough. Finally, by (i) of proposition 2.1.13,

	j k=κ	(k + j -1)! (j + 1)!k!	≤	2 2j j + 1	≤ 2 2j (κ + j -1)! (j + 1)!	.

This work was partially supported by the ANR project Equa-disp.

We write for j = 1, 2 (3.3.8)

whence by (1.2.5)

We write the first term in the right hand side as

since t J = -J. Using the notation C j introduced above, we may write

so that (3.3.10) may be written

Coming back to (3.3.9), we get

The first term in the right hand side is the first term in the right hand side of (3.3.7). Let us check that the last two terms in (3.3.11) contribute to the last terms in (3.3.7). If we set V (u) = JC 1 (u)u we get by (2.2.1), (2.2.2), (2.2.16) a quantity to which proposition 2.2.2 applies. Consequently, by this proposition

for some ẽ′′ ∈ S d-ι ′ ,ν+ι ′ (κ),N0

(σ, ζ, B, D • ). This gives the wanted conclusion for the second term in the right hand side of (3.3.11). Consider now the last term in (3.3.11). We may write

By (2.2.1) and (2.2.23) the last term may be written as S 1 W (u)U dx where W (u) is given by (2.2.33). Moreover, as we have seen above, C 2 (u)u is a quantity of form V (u) i.e. of type (2.2.16). The last term in (3.3.11) is thus

3 ). Let D • be a (ν + d 1 + d 2 + σ, N 0 + 1)conveniently increasing sequence, B > 0. Denote ζ = max(ζ, d1+d2

3 ). Let λ j , µ j ∈ S dj ,ν (kj ),N0 (σ, ζ, B, D • ) with λ∨ j = λ j , μ∨ j = µ j , j = 1, 2 and let M 2 ∈ L d2,ν (k2) (σ, ζ, B). Consider the Poisson bracket

Op χ [λ 1 (u; •)I + µ 1 (u; •)J]u, u ,

(3.3.17)

One may find ν ′ = ν+2N 0 +6, a new conveniently increasing sequence D• , and symbols λ, µ ∈ S d1+d2-1,ν ′ (k1+k2),N0 (σ, ζ, B, D• ) satisfying λ∨ = λ, μ∨ = µ and M ∈ L d1+d2,ν ′ (k1+k2) (σ, ζ, B) such that (3.3.17) equals

Proof. -Let us study first the contribution coming from M 2 (u)u, u in the second argument of the bracket (3.3.17). By (i) of lemma 3.3.5 we get a contribution to (3.3.18), with symbols λ, µ

(σ, ζ, B). This is of the wanted form. Consider now the contribution to the bracket coming from

Apply lemma 3.3.2 with E ′ and E ′′ equal to I and J. The last two brackets in the right hand side of (3.3.7) give contributions of form (3.3.18). Let us study the contributions of the first duality bracket in the right hand side of (3.3.7). If we set

this may be written

If we set

We apply proposition 2.3.3 to write 

(σ, ζ, B). On the other hand, the contributions to (3.3.21) of M A j , M B j may be dealt with using proposition 3.1.1, and give expressions of form

(σ, ζ, B). This concludes the proof of the lemma.

Proof of proposition 3.3.4.

. We may apply lemma 3.3.6 and (ii) of lemma 3.3.5 to {F 1 , F 2 } using that here the symbols and remainder operators are polynomial ones. We obtain the conclusion of the proposition.

(ii) We have to study the Poisson bracket of two functions of form

,N0 (⊗)M 2 (R) with Ā∨ j = A j . Lemma 3.3.5 shows that the contributions coming from a Poisson bracket involving at least one term M j (u)u, u may be written as the right hand side of (3.3.13), with a symbol A belonging to

). On the other hand, the contribution coming from

is of the form of the left hand side of (3.3.3), with polynomial symbols. It follows from proposition 3.3.1 (applied to polynomial symbols), that this quantity may be written under the form of an element of H d1+d2,ν ′ (k1+k2),N0 ( ζ) for some ν ′ depending only on ν, N 0 .

We shall make use below of the following lemma. 3 ), a (resp. M ) be an element of

Then for any s ≥ s 0 the map u → DF (u)

Proof. -Let us show that DF (u) extends as a linear form on

Let us check that these expressions may be extended to 

Let us study (3.3.28).

To treat (3.3.29), we use when 0 

CHAPTER 5 PROOF OF ALMOST GLOBAL EXISTENCE

The aim of this chapter is to combine the results obtained so far to prove theorem 1.1.1. We shall do that constructing a function Θ s , defined on a neighborhood of zero in the phase space H s (S 1 ; R 2 ), equivalent to the square of the H s Sobolev norm, and such that Θ s (u(t, •)) will be uniformly controlled on a long time interval when u is a solution to (1.2.9). We shall construct Θ s in several steps, using composition by (almost) symplectic transformations.

Composition with symplectic transformations

We discuss here several composition formulas. We consider a small neighborhood of zero in H s (S 1 ; R 2 ), namely B s (ρ) for some ρ > 0 small enough. Let us recall that if F : B s (ρ) → R is a C 1 function such that for any u ∈ B s (ρ), ∂F (u) ∈ L(H s , R) extends as an element of L(H -s , R), we may consider the gradient ∇F (u) and the Hamiltonian vector field X F (u) as elements of H s (S 1 ; R 2 ). If we assume moreover that u → X F (u) is C 1 on B s (ρ) with values in H s , we may solve locally the differential equation

Note that the definition of the gradient, namely

We want to see that the left hand side extends continuously to W ∈ H -s and V ∈ H s . This follows from the fact that such an extension holds for the right hand side, as

If moreover F (0) = 0, ∂F (0) = 0, for ρ small enough, the solution of (5.1.1) is defined up to time τ = 1 and χ F (u) = Φ(1, u) is a canonical transformation from B s (ρ) to a neighborhood of zero in H s , satisfying χ F (0) = 0. If Θ and G are two functions on a neighborhood of zero in H s (S 1 ; R 2 ), we get for u ∈ B s (ρ) for small enough ρ the usual equality

If we have moreover an estimate of type |Ad k F • G| ≤ Ck!A k u k H s for some constants C > 0, A > 0, then for ρ small enough, we shall get

The above formula will apply when F is given by an expression Op χ [a(u; •)]u, u , with a symbol of order zero. Nevertheless, we shall have to consider also expressions of that form involving symbols of order 1. In that case, ∇F (u) or X F (u) belong only to H s-1 when u ∈ H s . Consequently, we cannot consider (5.1.1) as an ordinary differential equation. To avoid the resolution of (5.1.1) in that case, we shall use instead of (5.1.2) a formula of the same type, up to a finite order of homogeneity, and use special assumptions on Θ, G, F to be able to write convenient substitute to (5.1.3) Remind that we defined in definition 3.3.

(5.2.8)

We prove (5.2.8) by induction on K.

The definition (5.2.4) of F shows that F belongs to the class H 0,ν0 (1),0 (0) of definition 3.3.3, and G ∈ H 1,ν0 (1),0 (0

,0 (0) for some ν ≥ ν 0 i.e. we may write (5.2.10)

. By estimates (2.1.47) and (2.1.48) of proposition 2.1.13, if s ≥ s 0 large enough, ∇L 1 κ (u) belongs to H s (S 1 ; R 2 ) when u ∈ H s (S 1 ; R 2 ), and

)dτ , L κ verifies similar properties since DΦ(-τ, u) ∈ L(H -s , H -s ) as seen at the beginning of section 5.1. Let σ > s 0 and choose a (ν +1+σ, 1)-conveniently increasing sequence D • and a positive constant

(Note that taking B ′ large enough, we may always make the left hand side of the preceding inequalities as small as we want for given α, β, g κ ). It follows from (5.2.9), (5.2.10) and the definition of L κ that (5.2.8) with K = κ -1 holds true.

Let us show that (5.2.8) at rank K implies (5.2.8) at rank K + 1. Integrating by parts the integral in (5.2.8), we get

(5.2.12) where g K+2 ∈ S 1,ν (K+2),0 (σ, 0, B ′ , D • ) ⊗ M 2 (R), and where for some ν ≥ ν and some new sequence D• (independents of the induction step)

). Moreover, by (3.3.4), (5.2.11) and the induction hypothesis

The first term in (5.2.13) gives, when plugged in the integral (5.2.12), the last term in (5.2.8), at order K + 1. Set 

it obeys similar estimates, since we have seen after formula (5.1.1) that DΦ(-τ, u) extends as an element of L(H -s , H -s ) so that ∇(L 1 K+2 (Φ(-τ, u))) is in H s . We have proved (5.2.8) at order K + 1.

To finish the proof of lemma 5.2.2, we still have to make K go to +∞ in (5.2.8). We just need to prove that for some B > B ′

• There is a symbol gκ ∈ S 1,ν (κ),0 (σ, 0, B, D

goes to zero when K goes to +∞ and u remains in B s0 (ρ s0 ).

(5.2.5), reasoning as in the study of (5.2.14), if the constants ν, B of the statement of the proposition are taken large enough. For 1 ≤ k ≤ κ -1 write, using decomposition (4.1.9) of any matrix

and are homogeneous of degree k. To reduce expression (5.2.18) to (5.2.5), we have to construct F k so that {F k , G 0 }+G ′′ k may be written as a term

In other words, we are left with proving the following lemma:

20)

Proof. -In the proof, we omit the subscripts k in α, β, α, β, M . Let us take complex coordinates (w, w) related to the real coordinates

we look for a symbol γ(w, w; 

Let us define

Taking the real part of (5.2.24) and using (5.2.23) we have proved

+Re ( M (Ku)w)wdx.
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Writing the last term as M (u)u, u for some M ∈ L

(0) we obtain (5.2.20). This concludes the proof.

Second reduction: elimination of higher order non diagonal part

The construction of F performed in section 5.1 allowed us by (5.2.1) and proposition 5.2.1 to write

(1),0 (0), and is the sum of homogeneous terms of order k = 1, . . . , k -1, gκ ∈ S 1,ν (κ),0 (σ, 0, B, D • ) ⊗ M 2 (R) and L satisfies (5.2.3). The goal of this section is to choose ψ in (5.3.1) in order to eliminate the non diagonal components of gκ i.e. those along I ′ and J ′ . In other words, we want to do with gκ what we did in the preceding section for components of lower degree of homogeneity, except that we do not want to get as remainders symbols of order one, homogeneous of degree κ + 1, but a symbol of order zero, homogeneous of degree κ.

By definition of H ′ 1,ν (1),0 (0), we may find λ(u;

,0 (0) satisfying λ∨ = λ, μ∨ = µ and M ∈ L 1,ν (1) (0) such that

Note that in the duality bracket, we may always replace Op χ (λI + µJ) by

so that, by proposition 2.3.3, and up to a modification of ν and M , we may assume that λ ∨λ, µ ∨ + µ belong to S 0,ν (1),0 (0). In the same way, we may in (5.3.2) replace gκ by a symbol 1 2 Ω(u;

with

(5.3.10)

Moreover, up to a modification of the remainder, we may always assume

Summarizing the above results, we may state: Proposition 5.3.1. -There are ν > 0, s 0 > 0 and for any σ > s 0 a constant

,0 (σ, 0, B, D • ) satisfying conditions (4.1.1), (4.1.2), (4.2.17) and

,0 (σ, 0, B, D • ), such that for any s ∈ [s 0 , σ[ there is a local diffeomorphism ψ defined on a neighborhood of zero B s (ρ s ) in H s (S 1 ; R 2 ) satisfying the following: For any H ∈ H ′ 1,ν0

(1),N0 (0)

as long as u(t, •) exists and stays in a small enough neighborhood of zero in H s .

Third reduction: elimination of low degree diagonal terms

This last section will be devoted to the proof of the following:

1 , G′ be given respectively by (5.3.9), (5.3.10). Set

There are

,N0 (0) such that

Before starting the proof, let us make some preparations. Remind that the function Θ 0 s belongs to the space H ′ 2s,0 (0),0 (0) defined by (5.1.5). Let us prove:

,N0 (0). Let ν ∈ R + , s 0 > 0, B > 0, D • be as in the statement of proposition 5.3.1. Then for any s ∈ [s 0 , σ[

Proof.

-We note first that if we are given

may be written as

3 . Actually, this is a version of lemma 3.3.6, applying when the left half of bracket (3.3.17) is given in terms of a symbol vanishing at order 0 at u = 0 instead of some order k 1 ≥ 1. The only place in the proof of lemma 3.3.6 (and in the proofs of the results used to demonstrate it) where the fact that k 1 > 0 is needed is when applying inequality (2.1.16). Actually, this inequality allows one to gain one negative power of j ′ + 1 and j ′′ + 1. When studying a bracket of form (5.4.4), we have j ′ = k ′ = 0, j ′′ ≥ k ′′ = k 2 , and we can gain 1 j ′′ +1 writing in estimates of form (2.1.20), (2.1.25) B ′′ ≤ 1 j ′′ +1 (2B) j ′′ i.e. replacing B by B = 2B. This allows one to get an expression of form (5.4.5) for (5.4.4).

We have seen when obtaining (5.3.8) that Θ 0 s • χ κ H ∈ H ′ 2s,ν0 (0),N0 ( 2s 3 ) for some ν 0 , so that function may be written as a multiple of Λ 2s u, u plus an element of H ′ 2s,ν0

(1),N0 ( 2s 3 ). The contribution of the Λ 2s u, u term to (5.4.3) is an expression of form (5.4.4) with d 1 = 2s, d 2 = 1, and so may be written as (5.4.5), with symbols λ, µ ∈ S 2s,ν ′ (κ),N0 (σ, ζ, B, D• ) for some ν ′ independent of s,

The contribution of the component of Θ 0 we just need to construct recursively H k , k = 1, . . . , κ -1 so that, by (5.4.10), (5.4.11) (5.4.12)

0), and the fact that Q k , H k are homogeneous of degree k, we may write (5.4.13)

being homogeneous of degree k. The proof of proposition 5.4.1 will be complete as soon as we shall have solved (5.4.12). This is the aim of next lemma. 

Poisson commutes with Θ 0 s .

Proof. -We shall prove lemma 5.4.3 using the same complex coordinates system as in section 5.2, namely ñ w w

We do not write the index k all along the proof. Define

(5.4.15) γ(w, w;

[Γ(w, w)w]wdx.

We shall look for a symbol γ(w, w; •) and for operators Γ(w, w), Γ(w, w) so that Re

Poisson commutes with Θ 0 s (w, w) = S 1 (Λ 2s m w)wdx. We decompose