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Abstract

We consider the least-square linear regression problem with regularization by the
¢'-norm, a problem usually referred to as the Lasso. In this paper, we first present
a detailed asymptotic analysis of model consistency of the Lasso in low-dimensional
settings. For various decays of the regularization parameter, we compute asymptotic
equivalents of the probability of correct model selection. For a specific rate decay, we
show that the Lasso selects all the variables that should enter the model with probability
tending to one exponentially fast, while it selects all other variables with strictly positive
probability. We show that this property implies that if we run the Lasso for several
bootstrapped replications of a given sample, then intersecting the supports of the Lasso
bootstrap estimates leads to consistent model selection. This novel variable selection
procedure, referred to as the Bolasso, is extended to high-dimensional settings by a
provably consistent two-step procedure.

1 Introduction

Regularization by the ¢'-norm has attracted a lot of interest in recent years in statistics,
machine learning and signal processing. In the context of least-square linear regression, the
problem is usually referred to as the Lasso [36] or basis pursuit [14]. Much of the early
effort has been dedicated to algorithms to solve the optimization problem efficiently, either
through first-order methods [20, 19], or through homotopy methods that leads to the entire
regularization path (i.e., the set of solutions for all values of the regularization parameters)
at the cost of a single matrix inversion [29, 35, 10].

A well-known property of the regularization by the ¢!-norm is the sparsity of the solutions,
i.e., it leads to loading vectors with many zeros, and thus performs model selection on top of
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regularization. Recent works [44, 40, 45, 37] have looked precisely at the model consistency of
the Lasso, i.e., if we know that the data were generated from a sparse loading vector, does the
Lasso actually recover the sparsity pattern when the number of observations grows? In the
case of a fixed number of covariates (i.e., low-dimensional settings), the Lasso does recover
the sparsity pattern if and only if a certain simple condition on the generating covariance
matrices is satisfied [40]. In particular, in low correlation settings, the Lasso is indeed con-
sistent. However, in presence of strong correlations between relevant variables and irrelevant
variables, the Lasso cannot be model-consistent, shedding light on potential problems of such
procedures for variable selection. Various extensions of the Lasso have been designed to fix
its inconsistency, based on thresholding [34], data-dependent weights [45, 40, 26] or two-step
procedures [31]. The main contribution of this paper is to propose and analyze an alternative
approach based on resampling. Note that recent work [33] has also looked at resampling
methods for the Lasso, but focuses on resampling the weights of the ¢-norm rather than
resampling the observations (see Section 3 for more details).

In this paper, we first derive a detailed asymptotic analysis of sparsity pattern selection
of the Lasso estimation procedure, that extends previous analysis [44, 40, 45] by focusing on
a specific decay of the regularization parameter. Namely, in low-dimensional settings where
the number of variables p is much smaller than the number of observations n, we show that
when the decay of n is proportional to n~'/2, then the Lasso will select all the variables that
should enter the model (the relevant variables) with probability tending to one exponentially
fast with n, while it selects all other variables (the irrelevant variables) with strictly positive
probability. If several datasets generated from the same distribution were available, then
the latter property would suggest to consider the intersection of the supports of the Lasso
estimates for each dataset: all relevant variables would always be selected for all datasets,
while irrelevant variables would enter the models randomly, and intersecting the supports
from sufficiently many different datasets would simply eliminate them. However, in practice,
only one dataset is given; but resampling methods such as the bootstrap are exactly dedicated
to mimic the availability of several datasets by resampling from the same unique dataset [17].
In this paper, we show that when using the bootstrap and intersecting the supports, we
actually get a consistent model estimate, without the consistency condition required by the
regular Lasso. We refer to this new procedure as the Bolasso (bootstrap-enhanced least
absolute shrinkage operator). Finally, our Bolasso framework could be seen as a voting
scheme applied to the supports of the bootstrap Lasso estimates; however, our procedure
may rather be considered as a consensus combination scheme, as we keep the (largest) subset
of variables on which all regressors agree in terms of variable selection, which is in our case
provably consistent and also allows to get rid of a potential additional hyperparameter.

We consider the two usual ways of using the bootstrap in regression settings, namely boot-
strapping pairs and bootstrapping residuals [17, 18]. In Section 3, we show that the two types
of bootstrap lead to consistent model selection in low-dimensional settings. Moreover, in Sec-
tion 5, we provide empirical evidence that in high-dimensional settings, bootstrapping pairs
does not lead to consistent estimation, while bootstrapping residuals still does. While we are
currently unable to prove the consistency of bootstrapping residuals in high-dimensional set-
tings, we prove in Section 4 the model consistency of a related two-step procedure: the Lasso
is run once on the original data, with a larger regularization parameter, and then bootstrap



replications (pairs or residuals) are run within the support of the first Lasso estimation. We
show in Section 4 that this procedure is consistent. In order to do so, we consider new sufficient
conditions for the consistency of the Lasso, which do not rely on sparse eigenvalues [34, 11],
low correlations [12, 27] or finer conditions [6, 15, 42]. In particular, our new assumptions
allow to prove that the Lasso will select not only a few variables when the regularization
parameter is properly chosen, but always the same variables with high probability.

In Section 5.1, we derive efficient algorithms for the bootstrapped versions of the Lasso.
When bootstrapping pairs, we simply run an efficient homotopy algorithm, such as Lars [10],
multiple times; however, when bootstrapping residuals, more efficient ways may be designed
to obtain a running time complexity which is less than running Lars multiple times. Finally, in
Section 5.2 and Section 5.3, we illustrate our results on synthetic examples, in low-dimensional
and high-dimensional settings. This work is a follow-up to earlier work [I]: in particular, it
refines and extends the analysis to high-dimensional settings and boostrapping of the residuals.

Notations For z € R? and ¢ > 0, we denote by |lz||, its f%-norm, defined as |[z[| =
Y1 lz5]?. We also denote by ||zl = max;eqi,. py 75| its £°-norm. For rectangular matrices

A, we denote by || Al|2 its largest singular value, || Al the largest magnitude of all its elements,
and ||A|r = (trAT A)Y/2 its Frobenius norm. We let denote Apax(Q) and Apin(Q) the largest
and smallest eigenvalue of a symmetric matrix ().

For a € R, sign(a) denotes the sign of a, defined as sign(a) =1 if a > 0, —1 if a < 0, and
0 if a = 0. For a vector v € RP, sign(v) € {—1,0, 1}? denotes the vector of signs of elements
of v. Given a set H, 1y is the indicator function of the set H. We also denote, for w € RP,
by m(w) = minjeq1,...p}, w20 |w), the smallest (in magnitude) of non-zero elements of w.

Moreover, given a vector v € RP and a subset I of {1,...,p}, v; denotes the vector
in R4 of elements of v indexed by I. Similarly, for a matrix A € RP*P, Ar,y denotes
the submatrix of A composed of elements of A whose rows are in I and columns are in J.
Moreover, |J| denotes the cardinal of the set J. For a positive definite matrix @) of size p,
and two disjoint subsets of indices A and B included in {1,...,p}, we denote Q4 45 the
matrix Qa4 — Qa, BQE;}BQ B,4, which is the conditional covariance of variables indexed by A
given variables indexed by B, for a Gaussian vector with covariance matrix (). Finally, we let
denote P and E general probability measures and expectations.

Least-square regression with /('-norm penalization Throughout this paper, we con-
sider n pairs of observations (z;,v;) € R? x R, i = 1,...,n. The data are given in the form
of a vector y € R™ and a design matrix X € R"*P. We consider the normalized square loss

function
n
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and the regularization by the /!-norm. That is, we look at the following convex optimization
problem [36, 14]:

1 )
min |y — Xwll; + pllwlh, (1.1)



where p > 0 is the regularization parameter. We denote by w any global minimum of Eq. (1.1),
and J = {j € {1,...,p}, w; # 0} the support of w.

In this paper, we consider two settings, depending on the value of the ratio of p/n. When
this ratio is much smaller than one, as in Section 2, we refer to this setting as low-dimensional
estimation, while in other cases, where this ratio is potentially much larger than one, we refer
to this setting as a high-dimensional problem (see Section 4).

2 Low-Dimensional Asymptotic Analysis
We make the following “fixed-design” assumptions:

(A1) Linear model with i.i.d. additive noise: y = Xw+-¢, where ¢ is a vector with independent
components, identical distributions and zero mean; w is sparse, with s = sign(w) and

support J = {j, w; # 0}.

(A2) Subgaussian noise: there exists 7 > 0 such that for all j € {1,...,p} and s € R,
Eessi < e2™°%, Moreover, the variances of €; are greater than o > 0.

(A3) Bounded design: For all i € {1,...,n}, ||zi]|cc < M.
(A4) Full rank design: The matrix Q@ = 1XTX € RP*? is invertible.

Throughout this paper, we consider normalized constants w = wM /o (normalized pop-
ulation loading vector), fi = /Mo (normalized regularization parameter), A = Apin(Q)/M?
(condition number of the matrix of second-order moments), and 7 = 7/0 (always larger than
one, and equal to one if and only if the noise is Gaussian, see Appendix A.2).

With our assumptions, the problem in Eq. (1.1) is equivalent to

minl(w—W)TQ(w—W)—qT(w—W)+unH1, (2.1)
weRP 2

where () = %XTX € RP*P and q = %XTE € RP. Note that under assumption (A4), there is
a unique solution to Eq. (1.1) and Eq. (2.1), because the associated objective functions are
then strongly convex. Moreover, assumption (A4) implies that p > n, that is, we consider in
this section, only “low-dimensional” settings (see Section 4 for extensions to high-dimensional
settings).

In this section, we detail the asymptotic behavior of the (unique) Lasso estimate w, both
in terms of the difference in norm with the population value w (i.e., regular consistency) and
of the sign pattern sign(w), for all asymptotic behaviors of the regularization parameter pu.
Note that information about the sign pattern includes information about the support J , 1.e.,
the indices j € {1,...,p} for which 0, is different from zero; moreover, when w is consistent,
consistency of the sign pattern is in fact equivalent to the consistency of the support. We
assume that p is fixed and n tends to infinity, the regularization parameter p being considered
as a function of n (though we still derive non-asymptotic bounds).



Note that for some of our results to be non trivial, we require that p is not only small
compared to n, but that a power of p is small compared to n. Technically, this is due to
the application of multivariate Berry-Esseen inequalities (reviewed in Appendix A.1), which
could probably be improved to obtain smaller powers.

We consider five mutually exclusive possible situations which explain various portions of
the regularization path; many of these results appear elsewhere [40, 44, 21, 45, 2. 27] but some
of the finer results presented below are new (in particular most non-asymptotic results and
the n~!/2-decay of the regularization parameter in Section 2.4). These results are illustrated
on synthetic examples in Section 5.2.

Note that all exponential convergences have a rate that depends on m(w), i.e., the smallest
(in magnitude) non zero element of the generating sparse vector w. Thus, we assume a sharp
threshold in order to have a fast rate of convergence. Considering situations without such
a threshold, which would notably require to estimate errors in model estimation (and not
simply exactly correct or incorrect), is out of the scope of this paper (see, e.g., [11]).

2.1 Heavy regularization

If p is large enough, then w is equal to zero with probability tending to one exponentially
fast in n. Indeed, we have (see proof in Appendix D.1):

Proposition 2.1. Assume (A1-4). If i > 2||W||1, then the probability that w = 0 is greater
than 1 — 2pexp (—Z—g)

A well-known property of homotopy algorithms for the Lasso (see, e.g., [16]) is that if u
is large enough, then w = 0. This proposition simply provides a uniform probabilistic bound.

2.2 Fixed regularization

If 1 tends to a finite strictly positive constant pg, then w converges in probability to the
unique global minimum of the noiseless objective function 3(w — w)'Q(w — w) + pollwl];.
Thus, the estimate w never converges in probability to w, while the sign pattern tends to
the one of the previous global minimum, which may or may not be the same as the one of
the noiseless problem w. It is thus possible, though not desirable, to have sign consistency
without regular consistency. See [2] for examples and simulations of a similar behavior for
the group Lasso.

All convergences are exponentially fast in n (proof in Appendix D.2). Note that here
and in the next regime (Proposition 2.3), we do not take into account the pathological cases
where the sign pattern of the limit in unstable, i.e., the limit is exactly at a hinge point of the
regularization path. When this occurs, all associated sign patterns are attained with positive
probability (see also Section 4).

Proposition 2.2. Assume (Al1-4). Let jig > 0 and jig = p1o/M/sigma. Let wo be the unique
solution of minyers 3(v — W) ' Q(v — w) + po|v|l1. Then, if | — fio] < 4})%/25, we have:

2232 5 =2
P(l|& — woll2 = Bo /M) < 2pexp <— 5 n) < 2pexp (_Mn> :

3272 p 272
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Moreover, assume the minimum v occurs away from a hinge point of the reqularization path,
i.e., there exists 1 > 0 such that for all j € {1,...,p}, v; = 0 implies |(Q(wo — W));| <
po —nMo. If |[fp — fio| < Amin{n/4, m(woM/o)}, then

P(sign(w) # sign(wy)) < 2pexp (—% min{n*/4, m(wOM/J)Z}%> .

The proposition above makes no claim in the situation where p tends to zero. As we now
show, this depends on the rate of decay of j, slower, faster, or exactly at the rate n=/2.

2.3 High regularization

If 11 tends to zero slower than n~'/2, then 1 converges in probability to w (regular consistency)

and the sign pattern converges to the sign pattern of the global minimum of a local noiseless
objective function $ATQA + Ajsign(wy)+[|Ajel|1, the convergence being exponential in p*n
(see proof in Appendix D.3). The local noiseless problem in Eq. (2.2) is simply obtained by
a first-order expansion of the Lasso objective function around w [21, 40].

Proposition 2.3. Assume (A1-4). Let A be the unique solution of

1 T T .
min §A QA + Aysign(wy) + ||Age

. (2.2)

Assume that ji < H;;‘f’/);‘, We have:

X \2 52 n
Pl —w — plls > fo /M) < 2pesp [ 25" ).
872 p
Moreover, assume the minimum A of Eq. (2.2) occurs away from a hinge point of the reqular-
ization path, i.e., there exists n > 0 such that for all j € J°, A; = 0 implies |(QA);| <1 —n.
Then,

~ X2
P(sign(w) 7 sign(w + pA)) < 2pexp (—In(gvi%z%) +2pexp <—A/12%> ,

where A = 772 A min{ \m(M2A)? /2,12 /8}.

Note that the sign pattern of w + pA is equal to the population sign vector s = sign(w)
if and only if the problem in Eq. (2.2) has a solution where Ajc is equal to zero. A short
calculation shows that this occurs if and only if the following consistency condition is satis-
fied [32, 44, 40, 45, 37]:

Q335 bsign(wa)lle < 1. (2.3

Thus, if Eq. (2.3) is satisfied strictly—which implies that we are not at a hinge point of
Eq. (2.2)—the probability of correct sign estimation is tending to one, and to zero if Eq. (2.3)
is not satisfied (see [10] for precise statements when there is equality). Moreover, when
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Eq. (2.3) is satisfied strictly, Proposition 2.3 gives an upper bound on the probability of not
selecting the correct pattern J.

The first three regimes are not unique to low-dimensional settings; we show in Section 4 the
corresponding proposition related to Proposition 2.3, for high-dimensional settings. However,
the last two regimes (i tending to zero at rate n~'/2 or faster) are specific to low-dimensional
settings.

2.4 Medium regularization

If un'/? is bounded from above and from below, then we show that the sign pattern of
w agrees on J with the one of w with probability tending to one exponentially fast in n
(Proposition 2.4), while for all sign patterns consistent on J with the one of w, the probability
of obtaining this pattern is tending to a limit in (0, 1) (in particular strictly positive); that is,
all sign patterns consistent with w on the relevant variables (i.e., the ones in J) are possible
with positive probability (Proposition 2.5). The convergence of this probability follows a rate
of n=Y/2 (see proof in Appendix D.4 and D.5). Note the difference with earlier results [1]
obtained for random designs.

Proposition 2.4. Assume (A1-4) and ji < %.
such that sy = sign(wy), there exists f(s,n'?up'/?) € (0,1), such that:

Then for any sign pattern s € {—1,0,1}?

|P(sign(w) = s) — f(s,n**up*’?)| <

Proposition 2.5. Assume (Al-4) and fi < n;(*)f\_ Then, for any pattern s € {—1,0,1}P

pl/2

such that sy # sign(wy),
~\Y2
P(sign(w) = s) < 2pexp <—ME> :

872 p

The positive real numbers CP¥ and CP¥ are universal constants related to multivari-
ate Berry-Esseen inequalities (see Appendix A.1 for more details). From the proof in Ap-
pendix D.4, the constant f(s,c) has specific behaviors when ¢ = un'/?p'/? is small or large:
on the one hand, if ¢ tends to infinity, then we tend to the bevahior of the previous section,
that is, f(s,c) tends to one if s is the limiting pattern in Proposition 2.3 and zero otherwise.
On the other hand, if ¢ tends to 0, f(s,c) tends to one if s has no zeros, and zero otherwise
(see next section).

The last two propositions state that the relevant variables are stable, i.e., we get all relevant
variables with probability tending to one exponentially fast, while we get exactly get all other
patterns with probability tending to a limit strictly between zero and one. This stability of
the relevant variables is the source of the intersection arguments outlined in Section 3.

Note that Proposition 2.4 makes non-trivial statements only for n larger than p?; the
fourth power is due to the application of Berry-Esseen inequalities, and could be improved.



2.5 Low regularization

If i tends to zero faster than n~'/2 then w0 is consistent (i.e., converges in probability to
w) but the support of w is equal to {1,...,p} with probability tending to one (the signs of
variables in J¢ may then be arbitrarily negative or positive). That is, the /!-norm has no
sparsifying effect. We obtain two different bounds, with different scalings in p and n (see
proof in Appendix D.6):

Proposition 2.6. Assume (A1-4) and i < ( Then the probability of having at least one
nl/2p

= 10CBF p’/?
zero variable is smaller than 3P (CBEL . +/”5\"17> nd M/\l_/2 4 10C 4 CBE4E +

3N an 2 31/2 n1/2
2|J|exp( ( %)‘ Z)

The first bound simply requires that p tends to zero faster than n="/=, but the constant
is exponential in p, while the second bound required that p does not tend to zero too fast,
i.e., between n~'/2 and n~! (with constants polynomial in p). As shown in Appendix D.3,
the two bounds correspond to two different applications of Berry-Esseen inequalities, one for
all the possible 3” sign patterns, one using a detailed analysis of the non-selection of a given
variable (see Section 2.6). We are currently exploring the possibility of having a bound that
shares the positive aspects of our two bounds—polynomial in p and without the term (gn)~*.

1/2

Among the five previous regimes, the only ones with consistent estimates (in norm) and
a sparsity-inducing effect are 41 tending to zero and pun'/? tending to a finite or infinite limit.
When pn'/? tends to infinity, we can only hope for model consistent estimates if the consis-
tency condition in Eq. (2.3) is satisfied. This somewhat disappointing result for the Lasso has
led to various improvements on the Lasso to ensure model consistency even when Eq. (2.3) is
not satisfied [10, 45, 31]. Those are based on adaptive weights based on the non regularized
least-square estimate or two-step procedures. We propose in Section 3 alternative ways which
are based on resampling. Before doing so, we derive in the next section finer results that
allows to consider the presence or absence in the support set J of a specific variable without
considering all corresponding consistent sign patterns.

2.6 Probability of not selecting a given variable

We can lower and upper bound the probability of not selecting a certain irrelevant variable
in J¢ (see proof in Appendix D.7)—see Proposition 2.5 for a related proposition for relevant
variables in J:

Proposition 2.7. Assume (A1-4) and i < m( ) . Let j € J°. We have:

P(jeJ) > _ -
(‘] ) 1+[m1/2/2)\1/2 )\2 np

]P( c J) :unl/2 + 8C§3E p5/2 CBE 47— p2
J T2 BN [n 2 12 nl/2’

fin'’? /4 ox 2/ 1OC§EPS/2 CBE4T P’
b FA 2 xEnl




This novel proposition allows to consider “marginal” probabilities of selecting (or not
selecting) a given variable, without considering all consistent sign patterns associated with
the selection (or non-selection) of that variable). Note that it makes interesting claims only
when pn'/? is bounded from above and below (for the lower bound) and when pn'/? tends to
zero, while pn tends to infinity (for the upper bound).

3 Support Estimation by Intersection

The results from Section 2.4 exactly show that under suitable choices of the regularization
parameter p, the relevant variables are stable while the irrelevant are unstable, leading to sev-
eral intersecting arguments to keep only the relevant variables. We first consider the irrealistic
situation where we have multiple independent copies, then we consider splitting a dataset in
several pieces, and we finally present two usual types of bootstrap (pairs and residuals). Note
that an alternative approach is to resample the columns of the design matrix instead of its
rows, i.e., draw random weights for each variable from a well-chosen distribution [33].

The analysis of support estimation is essentially the same for all methods and is based on
the following argument: we consider m “replications”, and J Lo J™ the associated active
sets. The replications are assumed independent given the original data (i.e., the vector of noise
£). We let denote J7 = (", J' the estimate of the active set (given the original data). Once
the active set is found, the final estimate of w is obtained by the unregularized least-square
estimate, restricted to the estimated active set.

We can upper bound the probability of incorrect pattern selection as follows:

P(J"#J) < PANJ"#2)+PIN(J) #2),

< ZIP’(WG{I,...,m},j eji)+IP><6 [(J"‘)CuJ] 7é®>,
< ) _E(P(j € Je)™) +mP((J7) UT # 2),

jede

where J* denotes a generic support obtained from one replication. We now need to upper
bound the probability P((J*)¢ U J # @) of forgetting at least a relevant variable j € J, and
also the probability P(j € J *|e) that a replication does not include a given irrelevant variable
j € J¢ (given the original data). The first term will always drop as the number of replications
gets larger, while the second term increases, leading to a natural trade-off for the choice of the
number m of replications. This is to be contrasted with usual applications of the boostrap
where m is taken as large as computationally feasible.

3.1 Multiple independent copies

Let us assume for a moment that we have m independent copies of similar datasets, with
potentially different fixed designs but same noise distribution. We then have m different active
sets and we denote by J" the intersection of the m active sets. We have the following upper
bound on the probability of non selecting the correct pattern (see proof in Appendix D.8)

9



Proposition 3.1. Assume (A1-4) for m independent datasets with same noise distribution,

and fi < r;TW/QA. If c = in'?pt/? > 0, i < 2(‘5’/)2 and n = p®g(c), then there exists f(c) > 0
such that

=) )\ 2
P(J" £ J) < pe—f(c)mzfl/2 + 2pm exp <_Mﬁ> )
p

872

From the proof of Proposition 3.1 in Appendix D.8, we can get the detailed behavior of
f(c) around ¢ = 0 and ¢ = oo: it goes to zero in both cases, i.e., we actually need (in the
bound) a regularization parameter that is proportional to n~/2.

Moreover, we get an exponential convergence rate in n and m, where we have two parts:
one that states that the number of copies should be as large as possible to remove irrelevant
variables (left part), and one that states that m should not be too large, otherwise, some
relevant variables would start to disappear (right part). Note that best scaling (for the bound)
is m ~ n, leading to a probability of incorrect selection that goes to zero exponentially fast
in n.

Of course, in practice, one is not given multiple independent copies of the same datasets,
but a single one. One strategy is to split it in different pieces, as described in Section 3.2;
this however relies on having enough data to get a large number of pieces, which is unlikely
to happen in practice. Our main goal is this paper is to show that by using the bootstrap,
we can mimic the availability of having multiple copies. This will come at a price, namely an
overall convergence rate of n~1/2 instead of exponential in n

3.2 Splitting into pieces

We can cut the dataset into m pieces of the same size, a procedure reminiscent of cross-
validation. However, it requires extra-assumption on the design, i.e., we need to assume that
the smallest eigenvalues of the data matrices of length n/m are still strictly positive (see proof
in Appendix D.9):

Proposition 3.2. Assume (A1-4) for m disjoint subdatasets of the original dataset, and
o< % 1/2 Af e = n?m7Y2pl/2 > 0, there exists f(c),a(c) > 0 such that:

R B 5/2,,,1/2\ ™ ~ 5\2
n mp

872

The proposition above requires that m/n tends to zero, i.e., there should not be too many
pieces (which is also required to allow invertibility of the sub-designs). Note that several
independent partitions could be considered, and would lead to results similar to the ones for
the bootstrap presented in the next two sections [33].

3.3 Random pair bootstrap

Given the n observations (x;,y;) € RP xR, i = 1,...,n, put together into matrices X € R"*?
and y € R", we consider m bootstrap replications of the n data points [17]; that is, for

10



k=1,...,m, we consider a ghost sample (z¥, y¥) € R? x R, i = 1,...,n, given by matrices
X* € R™P and y* € R*. For each k € {1,...,m}, the n pairs (¥, ¢y¥), i = 1,...,n, are
sampled uniformly and independently at random with replacement from the n original pairs
in (X, y). Some pairs (x;,y;) are not selected, some selected once, some selected twice, and so
on. Note that we could consider bootstrap replications with more or less points than n, but
for simplicity, we keep it the same as the original number of data points.

The following proposition shows that we obtain a consistent model estimate by intersect-
ing the active sets Jb,...,J™ obtained from running the Lasso on each bootstrap sample
(XL yh, ..., (X™ y™), a procedure we refer to as the Bolasso (see proof in Appendix E):

Proposition 3.3. Assume (Al1-4). If c = in'/?p'/? > 0, there exists strictly positive con-
stants Ay, ..., Ay that may depend on ¢ such that if np=® > Ag and mp=' > A;, we have, for
boostrapping pairs:

1/2 3 1 1+As5 <210g<A3 117:;2+10gm))_1/2
A n P ogm n m
]P(Jm 7£ J) < mp exp (_AOI—/Q) + A4( 1—/2+ & ) .
p n m

Note that in Proposition 3.3, for any n > 0, if n and m are large enough, then we get
an upper bound on the probability of incorrect model selection of the form Blme_B?"l/2 +
(% + 34“%)1“7, where By, ..., By are positive constants. Note that in [1], we have derived
a bound with better behavior in n, i.e., with n = 0. However, the bound in [I] holds for
random designs and has constants which scale exponentially in p and not polynomially. We
are currently trying to improve on the bound in Proposition 3.3 to remove the extra factor
n > 0.

As before, the number of replications should be as large as possible to remove irrelevant
variables, and m should not be too large, otherwise, some relevant variables would start to
disappear from the intersection. Note that best scaling (for the bound) is m ~ n'/?, leading
to an overall probability of incorrect model selection that tends to zero at rate n~'/2, instead
of the exponential rate for the irrealistic situation of having multiple copies (Section 3.1).

We have not explored yet the optimality (in the minimax sense) of the bound given in
Proposition 3.3. While we believe that a rate of n=/2 cannot be improved upon, the rate p°
should be improved with further research.

Finally, we have explored in [1] the possibility of considering softer ways of performing
the intersection, i.e., by keeping all variables that appear in a certain proportion of the active
sets corresponding to the various replications. This is important in cases where the decay of
the loading vectors does not have sharp threshold as assumed in most analyses (this paper
included). However, it adds an extra hyper-parameter and the theoretical analysis of such
schemes is out of the scope of this paper.

3.4 Boostrapping residuals

An alternative to resampling pairs (z;,y;) is to resample only the estimated centered residu-
als [17, 18]. This is well adapted to fixed-design assumptions, in particular because the design
matrix X remains the same for all replications. Note however, that the consistency of this
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resampling scheme usually relies more heavily on the homoscedasticity assumption (A2) that
we make in this paper [18]. Moreover, since the Lasso estimate is biased, the behavior differs
slightly from bootstrapping pairs, as shown empirically in Section 5.

Bootstrapping residuals works as follows; we let denote &; = y; —w ' z; = ¢; — (W — W)Tl‘i
the vector of estimated residuals, and £; the centered residuals equal to &; = &; — % ZZ:1 €k .
When bootstrapping residuals, for each i € {1,...,n}, we keep x; unchanged and we use as
data yf = W' x; + &, where i* is a random index in {1,..., n}—the sampling is uniform and
the n indices are drawn independently.

We obtain a similar bound than when bootstrapping pairs (see proof in Appendix F.2):

T

Proposition 3.4. Assume (Al1-4). If c = in'/?p'/? > 0, there exists strictly positive con-
stants Ay, ..., Ay that may depend on c such that if np=® > Ag and mp=' > A;, we have, for
boostrapping residuals:

1/2 3 ] 1+ A5 (21og<A3 117/2+ ))_1/2
A n P ogm n "
The bound in Proposition 3.4 is the same as bootstrapping pairs, but as shown in Ap-

pendix F.2, the constants are slightly better). However, as shown in Section 5.3, the behaviors
of the two methods differ notably: random-pair bootstrap does not lead to good selection per-
formance in high-dimensional settings, while residual bootstrap does. While we are currently
unable to proof the consistency of bootstrapping residuals in high-dimensional settings, we
prove in Section 4 the model consistency of a related two-step procedure, where the bootstrap
replications are performed within the support of the Lasso estimate on the full data.

4 High-Dimensional Analysis

In high-dimensional settings, i.e., when p may be larger than n, we need to change assumption
(A4) regarding the invertibility of the empirical second order moment, which cannot hold.
Various assumptions have been used for the Lasso, based on low correlations [27], sparse eigen-
values [34] or more general conditions [0, 15]. In this paper, we introduce a novel assumption,
which not only allows us to consider that the support of the Lasso estimate has a bounded
size, but also implies that we obtain the same sign pattern with high probability. The analysis
carried out in low-dimensional settings in Section 2.3 is thus also valid in high-dimensional
settings.

4.1 High-dimensional assumptions

Our analysis relies on the analysis carried out in Section 2.3 for “high” regularization, i.e.,
when p tends to zero slower than n~/2. In this setting, we have shown that the Lasso estimate
asymptotically behaves as w + pA, where A is the unique minimum of

1 :
min §ATQA + Agsign(wy) + || Agells. (4.1)
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We let denote K C J¢ the “extended” support of a solution Aje of Eq. (4.3) and L = JNK:
that is, we not only keep all indices corresponding to non zero elements of Ay, but also the
ones for which the optimality condition in Eq. (C.1) is an equality (i.e., if we are at a hinge
point of the regularization path, we take all involved variables)

We consider the vector t € {—1,0,+1}” defined by ¢y = sign(wy) and tjc = sign(Aje). If
we assume that A\pin(Qrr) > 0, then the solution to Eq. (4.1) is unique [22], and is such that
Ay, = —QE}LtL and the optimality conditions for Eq. (4.1) are simply

sign(—[Qprtuli) = tx and [ QreLQp ol < 1.

We make the following assumptions (note that (A6) is essentially equivalent to the lack
of hinge point which is also made in Proposition 2.3):

(A5) Unicity of local noiseless problem: the matrix Qy,y, is invertible.
(A6) Stability of local noiseless problem: ||QLCLQ]:1LtL||OO < 1.
We let denote
0 = i {1~ | QurQp o i (@1 b0 Qs | (42)

the quantity that will characterize the stability of the local noiseless problem; if (A5-6) are
satisfied, then @ > 0. As shown in Proposition 4.1, the quantity @ dictates the speed of
convergence of the probability of not getting t as a sign pattern for the Lasso problem in
Eq. (1.1) or Eq. (2.1).

Comparison with consistency condition We now relate (A6) with the consistency con-
dition for the Lasso in Eq. (2.3): if Eq. (2.3) satisfied, then K = @& and the condition (A6)
simply becomes:

1Qse.3Q3 3sign(wy) [l < 1,
which is exactly a strict version of Eq. (2.3)—an assumption commonly made for high-
dimensional analysis of the Lasso [44, 37]. Note that we then have the simplified expression
0 =1 — [|[Qse3Q5 ysign(wy) | o-

The main goal of this paper is to design a consistent procedure even when Eq. (2.3) is
not satisfied. As we have seen, (A6) is weaker than the usual assumptions made for the
Lasso consistency; in Figure 1 (left and middle), we compare empirically the two conditions
for random i.i.d. Gaussian designs, showing that our set of assumptions is weaker, but of
course breaks down when n is too small (too few observations) or the cardinal of J is too
large (too many relevant variables). We are currently exploring theoretical proofs of this
behavior, extending the current analysis of [37] for Eq. (2.3); in particular, we aim at de-
termining the various scalings between p, n and the number of relevant variables for which
a Gaussian ensemble leads to consistent variable selection with high probability (according
to our assumptions which are weaker than in [37]). Moreover, in the right plot of Figure 1,
we show values of log @ for various n and |J|, which characterize the convergence rate of our
bound. Relying on @ which is bounded from below is clearly a weakness of our approach to
high-dimensional estimation; we are currently exploring refined conditions where we relax the
stability, i.e., we allow several (but not too many) patterns to be selected with overwhelming
probability.
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Figure 1: Consistency conditions for random Gaussian designs, p = 128, n from 40 to 200
and |J| from 1 to 20 (all probabilities and averages obtained from 1000 replications). Left:
probability that Eq. (2.3) is satisfied. Middle: probability that (A6) is satisfied. Right:
expectation of log @ (plotted only for the ones for which the local problem is unique with high
probability).

Checking assumptions (A5-6) In Eq. (4.1), we can optimize in closed form with respect
to Ay as Ay = Qi}](—sign(w‘]) — (3,3:Ajc), leading to an optimization problem for Aje:

1 1.
Al’rélﬂg7 §A}CQJC7JCIJAJC — A.—IFCQJC,JQJ}JSIgn(WJ) + ”AJcHl, (43)
which can be solved using existing code for the Lasso. We are currently working on deriving
sufficient conditions which do not depend on the sign pattern of the population loading w

(but only on the sparsity pattern, or even its cardinality), as usually done for the consistency
condition in Eq. (2.3) [14, 10].

4.2 Stability of sign selection

With assumptions (A5) and (A6), we can show that with high-probability, when the regu-
larization parameter is asymptotically greater than n~'/2, then the sign of the Lasso estimate
is exactly t (see proof in Appendix G):

Proposition 4.1. Assume (A1-3), (A5-6), and i < Az’ﬁg‘/“;) Then:

P(sign(w) # t) <2pexp (_n[f@ )\L) + 2|J| exp (—M> . (4.4)

872|L| 472|L|

Note that if € is bounded away from zero, then we simply need that log p = o(n) for our
result to hold. Moreover, in Eq. (4.4), we can see that 8 dictates the asymptotic behavior of
our bound. If it is too small, then in order to have a meaningful bound for this design matrix,
we would need to consider sign patterns which are close to t and show that the sign pattern
of the Lasso estimate w is with high probability within these sign patterns.
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4.3 High-dimensional Bolasso

Proposition 4.1 suggests to run the Lasso once with a larger regularization parameter (i.e.,
multiplied by logp) and run the various resampling schemes within the active set of the
original Lasso estimation (which is very likely to be the support associated with t). More
precisely, we have the proposition (see proof in Appendix G):

Proposition 4.2. Assume (A1-3) and (A5-6). If ¢ = jin'/?|L|"/? > 0, there exists strictly
positive constants Ay, . .., Az that may depend on ¢ such that if n|L|=% > Ag and m|L|™' > A,
we have, for boostrapping residuals:

A 2(log p)260° A nm(w)2\2
P(J"#J) <2 —C(— 21J L
(" #J) peXp< SF2LP 2 exp | == |

3 —1/2
4 n'/? e IL]*>  logm 1+A5<210g<A37‘ﬁ‘/2+1’g" ))
mpexp | — 0|L\—1/2 + Ay 3W+ - .

Note that the constants depend polynomially on |L| and Apin(@rr), and do not depend
on p. This is thus a high-dimensional result where p may grow large compared to n. If we
relax (A6), then the original Lasso estimate would have a small set of allowed patterns with
high probability (instead of simply one), and a union bound considering all those would need
be considered.

5 Algorithms and Simulations

In this section, we describe efficient algorithms for the boostrapped versions of the Lasso that
we present in this paper and we illustrate the various consistency results obtained in previous
sections, in low-dimensional and high-dimensional settings.

5.1 Efficient Path Algorithms

We first consider efficient algorithms for the boostrapping procedures, based on homotopy
methods [35, 16, 23]. Similar developments could be made for first-order methods [20, 19].
For the regular Lasso, one can find the solutions of Eq. (1.1) for all values of the regularization
parameter p that correspond to less than k selected covariates in time which is empirically
O(pn+ k*n): indeed, computing %X Ty once is O(pn), while computing the relevant elements
of Q) = %X TX and updating various quantities is O(k?n). Note that our analysis suggests to
stop the path when the solution of the problem is not unique anymore, i.e., when the design
matrix of selected variables become rank-deficient.

Bootstrapping pairs When bootstrapping pairs, we require m applications of the regular
Lasso procedure with different design matrices, so we get a complexity of O(mpn + mk*n),
and since the designs are different, there is no immediate possibility of sharing computations
between different bootstrap replications
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Figure 2: Probability of selecting each variable vs. regularization parameter p (low-
dimensional setting) for various resampling schemes, before intersecting. White values corre-
spond to probability equal to one, and black values correspond to probability equal to zero
(model consistency corresponds to while on the top 8 variables and black on the rest). Top:
consistency condition of the Lasso is satisfied, Bottom: consistency condition not satistfied.
Note the similar behavior of resampling noise (which requires knowing the generating distri-
bution) and the two forms of bootstrapping (which do not). See text for details.

Bootstrapping residuals When bootstrapping residuals, we first run the Lasso once, with
complexity O(pn+k?n). Then, for all values of the regularization parameter, naively, we would
have to run the Lasso m times. In order to avoid running the Lasso as many times as m times
the number of values of p we want to consider, one can first notice that there are at most
O(k) break points in the original Lasso estimation, and that between break points, one has
to minimize an objective function which is composed of a ¢!*-penalty, a quadratic term and a
linear term whose coefficients depend affinely in p. This implies that the path is also piecewise
linear within this segment and can be followed using an homotopy algorithm very similar to
the one for the regular Lasso. Thus it makes O(mpn + mk®n) per segments when restarting
an homotopy method for this segment, i.e., an overall complexity of O(mkpn + mk>n). This
can be put down by computing a joint path that goes through all O(k) segments sequentially
instead of in parallel, in total time O(mkpn + mk?n). Moreover, since when bootstrapping
residuals, the design matrix is the same for all replications and computations of submatrices
of Q may be cached, to obtain a complexity of O(mkpn + k*n).

Similarly, when bootstrapping after projections onto the active set of a single global Lasso
run, one can get even get a lower complexity of O(pn +mk?n), i.e., one Lasso followed by m
Lasso on a reduced data set. This requires however updates (when the first Lasso estimation
switches active sets) such as the ones proposed in [23].
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5.2 Experiments - Low-Dimensional Settings

We first consider a low-dimensional design matrix, with p = 16, n = 1024 and 8 relevant
variables (i.e., J = {1,...,8}). The design is sampled from a normal distribution with
independent rows, sampled i.i.d. from a fixed covariance matrix. We consider two covariance
matrices, one that leads to design matrices which do not satisfy the consistency condition of
the Lasso in Eq. (2.3), and one that leads to Lasso-consistent design matrices.

In Figure 2, we plot the marginal probabilities (computed from 512 independent repli-
cations) of selecting any given of the p = 16 variables for all values of the regularization
parameter p and for the various resampling schemes (resampling noise, bootstrapping pairs
or bootstrapping residuals), without intersecting (i.e., we are just reporting counts from 512
replications from a single dataset). Note that the left column (resampling noise) exactly corre-
sponds to the various regimes of the Lasso presented in Section 2 (these require full knowledge
of the generating distributions and are only displayed for illustration purposes): for large val-
ues of p, no variable is selected (Proposition 2.1), then a fixed pattern is selected (u tending
to zero faster than n~'/2, Proposition 2.2), then all patterns including the relevant variables
(1 of order n~'/2, Propositions 2.4 and 2.5), and finally, for small values of y, all variables
are selected (Proposition 2.6). Note that in the top plots, as expected (since Eq. (2.3) is not
satisfied), some portions of the regularization paths lead to the correct pattern, while in the
bottom plots, as expected (since Eq. (2.3) is satisfied), there is no consistent model selection.
It is important to note that using the bootstrap leads to similar behavior than resampling the
noise, but does not require extra knowledge (i.e., a single dataset is needed). Note finally, that
bootstrapping residuals does alter slightly the regularization paths—because of the bias of
the Lasso estimate—and the selected patterns (see other evidence of this behavior in Figure 3
and Figure 4).

In Figure 3, we compute the marginal probability of selecting the variables for the Lasso
(left column) and the various ways of using the Bolasso (boostrapping pairs or residuals), i.e.,
after intersecting. Those are obtained by running the Bolasso with 512 replications, 128 times
on the same design but with different noisy observations (thus, a total of 512 x 128 Lasso runs
are used for each of the plots on the middle and right columns of Figure 3). On the top plots,
the Lasso consistency condition in Eq. (2.3) is satisfied and the two versions of the Bolasso
increase the width of the consistency region of the Lasso, while on the bottom plots, it is not,
and the Bolasso creates a consistency region. Note that bootstrapping residuals modifies the
early parts of the regularization path (i.e., large values of p), illustrating the effect of the bias
of the Lasso when bootstrapping residuals.

In Figure 4, we consider the effect of the number m of bootstrap replications, in the same
two situations. Increasing m seems always beneficial. Note that (1) when m = 1 (essentially
the Lasso), we get some strictly positive probabilities of good pattern selection even in the
inconsistent case, illustrating Proposition 2.4, and (2) if m was too large, some of the relevant
variables would start to leave the intersection of active sets (but this has not happened in our
simulations with only 512 replications).
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Figure 3: Probability of selecting each variable vs. regularization parameter p (low-
dimensional setting) for the Lasso (left column) and the Bolasso (middle and right columns).
White values correspond to probability equal to one, and black values correspond to probabil-
ity equal to zero (model consistency corresponds to while on the top 8 variables and black on
the rest). Top: consistency condition of the Lasso is satisfied, Bottom: consistency condition
not satistfied. See text for details.
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Figure 4: Probability of correct pattern selection with various numbers m of repli-
cations in {1 in plain black, 2,4, 8,16, 32,64, 128,256, all in dashed red, 512 in plain blue}
(low-dimensional setting). Top: consistency condition of the Lasso is satisfied, Bottom: con-
sistency condition not satistfied. Note that only one replication (plain black) is very similar
to the regular Lasso.
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Figure 5:  Probability of selecting each variable vs. regularization parameter p (high-
dimensional setting) for various resampling schemes, before intersecting. Only the first 8
variables and the 16 variables which violates condition in Eq. (2.3) the most are plotted.
White values correspond to probability equal to one, and black values correspond to proba-
bility equal to zero (model consistency corresponds to while on the top 8 variables and black
on the rest). Note the similar behavior of resampling noise (which requires knowing the gen-
erating distribution) and all forms of bootstrapping (except for bootsrapping pairs, in the
top-middle plot).
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5.3 Experiments - High-Dimensional Settings

We now consider a “high-dimensional” design matrix (i.e. such that p > n), with p = 128,
n = 64 and 8 relevant variables (i.e., J = {1,...,8}). The design matrix is sampled from
a normal distribution with i.i.d. elements. For the sampled design matrix, the condition in
Eq. (2.3) is not satisfied, as for most designs with such p, n and |J|, as shown in Figure 1 in
Section 4, but assumptions (A5-6) are.

We performed the same simulations than in Section 5.2, with additional bootstrapping
procedures, namely after projecting into the original Lasso estimate, with the same regular-
ization parameter (no consistency result) or with a parameter multiplied by log p (consistency
result in Proposition 4.2).

In Figure 5, we consider marginal probabilities before intersection, to study the general
behavior of various resampling schemes. We see that bootstrapping procedures behave rather
differently than resampling the noise (unlike in low-dimensional settings), and that boost-
rapping pairs does lose some of the relevant variables while boostrapping residuals does not.
After projection, all resampling procedures behave correctly. In Figure 6, we compare the
Lasso and the Bolasso (for several ways of performing the bootstrap): boostrapping residuals
consistently leads to better performance. Note that while the top right plot behaves correctly,
we currently have no proofs for it. In Figure 7, we consider the effect of various numbers of
replications. Note that in the bottom-right plot, 512 replications are indeed too many (i.e.,
when too many replications are used, we start to lose some of the relevant variables).

6 Conclusion

We have presented a detailed analysis of the variable selection properties of a boostrapped
version of the Lasso. The model estimation procedure, referred to as the Bolasso, is provably
consistent under general assumptions, in low-dimensional and high-dimensional settings. We
have considered the two types of bootstrap for linear regression, and have shown empirically
and theoretically better properties for the bootstrap of residuals. This work brings to light
that poor variable selection results of the Lasso may be easily enhanced thanks to a simple
parameter-free resampling procedure. Our contribution also suggests that the use of bootstrap
samples by L. Breiman in Bagging/Arcing/Random Forests [10] may have been so far slightly
overlooked and considered a minor feature, while using boostrap samples may actually be
a key computational feature in such algorithms for good model selection performances, and
eventually good prediction performances on real datasets.

The current work could be extended in various ways: first, we have not proved yet that
bootstrapping residuals, while giving nice empirical performance, is consistent in terms of
model selection. Second, a similar analysis could be applied to other settings than least-square
regression with the ¢!-norm, namely regularization by block ¢!-norms [39], multiple kernel
learning [39], more general hierarchical norms [43, 3], and other losses such as general convex
classification losses; in particular, an extension of our results to well-specified generalized
linear models is straightforward, as they are locally equivalent to a problem like in Eq. (2.1),
i.e., locally they are equivalent to minimizing (w — w)'Q(w — w) — ¢ (w — w) + pl|w|,
with ¢ being random and having as covariance matrix a multiple of ().
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Moreover, extensions to general misspecified models or models with heteroscedastic ad-
ditive noise could be carried through. Also, theoretical and practical connections could be
made with other work on resampling methods and boosting [I1]. In particular, using the
bootstrap to both select the model and estimate the regularization parameter is clearly of
interest. Finally, applications of such resampling techniques for signal processing and com-
pressed sensing [1, 13] remain to be explored, both in the context of basis pursuit (¢*-norm
regularization, [14]) and matching pursuit (greedy selection, [28]).

A Probability results

In this appendix, we review concentration inequalities that we will need throughout the proofs.

A.1 Multivariate Berry-Esseen Inequalities

If Xy,...,X, €RParen independent (but not indentically distributed) random vectors, with
finite third-order moments, and normalized second-order moments, i.e., such that var(n=%/2 3" X;) =
I, then for all convex sets C', we have the multivariate Berry-Esseen inequality [5, 24]:

- p
P(W Y X e c) —P(ueC)| <CPE—_ Y ( ZEHX ||2> : (A1)
i=1

where u is a standard normal random vector and CP¥ is a universal constant.
We can also derive from [24] another version for expectation of bounded Lipschitz func-
tions, i.e, if f(z) is bounded by M; and Lipschitz, with Lipschitz constant M,, then, we

have:
Ef( —1/2 Zx> CBE(M1+M2 ( ZEHX HQ) , (A.2)

where CBE is a universal constant. Note that better bounds (with better scalings in p)
exist in the ii.d. case [5]. Any improvement on Berry-Esseen inequalities would lead to an
improvement of our results.

In this paper, we will consider convex sets corresponding to selecting a given sign pattern
(among the 37 available ones), making use of Eq. (A.1). When considering leaving out a
given variable (like in Appendix D.7), we will design a specific Lipschitz function and apply
Eq. (A.2).

A.2 Concentration Inequalities for Subgaussian Variables

We consider n independent real random variables Y7, ..., Y, which are subgaussian with zero
mean and uniform subgaussian constant, i.e., there exists 7 > 0 such that forall i € {1,...,n}
and all s € R, E(e®¥?) < e’7/2. Then, we have [30, 8]:

1 — 20 2
P=Y Vi>t] <e ™/, A3
(z ) : (A3
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Note that the variance of Y is always then less than 72 (with equality if and only if Y is
normally distributed). We will also use Hoeffding inequality for bounded variables, which
amounts to use the fact that if |Y'| < M, then Y is subgaussian with constant 72 = M?/4 [3,
30].

We will also use concentration inequalities for quadratic forms [38] in independent random
subgaussian variables, with universal strictly positive constants C}, C3, Cg: for all symmetric
matrices A, if |A| denotes the matrix of absolute values of elements of A, then

dp-—2 442, —4
P(YTAY —E(YTAY)> 1) <Clexp (—min{02 tr ~ Cstr }) (A.4)
HA[ll2 " [JAlI%

B Perturbation of positive matrices

In this appendix, we review known results of perturbation of positive matrices. Let ) and
R be two positive matrices of size p, A and B two disjoint subsets of {1,...,p} such that
AUB ={1,...,p}. We have [25]:

Q0 - R
Amin(@))\min<R) 2’
max{ Amax (@), Amax(R)}'/?

Q™" = R7l2 <

2 _ Rl/2)), < R
||Q ||2 Qmax{)\min<Q)7)\min<R)} ||Q ||27
1
-1/2 o R—1/2 < o R
||Q ||2 Qmax{)\min<Q),)\min<R)}3/2||Q ||27

||QA,B _RA7B ||2 + Amax(R/LA)l/z

Amin(@B.B) )‘min(RB,B)?’/Q HQB,B—RB,BHz_

”QA,BQZ;,IB - RA,BRE,IB 2 <

C Optimization lemmas

The following three lemmas give error bounds on the Lasso estimates and conditions for a
sign pattern s € {—1,0, 1}? to be the one of the unique solution w to Eq. (1.1) or Eq. (2.1).

Lemma C.1. Assume (A1) and (A4). Let s € {0,—1,1}? and J = {j,s; # 0}. Then s is
selected (i.e., sign(w) = s) if and only if:
1Que, Q5 5ar — dse — Qe yeWye — pQue sQ7 555 oo < ity (C.1)
sign(w + Q;’}]qu — qu’leJ) =3sjJ. (C.2)
The solution then satisfies wy; = Wy + Q;lJ(qJ — psy).

Proof. Following standard results in non-smooth convex optimization [9, 7], w is optimal
for Eq. (1.1) or Eq. (2.1), if and only if, for all j € {1,...,p} such that w; # 0, then,
[Q(w —w)]; — g; + psign(w;) = 0, and for all other j, |[Q(w — wW)]; — ¢;| < p. We thus get
Wy =Wy + Q;},(q 7 — psy), and the result follows from expressing that w; should have the
right sign on J—Eq. (C.2)—and that the directional derivatives along other directions are
positive—Eq. (C.1). O
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When the sign pattern is consistent on J with w, then we can further refine the conditions
of Lemma C.1:

Lemma C.2. Assume (A1) and (A4). Let s € {0,—1,1}" such that sy = sign(wy) and let
J={j,s; #0} D J. Then s is selected if and only if:

—~
Q
w

~~—

1Qe.0Q5 505 — @re — pQ e Q755 oo < 1ty
sign(wy + (Q) 5 — nQ55ss)s) = sign(wy), (C4)
Sign(@},b% — NQ;,bSJ)J\J = SN\J-

The solution then satisfies wy = wj + Qi5<QJ — [Sy).

1/2
el and Q2 (i—w)]. <

Lemma C.3. Assume (A1) and (A4). We have |[0—wl||2 < 0

Y2 ut|lqll2

)\min (Q) 1/2 ’

Proof. From optimality conditions, we have ||Q(1 — w) — ¢||« < p, from which we get
1QY2 (0 —w)]l2 < Amin(Q) V2 (||Q( — W) — gqll2 + ||g]|2). The results follow from the identity
lalls < p'/?[|al| for any a € RP. O

The following lemma relates the solutions of Eq. (2.1) for different values of () and ¢. This
will be used in Appendix D.7 to prove the Lipschitz continuity of the solution of Eq. (2.1) as
a function of q.

Lemma C.4. If w is solution of Eq. (2.1) for Q,q, and @' is solution for Q',q', then we
have:

2[(@)*(Q - @)Q™ |2
Amin(Ql>1/2

Let v = Ql/Q(wf;NfQ_lq), then if Q@ = Q' ||y —+'[l2 < 73”62 w=dlz  gnd if ¢ = ¢, then

B B 9 1/2 1/2
Q72 = (@)l < B onnia 011l

Proof. We let denote J(w) = $(w — w)"Q(w — w) — ¢" (w — w) + pl|w|); the Lasso cost

function. A short calculation shows that for all z such that 27Qz = 1, J(@' + az) — J(@') is
larger than

1Q*(w — @)ll2<21Q " (a = ¢)l2 + [P+ lg'l12] -

2
o _ N _ _

- — (lR7(g = )l + @)@ = w)[2[(Q) (@ = Q)Q™[|2) @

If the last expression is nonnegative, since J is convex, the (unique, because @) is invertible)
minimum % of J must occur within the convex set {w,|QY?(w — w')||; < a}. The first
result follows, using Lemma C.3. Other results are direct consequences of using results from
Appendix B. O
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D Proofs for low-dimensional results

Note that assumption (A3) implies a bound on the largest eigenvalue of the matrix @, i.e.,
Amax (@) < pl|Q|loe < pM?. Moreover, we have for all J C {1,...,p}, k € {1,...,n} and
jeJe

. M 2M|.J|\/?
1 1/2
|$kj _Qj,JQJ7Jka| <M+ W X ‘J| / M < v,
which leads to
N 2\ n
P(Hch — QJC7JQJ71JQJ||OO 2 tMCT) < 2pexp <—@m> . (D].)

D.1 Proof of Proposition 2.1

The null vector w = 0 is solution of Eq. (2.1), if and only if ||QW +¢||c < i, which is the case,
as soon as (= M?||w||1 + ||¢|le (because ||Qw| s < M?||w]|1), and, thus with the additional
assumption p > 2M?||w||1, as soon as ||¢||ee < 11/2. We have, by the union bound:

p ~2
nji
Blldl < 1/221 = 3Pl > 1/2) > 1 - 2pesp (-2 ),

j=1

because we have E(e5%55) < e 7 M*/2 for all s € R and j € {1,...,p}, and by Eq. (A.3).

D.2 Proof of Proposition 2.2

If J(w)=3(w—w)"Qw—w)—q" (w—w)+p|w| is the Lasso cost function, we have, for

all z € RP such that ||z][s = 1 and o > 0,

J(wo +az) = J(wo) + Anin(@)a?/2 — ¢ "z + (u—pio) ([lwo+az]|1 = [|wol|1),
> J(wo) + Amin(@)”/2 = a([lg]l> + |1 — polp'’®),

which implies [ — woll2 < 2Amin(Q) " lgll2 + 2|1t — 0| Amin(Q)~1p'/2. The first inequality
follows from P(||q||o = t) < 2pexp(—t*n/2pM?>7?), applied with ¢ = \puin(Q)Bo/4M.

We let denote s and J the sign and support patterns of v. We have from optimality
conditions of the noiseless problem, (wg); = w;—oQ7 s and [[(Q(wo—w)) se oo < po—nMeo.

We now need sufficient conditions for Eq. (C.1) and Eq. (C.2) in Lemma C.1. For Eq. (C.2), we

need that Sign((wo)J+Q11JQJ+(,UO_,U)Q;}]SJ) = sy. If [p—po| < )\mi";?/nzl(wo) = MU)\I;;E%M/O),

then

(10 — 1) Q5 81l < 11— p0|Amin(Q)'p"? < m(wy)/2,

and then Eq. (C.2) is satisfied as soon as (Q7}qs);s; = —m(wp)/2, for all j € J, which occurs

—nm(woM/c)2 A2
872p :

with probability greater than 1 — pexp <
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For Eq. (C.1), we assume that ||g — QJC,JQ}}]qJHOO < nMo /2, which occurs with proba-

.. . . ) 12 0o -
bility obtained from Eq. (D.1) (with ¢ = n/2). Also, |x— po| < ")‘mZ’IES;MM < 2p1/2"MM/12/2 <

kmin(Q)l/Q

Mon/2 L
14p1/2 0%1/2 . This implies
p

)‘min(Q)l/2

a5 = Qe @35l < Mo — [p1 = pol (L4 MY 22 @)72),

gre = Qe Q74 lloo + 11Q(wo — W) lloo + [t = polp™* M A (@)™ < s,
because ||Q;1JSJ||OO < Mp'? Apin(Q)/2; hence the desired result.

D.3 Proof of Proposition 2.3

Note that p < W, and [|Allz < Amin(Q)~'p'/? implies that sign(wy+puAy) = sign(wy).
Thus, if ||z]ls = 1 and a > 0, we have:

JW+pA +az) = J(W+ pA) + Anin(Q)a?/2 — ¢ az + (uA) " Qaz +
plllw + pA 4 azlh — |[w + pAlL),
> J(W+ pA) + Anin(Q)a? /2 — ¢z,

which implies || — w — pA|s < 2A0in(Q) 7 |g||2, ans thus the first inequality. ]
We let denote s the sign pattern of A and J its support. Since, by assumption ji < %,
we have p]|Q;7s5)llee < m(w)/2, if [(Q)}¢s)sll2 < 3m(w), which occurs with probability
greater than 1 — 2|J]| exp(—nm(;;%f"), then Eq. (C.4) is satisfied.
If ||qje — QJC,JQquJHOO < pm, then Eq. (C.3) is satisfied, and this occurs with prob-
ability greater than 1 — 2pexp (—2’{9‘25) (from Eq. (D.1)). Finally, if for all j € J\J,
(Q}"qu‘])jsj > —p|A;|, then Eq. (C.5) follows. This occurs with probability greater than

1 — pexp(—A2m(M?2A)?i%n/27%p). The result follows by the union bound.

D.4 Proof of Proposition 2.4

m(W)A

R and

The optimality condition in Eq. (C.4) from Lemma C.2 is satisfied as long as fi <

Q5 54s)3ll2 < $m(w), which occurs with probability greater than 1—2|J| exp(—nm(W)\2n/872p),
while the intersection of events in Eq. (C.3) and Eq. (C.5), by the Berry-Esseen inequalities,
converges to the probability that P(u € C'), where u is normal with zero mean and covariance
matrix () and C' is the convex set defined as the intersection of

{[(Q15us) g — pn' o™ (Q5s) na] 0 s0a = 0}

and
{lluse = QuesQyhus — pn' 07 Qe sQ7 55 lloe < pm?o 1}
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The set C' and its complement have non-empty interior and since () is full-rank, the probability
is strictly inside the interval (0, 1). Moreover, by Eq. (A.1), the error bound is upperbounded
by CPE times

pl/2

P2 AMp2r
n1/2 ( ZEH (02Q) 1/2gm||2> S o (0) 1/2< ZEHQ 1/2;m||2> :

p1/2 4Mp1/27'3 p? 473

nl/2 03)\min(Q)1/2p Copl/2 )12’

because E|e;|* < 473, which leads to the desired result.

D.5 Proof of Proposition 2.5

pl/2

We simply use Lemma C.3: |0 — w2 % Thus if m(w) > p/uitgq)llz’ the result

follows from concentration inequalities in Appendlx A.

D.6 Proof of Proposition 2.6

We have, by considering all patterns consistent with the total absence of zeros:

P(3j € {1,...,p},d; = 0) < > P(sign () = s).

s,3j€{1,...,p},s;=0

We now consider such a pattern and its support (strictly included in {1,...,p}). From
optimality conditions in Eq. (C.1), we get that sign(w) = s implies that |¢; — Qj,JQ;,bQJ —
MQJ7JQi53J"m < p for some j € J¢ # @. Note that the covariance matrix of ¢; — Qj7JQ;,}qJ
is equal to 0?Q;jis/n and has a lowest eigenvalue greater than 0®Ayin(Q)/n. Thus, by the
Berry-Esseen inequality,

473 p2 /fml/Z
con (e — BE
P(sign() = s) < €y \L1/2 nl/2 T N2

which implies the desired result, since there are at most 37 allowed patterns.
We can get a better bound (with respect to p), but with a weaker dependence in p, that
is, we consider:

P(3j € {1,...,p} ;= 0) <P(3j € J,i0; = 0) + P(Ij € I, i; = 0).

The first term is upper bounded by 2|J|exp(—nm(w)\*n/872p), while the second one is
upper-bounded using Proposition 2.7. This leads to the global desired upper bound, which
scales better in p but worse in n. In particular, it requires that un tends to infinity, i.e., p is
not too small.
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D.7 Proof of Proposition 2.7
We first start with a simple elementary lemma:
Lemma D.1. Ifu € R s a standard normal random variable, then

= P2
1+«

WV

azP(lu—0<a)>

When minimizing Eq. (2.1), with the constraint that w; = 0, we get the solution (with
the notation j¢ = {j}°):

wc —WJC+Q] ch_y _'_,MQ ,]nylu,Q<qJ)

for a certain fyiQ(qjc) such that HQ;/QJC%Q(% )|eo < 1. It is optimal for the full problem if
and only if (because w; = 0), [Q; je(wje — Wjc) — q;| < p, ie.,

_ 2
| = @ + Q1je Qi seqje + 1Q; Q12 o(g5e)| < .

We consider the “soft indicator” function (triangle-shaped) fiQ(q) of ¢ defined as

lo@=(1- ).

The function fi,Q is upper bounded by 1, moreover, from Lemma C.4, fyth is Lipschitz with

Thus, fZQ is Lipshitz with constant 2#‘1% + LM <

_ 1/2
— Qjje Qjc%jCQJ — Qjje ”Q c.j° ViQ(qJ )

constant L = p!

- M
5M ' )\min(Q)l/Q ’

Moreover (by design) we have

3
Amin(Q)l/Q ’

J <1
ﬂQ(q) |—q;+Q; ; 12 Jclj/quc—l—Q“ch] ]cqu(qJ o)<’

thus EfiQ(q) <P(5 ¢ j) This implies by the Berry-Esseen bound (see Appendix A.1), that,
if g denotes the Gaussian approximation:

1/2 1/2,,—1/2 ~3,3/2
. . . P op4n 47°p
PG ¢J) = EfZ,Q(‘JG) - C(2BEn1/2 ( +1)

)

ﬂ5\1/2 A\1/2
because the average third order moment of the normalized variable is equal to 4%;1’;?;/2 and
the Lipshitz constant of the function of the normalized variable is equal to % X
—1/2 1/2 o 5p1/2n71/2

Moreover, we can lower bound, for any g,

1 _ 1/2
SP(] - g5+ Qije Qi seaje + 1Q; Q50 v o(@e)| < 1/2).

EfiQ(Q) > 5

When applied to the Gaussian limiting distribution gg, we know that the random variable

nl/ 207 (—q; + QchQ;c%jcqjc) is asymptotically normal with mean zero and covariance x? =
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Qj,jljc- We get by applying Lemma D.1 with 3 = pn /g1 Q“ Q_l CQ’yZ 0(gje) and o = M7

K
. 1/25-1p1p1/2
which are such that |g| < #—2 Mp Z.

RAmin(Q)l/Q
1/2 1 2
X B — ,M n _
B fialwo)l(de)s] > g o { 2022 huin(Q) 14 ’
2K
which leads to, with K < M and & > Anin(Q)Y/?,

/,,Lnl/QO'_l 2 2

. pnoo 1 pwnp M

j oM

Efualie) 2 17 imp5 &P {‘ 202 m}

2>\min(Q)l/2

Similarly, we can get an upper bound on the probability of not selecting the variable j.
We consider the same technique, but we now need to upperbound a probability of the type
Ef) o(gc), which leads to the desired result.

D.8 Proof of Proposition 3.1

Following the analysis in Section 3, we need to upper bound P(j € J*)™ and P((J*)°UJ # ).

We obtain P((J*)°UJ # @) < 2pexp ( m(w) ) from Proposition 2.5. From Proposition 2.7,
we get

~1/2 4 ~2 1 BE 3 CBE 5/2

1 + finl/2 /27172 25\2np B\ anpl/?2 \1/2

, 2
We let h(c) = 1—L4 _exp (—%i), and g(c) = (8C§El+ 4C~2BE) h(c)™%, and f(c) =

2 1+4c/2)1/2 A2 73\ ¢ 7331/2
—log(1 — h(c)), to get the desired result.

D.9 Proof of Proposition 3.2

10CPE 1 | 4CPE
#3331 ¢ ' #3)1/2°

Using the same reasoning as in Appendix D.8, we get the same f(¢) and a(c) =

E Proofs for boostrapping pairs

E.1 Concentration inequalities

We now assume that we have a bootstrap sample X* and y*, which leads to @* and ¢*. We
now derive concentration inequalities for ¢* and @*, that we use in Appendix E.2.

For all a,b € {1,...,p}, QF, is an average of variables bounded by M?. Thus, by Hoeffd-
ing’s inequality [%] and the union bound:

P(|Q* — Qlloc >tM?) < 2p” exp (—2nt) . (E.1)
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Similarly, we bound the deviation between ¢ and ¢*:

P(llg — ¢*||co = tMole) < 2pexp (—2nt2 BE ) . (E.2)

Also, by the central limit theorem, given &, n'/?(¢* — q) converges in distribution to a normal
variable with mean zero and covariance matrix

o*Q = E[(})*7}(«}) Te] — Elejaile]El}aile]" ZE i

We can derive concentration inequalities of @ around @), by using Appendix A.2 and Eq. (A.4):

Lemma E.1. Assume (A1-4). We have:

_ qt q t2 t
P10 — Qoo > tM2) < 20°Cexp (~min 217 GV op e (~ L)
72 74 272

Proof. From Eq. (A.4) applied with a diagonal matrix for each pair of coordinates a,b (and

using the union bound):
. [CHtn Cynt?
> tM2> < 2p°Clexp (—mln{ 7%_2 , ?;~_4 })

(|55

If we use the inequality P(||q||ec = 2) < 2pexp(—nz?/2M?7?), with 2z = (t/2)Y20 M, we
get the desired result. O

E.2 Proof of Proposition 3.3

Following the analysis from Section 3, we need to upper bound P(j € J*|¢) (probability of
including a certain irrelevant variable into one of the replicated active sets), and P((J*)°UJ #
&) (probability of missing none of the relevant variables). We first prove two lemmas about
each of them.

Lemma E.2. Assume (Al1l-4), i < rgg"/)g‘ and % > m%if;;. We have:

A 5\2 ~ 5\ 1/2
P((J*) U #2)< 2p2€Xp (_?Z?) + 8pn 1/2 exp (—m(vf) n_> )

87 pl/2

Proof. This lemma shows that all relevant variables will be selected with overwhelming
< Plwta ]l
1/2

mln(Q ) '
Thus, if m(w) > %7 Amin(@%) = Anin(Q)/2, ¢ — ¢ ]2 < m(W)Anin(Q)/8, and |[|g|l2 <

probability. From Lemma C.3, we have that J C J* as soon as || — w||
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m (W) Amin(Q)/8, then J € J*. Thus, we have:

P((J*)UJ # @) < P ()\min(@*) < )‘m%@)) 4P (||q||2 > M)

P (I gl > 20Vl

12 > \212
) nA nm(w)A
< 2p°exp <_2—]72> + 2pexp <—W

nm(w)2\20?
+2plE exp <_—32PH5H20 .

We thus need to bound, for some A > 0,

E exp <_m> = Eexp ( ”6”2 ) Liefosar + Eexp <—@> Ljefjoo> 1
exp (_W) + P(|le]|oc > M),

exp (—%) + 2nexp(—%) < 3nlt/? exp(—fl—\//;),

for A/M? = AY2 /7212 1 1og(n'/?), leading to
~ 25\2 2 1/2 ~ 5\
%ﬂkmp<_ﬂﬁiﬂl_:1> gGmfﬂem)<_ﬁ_;E@Q_>_

320l Spl/2
The condition n > mQ(Eﬁ;i? allows to combine two terms into one, leading to the desired

result. O

Lemma E.3. Assume (Al-4) and j € Jc Moreover, assume that ||q|lcc < B1Mo/2 and
1Q = Qlloo < M2 with 81 > i, $1fs < 40p2, and By < X. We have:

pnl/2 V2p12 i — Q QL qie| 2
P(j ¢ Je) > —Z _exp | —= (S0P 105 el
J = 1 anl/? p 9 )\ 1/2 1/2
+ AN1/2 on- QJJ\J

16C™ p*2  10C5F p* nfio?\ nf
— = — = — ex — — ex .
A n  maani 2P\ g ) e (=

Proof. We follow the same approach as in the proof of Proposition 2.7 in Appendix D.7. We
first assume that ||¢ —q¢*||oe < 1Mo /2 and ||Q* — Ql|ec < B2M?/2 (on top of the assumptions
made on ) and ¢). Following the same reasoning as in Appendix D.7, j is not included if

| = @+ Qe (Qhe jo) e + Qe (Qle )Py (@) < .
In order to apply Berry-Esseen inequality given e, we first need to upper bound |Q7 jc(Qje, jc)*lqjc—
@j,jc@j}bcqﬂ, using Appendix B, by
2p'/? AMp

* 2 * p
19 = Qllall’le x (52 + e
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Also, we need to bound, by Lemma C.4 and Appendix B:

‘Q]_] ( ] ,J€ ) 1/27,{1 Q* (q] ) ijj (QJ €3¢ ) 1/27ZQ(q] )‘

Ba M 1.1/2 2 1/2 pHQ QHoo 1/2
< P Ame 2 MR (12 4 g
5@ ot lal)
~ 4 Bip B 1051522?
< A ! 14 p + = ) < 2 = <1 + =) < —.
pP2 < 73 A p 52)\2 7 o

Since (31 = 1, 0102 < 40 X and By < A, we thus have:
Qe (Qje jo) " e — Qe Qetjesel < /4,

—1/2
|Q]] ( Je.ge ) 1/27;]LQ*<QJ ) QM Q ,JCVZQ@J )‘ S “/4'

If we let denote A the event {| — qj + Qj e Q; eGe T Qe Qe lj/ffyZLQ(qJ )| < p/2} and B the
event {|l¢ — ¢*|lc < BiMo/2} N {HQ Qlloo < B2M?/2}, this implies that

P(j ¢ J*[e) > P(Ale) — P(BYe). (E3)

We have, by concentration inequalities from Appendix E.1:

. nB2o’ n 32
P(Ble) < 2pexp ( e ) + 2p* exp ( 2) : (E.4)

Overall, if we assume the various bounds on ¢, ¢*, Q* and @, to have j excluded from the
active set for the bootstrap sample, it is sufficient that A is satisfied. As in Appendix D.7,
we consider a smooth version of the indicator function, and we get that the probability of A,
given ¢, is greater than

P (Ju;— Qe Q5o — Qs 4o Q 2 o se)| < pf4) — R, (E:5)

where u is normal with mean ¢ and covariance matrix 02@/71, and, from Proposition 2.7,
BE BE ~
R %P2 | 100 p2 (note that we have used that @ is close to Q).

#BAL fin 73)1/2 pl/2
. A—1
We have that given w;e, —u; + Q“ Q jeUje is normal with mean —g; + Q“ Qe jeqje and

covariance matrix 02Q); jjo/n. Thus, we get, using Lemma D.1:

1 ~ o~ 1/2
5[[» (| — Uy -+ Qj,jcQjcl,jcujc -+ ,UQJ‘J'CQ] ]/c ’YZLQ(UJ )| < IU/4> <E6)
1 -
= SEP (| =+ Qe Q5 use + 1Qs e Q57 o)l < /Al
ui/‘ll/2
> 1 i _I/QQJJ\JC
T2 w4
T 20n_1/2Q;J/‘QJC

2 ~—1
— QjjeQje jelje

1/20)1/2
on- Q] Jglie

11Q; je(Qje je) " VMQ(UJ ) +

1/20)1/2
an- QJ Jjlge

| )
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We have using our assumptions regarding ¢ and @: Amin(@) /2 < @jﬂjc < 2M? and ‘ch(Qijc)*l/QyiQ(uj

MAin(Q)~Y/2p'/2. Moreover,

A A—1
‘Qj,jcQijch Qjje Q] e jedje o] <

p'BiMo (p'/? M | _AMpp,
2 )\mln(Q) Amin<Q>3/2
3p* 2 MP o py Mo
~ 3/2 ~ lu/87
)‘min(Q) /

2
1/2 1/2 _ 3200 A 205 M
|Q.]]‘_] ]J|] ‘ 4)\m1n(Q) HQ QH2 < )\min<Q)3/2.
This leads to a lower bound of the form:
fin'/? 1/2p1/2 -1 2
L 1 (8an 15 — QjjeQje e e ]
W eXp —5 5\ + 1/2 1/2 (E?)
1+ 4N1/2 an- Q] Jlic

By combining Eq. (E.3), Eq. (E.4), Eq. (E.5), Eq. (E.6) and Eq. (E.7), we get the desired
result. O

We can now consider the full bound using the analysis outlined in Section 3, using
Lemma FE.1, E.2 and E.3:

P(J"#J) < mP((J)°UT#2)+ ) EP(j € J'|e)™),

jede

< 2p°mexp A + 8pn 1/2 mexp M + 2pexp _n_f
S22 87pl/2 272

4 932
+2p*C exp [ —min Q%H, 3?52 + 2pexp _
27 27 T

472
+ Z E [P(j < ‘]*|€)m1||Q||oo<ﬁ1M0/21||@—Q||w<62M2/2:| :
jedJe
We consider 8 = jip~'n*1? and By = p~n=3/1%. We truncate ||| at n'/°c and %
3¢
at z and use Berry-Esseen inequality for g;;c, to obtain: ]“
. nl/2 P2 ,
P(J"#J) < mpexp (—Aom) + Alm + exp(—2z7/2)+
2 3 m
2(c) 1/8 D
+p (1 — —5 XD [—5 (5\ —l—z) +A3<C)W> :

with

nA2 nY2m(W)A nl/?
2p exp <_2—p2> + 8n'/2 exp (—Tg/z)> < pexp <_AOW) ,



~2.3/5 O~ =3/10,, 24,3/
2p exp (—M)+2p20?exp(—min{ 2P 7 n’ 3P 7 })

2p272 272 271
~1,,-3/10 ~3,3/2 3/2
np mn Tp —1/2 1/5 19~2 p
+2pexp (— YD ) o n~ %+ 2nexp(—n?/27%) < Alm’

3 BE 3 BE 2 ~2 3/5 3 —2,-3/5
p° 1605 P 10C3" p np n> °pp : np=°n
A3<C>n1/2 = i a2 n1/2+2pexp s +2p” exp ]

ﬁn1/2
As(e)p1? < 1?’%
+ 4N1/2

All these constraints lead to the constraint tha np~—® should be larger than a function of c.
We now need to optimize over z the following quantity:

Ay(c) 1 (8¢ ?
P (1 — I/ exp [—5 (? +z)

Ag(c)
p1/2
= Tog
(c)p3n 1/2_,_%

A
+ As(c) +e /2,

nl/2

1/2
If we select z such that % +z= (2 log e ) , which is possible if m and n large

enough, i.e., if m > e<%>2(i§_§g>)*2 and n > e(%)2(A3(c)p3)2(i§—§§))’2, then we have the bound:

(1 _ A2(C> exp(_l(% + 2)2) + A3(C)p3n—1/2) < %’

p1/2 2
and
. Aole 1/2
222 Az(c)pPn=l/2 4 lam (2 87 pfsz)
e < 0 e 2 exp | —=|2log o
pf/g 2 As(c)pPn=1/2 4- 2&0

This leads to the desired bound.

F Proofs for bootstrapping residuals

We use the following notation for the solution of the Lasso: w —w = Q 'q + pd&, where
Qdlle < 1. We also denote Iy = X(XTX)"1XT € R™" the projection matrix on the
data, which leads to the following expression for the non-centered estimated residuals:

E=y—Xw=X(w—-w)+ec=(1-1Ix)e — pXa.

We let denote v = %22;1 &;. The boostrapped responses are thus y = & — 0 + @ 'x;. The
bootstrapped residuals are thus y; + (0 — w) T z;, i.e.:

~

e = [llxe + pXa|, + &+ — .

34



We have the following expectations:

- 1.
E(éx+le) = ﬁlTezﬁ -

E(e*le) = Ilxe+ Xua,

var(erle) = var(éple) =

* 1 . ~ A
E(¢le) = ~ > E(&|e)ar = g + nQad,
k=1

’ Q

~ 1 ¢ 1
%szar(q*|5) = ;Var(ék*|e)xk:pg = ﬁeT(I —Tx)e+p’a’ Qa—i?

2

We let denote v = Z—e" (I — Ily)e + o 2p2a " Qa — 07202 so that var(q*|e) = o?vQ/n.

n

F.1 Concentration inequalities

We need concentration inequalities for ¢* around ¢ (given €) and of s around 1, as well as
around zero.

Lemma F.1. Assume (Al1-4) and t > 2%. We have:

. —nt2)

Proof. Wehave: 217 (I-Ilx)e = L 3% &;[(I-11x)1]; with [(I-TIx)1]; = 1—2 Q™" (£ > °p_, =)
is such that

|[(I - HX)lM <1+ )‘min(Q)_lMQP < 2>‘min(Q)_1M2p -

Thus, we get:

M2\ . 2 .2 420
>to ] <2exp " Amin(Q)°0 = 2exp nt~)\
8p272

— T —
nl (I—TIx)e 872 M4p?

1
il
We also have }%ITXd = },tmfl Y orey xiTéz’ < upMApin(Q) ™1, hence the desired result with
the extra condition on ¢. O

Lemma F.2. Assume (A1-4). We have:

—2nt?

P(ll¢" — ¢ — pQdl|o = tMole) < 2pexp

2
~nl/2,1/2
2lelloc/o + i35 )
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Proof. We have ¢* = q + uQa + % S, €. Moreover, we have

M?p 2p ,unl/Qpl/Z
= 00 e 1 00 Xa < = 00 T
el < 1l < (1 o) lello + Xl < el + 2
We get the result by Hoeffding’s inequality. O

Lemma F.3. Assume (Al-4), 2 < % and pﬁ; < t/4. We have:

| o2 ofnt?r —nt\
IP’(|7—1|21&)<2C’f‘exp<—mln{lJr 70— p/n) + 2exp TeED

n 2)\

Proof. We first need to derive concentration for e’ (I — Iy)e usmg Eq. (A.4). We have:
Amax(A1 = Tx]) < &+ 2|Txlloc < &+ Zx and |T - Tx|} = 1. because |(Ix);| =

Lz, Q| < p/nA. We thus obtain from Eq. (A.4):

Qa2 1, 42~—4
> t) <2CT exp [ —min 102” Cynt7
1y 2 "(1-p/n)

n n2\

-2

p(a_

n

£T(I—Tx)e — (1 - p/n)

Together with &TQd& < p/Auin(Q), we get the desired result. O

F.2 Proof of Proposition 3.4

Following the analysis from Section 3, we need to upper bound P(;j € J *le) (probability of
including a certain irrelevant variable into one of the replicated active sets), and P((J*)°UJ #
&) (probability of missing none of the relevant variables). We first prove two lemmas about
each of them.

Lemma F.4. Assume (A1-4) and i < =% /35‘. We have:

. nm(W)?\? n'/?
P((J*)°UJ # @) < 2pexp (‘W + 2n exp T 272l

—nA2m(w)?

2
2p3/4 14 ~ pl/2p1/2
8 (Tn / + 1% \1/2

+ 2pexp

Proof. This lemma shows that all relevant variables will be selected with overwhelming prob-
71/)\2“+(||5)|‘2. Thus,

it m(w) > 205, g~ ¢*ll < W) Auin(@)/4 and falla < m(w)Auia(Q)/4, then I € I
Thus, we have (using results from Appendix F.1):

m<w>Amm<@>> p (Hq il m<w>Amm<@>) |

ability. From Lemma C.3, we have that J C J* as soon as || — w]| <

P((J) UT # 2)< P <Hq|!2 >

4 4
nm(w)2\2 —nA2m(w)?
< 2pexp (—# + 2pexp . (W) —
2 (2lell/o + 55"
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1/4

If we truncate ||¢||o at on'/4p~/* then we have the bound

nm(w)2\2 n'/? —n\’m(w)>
2p exp BT + exp ~ S + 2pexp a2 |
P P 39 (%nl/‘lp—l/“ + i ;\11/)2 )
hence the desired result. ]

Lemma F.5. Assume (A1-4) and j € J°. We have:

/4
16CFE p°/2  10CF" p? 1 2em12Q)0]

Jilic

P(j ¢ J'e) = — B\ fin F3\1/2 pl/2 51 + _m/4

20n_1/2Q;J/‘QJC
_ 2
1Q; 5o (Qje 7o) 727, o (je) — Q5 Q5 jetje
P 7 1/2@1/2 + 1/2@1/2
on- 3»jlic on- 3»jlic

Proof. We follow the same approach as in the proof of Proposition 2.7 in Appendix D.7
and of Proposition 3.3 in Appendix E.2: j is not included if (note that @@ = s@Q and @ are
proportional matrices)

| — @+ Qe (Qjeje) ' Ge + Qe (Qjeje) P yu(gie)| < .

As before, we consider a smooth version of the indicator function, and we get that the prob-
ability of not selecting j, given ¢, is greater than

1 ~  ~
2P (1= Qe Q5 jerse = 1Quye Q3127 g i) | < /4) R, (F.1)

where u is normal with mean ¢ and covariance matrix 02@Q/n, and, from Proposition 2.7,
R< 16CBE p5/2  10CBF p2

. ~ ~—1 . . ~ ~—1
We have that given wje, —u; + () jeQjc jcuje is normal with mean —g; + Q) jeQ;je jeqje and

AL fin 73A1/2 n1/2"

covariance matrix 0@Q; jjo/n. Thus, we get, using Lemma D.1:

1 ~ o~ 1/2
5P (1= 5+ Qe Q5 yeuse + 1Qs e Qs o use)| < 1/4) (F.2)
1 ~ ~_ 1/2
= SEP (| — 4y + Qe Qe seuje + Qe Q) o (wje)| < M/4|Uj6>
p/4
o L 2o 12Q) e
21+ Py v f/QQl/Q
jilic

1Qj e (Qje je )7t "Yﬂ Q(u] ) +

—1/20)1/?
on
Q] Jlie

— Qe Q5 je e

—1/20)1/2
on
Q] Jjlie

i ]
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By combining Eq. (F.1) and Eq. (F.2), we get the desired result. Note that if |s — 1] < 1/2,
we have

MQJm] (QJ 7]1/1 1/2711 Q( ) < Q,UM)\mm(Q) 1p1/20_ 1n1/2 _ 2ﬂn1/2p1/2
an Q] Jjlic
and B
PN wi 2
J3l3¢ 2 don-1/2)f _ e _
4 1 -
L e L4 M L

Jilic

O

We can now consider the full bound using the analysis outlined in Section 3, using
Lemma F.4, F.5, and Appendix F.1, together with truncating on the events [|¢]|o < on'/*
and |y — 1| < n'/? (note that we can apply from Lemma F.3 for n large enough). First, we
need a bound on

— - . 71 e R - e 71 c e
P( Qi’;@i/; 2 >z> P( Qj;@i/; Lz _t)1/2> + Py =1 <),
on Q] Jglie on Q]J|J

3/2
efz2(17t)/2 4 %nlﬂ + P(h/ _ 1‘ < t).

We have following the reasoning from Section 3:

P(J7 £ J) <D BP(j € J*e)™) + mP((J*)° U T # @),
jede
3

As(c) 1 2 PP \" PP e
gp(l_ p1/2 exp —5 (BO—|—2;) —|—A3(C>W +A1m+e )

with

nm(w)2\2 nt/?
2p exXp — W + 277, exXp | — W

—nA2m(W)? nl/?
+2pexp 9p3/4 o1/2.172 2 S pexp _AOplT
32 <—1”X i/t 4 e )

1/2

| ostr? cdne?rt —nitA
QCfleXp<—mm{l+ 7 1= pjn) + 2exp 6172

n 2)
Y /2
\3/2

3/2

+ 2nexp(—n'/?/27%) < Alp

+ ni/2’
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p* 16CPE PP 10038 p?
n1/2 o 7’235\1 [anl/Q 7’“—35\1/2 n1/2
= 1/2

n

As(e)p™H? < —25— and By < 2in/?p*/?.

Ag(C)

All these constraints lead to the constraint tha np~° should be larger than a function of c.
The rest of proof follows along the lines of the proof of Proposition 3.3 (note that the term
e~**(1-0/2 ingtead of e2*/2 only affects the constant As).

G Proofs of high-dimensional results

G.1 Proof of Proposition 4.1

From Lemma C.2; we obtain optimality conditions for the solution of Eq. (2.1) to have the
sign pattern t:

”QLC,LQE}LQL — qre — MQLC,LQilLtL oo < 1,
sign(wy + (Qp oL — pQptu)s) = tg,
sign[(Qp Lo — pQrLtu)k] = tx.

It is thus sufficient for t to be the sign pattern that

Vk €L, [QurQriar — a| < pb, (G.1)
B 1
Vhed,  [(Quuan)el < Gpm(w),
VEeK, |(Qrran)il < 10Qy, . (G.3)

Eq. (G.1) occurs with probability greater than 1 — 2|L¢| exp (—"g‘;g@ﬁ). Eq. (G.2) occurs
nm(v~v)25\%
172|L)

with probability greater than 1—2|J|exp (— ), and Eq. (G.3) occurs with probability

nﬁ2925\%

greater than 1 — 2|K|exp (_W

). This leads to the desired result by the union bound.

G.2 Proof of Proposition 4.2

The bound is obtained simply from Proposition 4.1, Proposition Proposition 3.3 and Propo-
sition Proposition 3.4, using the union bound.
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