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Estimators based on ω-dependent generalized weighted Cramér-von Mises distances are defined for data that are subject to a possible right censorship. The distance between the data, summarized by the Kaplan-Meier estimator, and the target model is allowed to depend on the sample size and, for example, on the number of censored items. It is shown that the estimators are consistent and asymptotically multivariate normal for every p dimensional parametric family fulfilling some mild regularity conditions. The results are applied to finite mixtures. Simulation results for finite mixtures indicate that the estimators are useful for moderate sample sizes. Furthermore, the simulation results reveal the usefulness of sample size dependent and censoring sensitive distance functions for moderate sample sizes. Moreover, the estimators for the mixing proportion seems to be fairly robust against a 'symmetric' contamination model even when censoring is present.

Introduction

One of the basic problems in statistics is to fit a parametric family F = {F θ ; θ ∈ Θ ⊂ R p } to data. One approach to achieve this for uncensored data is based on goodness-of-fit statistics leading to minimum distance estimators which were first discussed in detail by [START_REF] Wolfowitz | The minimum distance method[END_REF]. A minimum distance estimator of θ is a value, θ, which minimizes the distance between the data, summarized by the empirical distribution function, and the model F = {F θ ; θ ∈ Θ ⊂ R p }. Minimum distance estimators have been studied for several goodness-of-fit measures such as weighted Cramér-von Mises, Kolmogorov-Smirnov or Hellinger distances; see, for example, [START_REF] Beran | Minimum Hellinger distance estimates for parametric models[END_REF], [START_REF] Beran | Minimum distance procedure[END_REF], [START_REF] Hettmansperger | Minimum distance estimators[END_REF], [START_REF] Öztürk | Generalised Weighted Cramér-von Mises Distance Estimators[END_REF], and [START_REF] Parr | Minimum distance and robust estimation[END_REF]. In the context of finite mixture models and uncensored data, several authors investigated the use of minimum distance estimators as an alternative to maximum likelihood estimation for the estimation of the mixing proportions; see, for example, [START_REF] Choi | An estimation procedure for mixtures of distributions[END_REF], [START_REF] Cutler | Minimum Hellinger distance estimation for finite mixture models[END_REF], [START_REF] Pardo | A comparison of some estimators of the mixture proportion of mixed normal distributions[END_REF], [START_REF] Woodward | A comparison of minimum distance and maximum likelihood estimation of a mixture proportion[END_REF], and [START_REF] Woodward | Minimum Hellinger distance estimation for mixture proportions[END_REF]. For general accounts on finite mixture models one may refer to [START_REF] Titterington | Statistical Analysis of Finite Mixture Distributions[END_REF] and [START_REF] Mclachlan | Finite Mixture Models[END_REF].

Under random censorship the maximum likelihood method is well adapted to classical parametric families including Weibull, log-normal, etc. A general maximum likelihood theory under right censoring based on counting processes can be found in [START_REF] Andersen | Statistical Models Based on Counting Processes[END_REF]. However, this method fails to be adapted to complicated parametric families including, for example, finite mixtures of parametric distributions. Many alternative methods under random censorship are based on minimum distance estimators. [START_REF] Yang | Minimum Hellinger distance estimation of parameter in the random censorship model[END_REF] considers minimum Hellinger distance estimators while [START_REF] Ying | Minimum Hellinger-Type Distance Estimation for Censored Data[END_REF] introduces a new Hellinger-type minimum distance estimator based on hazard functions incorporating random censorship in a natural way. However, although these methods are general and can be adapted to any parametric family regular enough, they require to specify some bandwidth and to approximate the integrals to be minimized. This last drawback is, in the complete i.i.d case, also observed for generalized weighted Cramér-von Mises minimum distance estimators (cf. [START_REF] Öztürk | Generalised Weighted Cramér-von Mises Distance Estimators[END_REF]). Re-cently, [START_REF] Ferland | A simulation study of a minimum distance estimator for finite mixtures under censoring[END_REF] introduced a Cramér-von Mises type minimum distance estimator for the estimation of the weights in a finite mixture model under random censorship and studied its properties through a simulation study. Their estimator is a direct extension of the Cramér-von Mises type estimator used by [START_REF] Choi | An estimation procedure for mixtures of distributions[END_REF] and does not require any approximation of the functional to be minimized.

In this article, we propose a class of estimators based on ω-dependent generalized weighted Cramér-von Mises distances under random censorship which do not require an approximation method to compute the functionals to be minimized. We examine the asymptotic properties of these estimators and present results from a simulation study on the estimation of the mixing proportion in a finite mixture model. The material is organized as follows. In Section 2 we provide background material on minimum distance estimators and motivate the class of estimators based on ω-dependent generalized weighted Cramér-von Mises distances considered hereafter. In Section 3 we present strong consistency and asymptotic normality results for our class of estimators based on ω-dependent generalized weighted Cramér-von Mises distances under random censorship and discuss the conditions imposed to obtain these results. The proofs of the main theorems are also presented in Section 3. Moreover, we derive the influence curves for our class of estimators based on ω-dependent generalized weighted Cramérvon Mises distances under random censorship. Finally, in Section 4 we present results from a simulation study to compare the moderate sample size behavior of different estimators contained in our class of estimators based on ω-dependent generalized weighted Cramér-von Mises distances. It will turn that good results are, in particular, obtained by estimators based on sample size dependent and censoring sensitive generalized weighted Cramér-von Mises distances. The proofs of all results used to show the main theorems are given in the Appendix.

The Cramér-von Mises type minimum distance estimators

To motivate our choice of Cramér-von Mises type minimum distance estimators under random censorship let us briefly recall the complete i.i.d case. Let X 1 , . . . , X n be a complete i.i.d sample with unknown distribution function, and let F = {F θ ; θ ∈ Θ ⊂ R p } be a parametric family. The Cramér-von Mises distance D CvM between distribution functions G 1 and G 2 is given by

D CvM (G 1 , G 2 ) = (G 1 (x) -G 2 (x)) 2 dG 2 (x).
A minimum Cramér-von Mises distance estimator of θ is then any θn such that

D CvM (F n , F θn ) ≤ D CvM (F n , F θ ) + 1/n, ∀θ ∈ Θ,
where F n is the empirical distribution function based on X 1 , . . . , X n (cf. [START_REF] Woodward | A comparison of minimum distance and maximum likelihood estimation of a mixture proportion[END_REF]). Please recall that

D CvM (F n , F θ ) = 1/(12n) + n i=1 F θ (X (i) ) -i/n + 1/(2n) 2 , (1) 
by the probability integral transform. Here X (i) denotes the ith order statistic in the sample X 1 , . . . , X n . In the context of estimating the weights in a finite mixture model [START_REF] Choi | An estimation procedure for mixtures of distributions[END_REF] proposed to estimate the parameter of interest as the argmin of

n i=1 F θ (X (i) ) -i/n 2 .
(2)

MacDonald (1971) (see also Section 4) provides empirical evidence that the small sample bias of the estimator based on (1) is smaller than the small sample bias of the estimator based on (2), although their asymptotic properties are the same. [START_REF] Öztürk | Generalised Weighted Cramér-von Mises Distance Estimators[END_REF] introduced generalized weighted Cramér-von

Mises distance estimators to control the asymptotic distribution and the robustness. They defined their estimator by

θ = arg min θ∈Θ G(F n (t) -F θ (t))w(t, θ) dt (3)
where G is taken from a broad class of distance functions, and G and w fulfill certain regularity conditions.

Let us now turn to the extension of the above approaches to right censorship. Here, we shall mean that, in addition to the i.i.d random variables X 1 , . . . , X n with distribution function (d.f.) F θ 0 , there exist censoring variables C 1 , . . . , C n with d.f. H independent of each other and independent of X 1 , . . . , X n such that only

(T i , ∆ i ) ≡ X i ∧ C i , I {X i ≤C i } , i = 1, . . . , n
are observed. Here, and in the following I denotes the indicator function. Throughout, we assume that F θ 0 belongs to a parametric family F = {F θ ; θ ∈ Θ ⊂ R p }, which is supposed to be dominated by the Lebesgue measure. Then, to each F θ in F we associate its cumulative hazard function Λ θ . It is well-known that F θ 0 can be nonparametrically estimated by the Kaplan-Meier estimator (see [START_REF] Kaplan | Nonparametric estimation for incomplete observations[END_REF]) defined on [0, τ ] by

Fn (t) = 1 - {i:T i ≤t} 1 - ∆ i Y (T i )
,

where Y (s) = n i=1 I {T i ≥s} . We define the ω-dependent generalized weighted Cramér-von Mises distance under random censorship by

τ 0 G n Fn (t) -F θ (t), ω w n (t)d Fn (t), θ ∈ Θ, ( 4 
)
where w n is a weight function, G n is a distance function, which is allowed to depend on n as well as on ω, and τ , w n and G n satisfy Conditions A, B and C below. In the following, we shall drop the integration variable t.

Definition 1. An estimator of θ 0 based on a ω-dependent generalized weighted Cramér-von Mises distance under random censorship is then any θn such that

τ 0 G n Fn -F θn , ω w n d Fn ≤ τ 0 G n Fn -F θ , ω w n d Fn , for all θ ∈ Θ. (5)
Besides from the facts that it accounts for right censoring and that the distance is allowed to depend on ω, one of the main advantages of the above estimation procedure is that, contrary to many minimum distance estimation method, it does not require an approximation method to compute the integrals. Indeed, integration holds with respect to the empirical measure, transforming the integral into a simple sum. Therefore, this integral may be minimized by using standard routines from differential optimization.

Remark 1. To avoid the problem of existence and attainability of a minimum, θn can be defined as in equation (2.1) of [START_REF] Woodward | A comparison of minimum distance and maximum likelihood estimation of a mixture proportion[END_REF] 

τ 0 G n Fn -F θn , ω w n d Fn ≤ τ 0 G n Fn -F θ , ω w n d Fn + 1 n for all θ ∈ Θ.
Let us briefly comment on the class of distances given by (4). Firstly, allowing the distance function G n to depend on n has several advantages. For example, if there is no censoring, we obtain, by choosing G n (•, ω) = (•+1/(2n)) 2 and w n ≡ 1, that minimizing (4) is equivalent to minimizing the Cramér-von Mises distance (cf. ( 1)). If we did not allow the distance to depend on n, it would be impossible to include the distance obtained from the Cramér-von Mises goodness-of-fit statistic since, here, we are integrating with respect to the measure induced by the Kaplan-Meier estimator. Moreover, we can define censoring sensitive distance functions if we allow G n to depend on ω. For example taking

G n (•, ω) = (• + 1/ (2 n i=1 I {X i ≤C i ,X i ≤τ }
)) 2 and w n ≡ 1, the small sample behavior can be considerable improved compared to G n (•, ω) = (•) 2 and w n ≡ 1 (see Section 4), although their large sample behavior is the same. Secondly, by introducing a weight function w n the tail probabilities can be emphasized or de-emphasized. As, under right censoring, we usually have less observations in the right tail this is desirable.

Asymptotic results and robustness

This section is devoted to studying the properties of the estimator defined by (5). We first discuss the conditions imposed to derive consistency and asymptotic normality (Subsection 3.1), then we give the proofs (Subsection 3.2), and finally we derive the influence curves (Subsection 3.3).

Discussion of the conditions

Let us introduce the following conditions:

A. Let τ > 0 be a real number such that τ < sup{t > 0; (1 -F θ 0 (t))(1 -H(t)) > 0}.
B. Let w n be a sequence of random nonnegative functions on [0, τ ] satisfying sup

[0,τ ] |w n -w 0 | P -→ 0,
where w 0 is a bounded deterministic function on [0, τ ].

C. Let the set Υ consists of all functions G such that

(i) G : [a, b] → R + , a ≤ -1, 1 ≤ b, is nonnegative, (ii) the restriction of G to the interval [-1, 1] is twice continuously differ- entiable, (iii) G(0) = G (0) = 0 and G (0) > 0.
We then assume that

G n : [a, b] × Ω n → R + is such that G n (•, ω) = G (• + o p (1/ √ n)) for some G ∈ Υ.
Here Ω n is the sample space.

D. If θ n ∈ Θ ⊂ R p , n ∈ N * then lim n→+∞ τ 0 G (F θ 0 -F θn ) w 0 dF θ 0 = 0 implies lim n→+∞ θ n = θ 0 .
E. There exists a measurable function η = (η 1 , . . . , η p ) t : (0, q) ≡ (0,

F θ 0 (τ )) → R p such that Σ(τ ) = τ 0 η(F θ 0 (s))η t (F θ 0 (s))w 0 (s)dF θ 0 (s) is positive definite, and sup 0≤s≤τ |F θ (s) -F θ 0 (s) -(θ -θ 0 ) t η • F θ 0 (s)| = o( θ -θ 0 ) as θ -θ 0 → 0.
Let us briefly discuss the assumptions imposed. Condition A together with the assumptions on the sample ensures that the standard results for the Kaplan-Meier estimator hold true on the interval [0, τ ].

The sequence w n can be equal to w( Fn ) with w Lipschitz on [0, 1]. In this case we have w 0 = w(F θ 0 ) and Condition B is fulfilled since Fn converges to F θ 0 uniformly on [0, τ ]. Taking for w the functions w 1 (x) = x p , w 2 (x) = (1 -x) p , or w 3 (x) = x p + (1 -x) p with p > 1 leads to the empirical versions of the three weight functions considered in [START_REF] Öztürk | Generalised Weighted Cramér-von Mises Distance Estimators[END_REF]. However, many other choices adapted to right censoring are also possible; for example, we can take w n = n/Y which satisfies Condition B too.

The sequence of functions G n (•, ω) = G(•+1/(2n)), where G(•) = (•) 2 , fulfills Condition C so that our model contains the estimator defined by (1) as well as the one defined by (2) and therefore allows for a unique treatment. Furthermore, it is seen that under Condition A we have that (1/n) n i=1

I {X i ≤C i ,X i ≤τ } con- verges to τ 0 (1 -H)dF θ 0 ≥ (1 -H(τ ))F θ 0 (τ ) > 0 (assuming that F θ 0 (τ ) > 0). Therefore, G n (•, ω) = • + 1/ 2 n i=1 I {X i ≤C i ,X i ≤τ } 2 , also fulfills Condition C.
The conditions imposed by C on the function G are stronger than the condition imposed by [START_REF] Öztürk | Generalised Weighted Cramér-von Mises Distance Estimators[END_REF] on their distance functions. Our Condition C implies that G and its two first derivatives are bounded on [-1, 1]. If this condition is false, taking for example G(x) = x 2 /(x + 1) as in [START_REF] Öztürk | Generalised Weighted Cramér-von Mises Distance Estimators[END_REF], existence and asymptotics may be obtained by reducing the parameter space Θ to a compact subset (see [START_REF] Öztürk | Generalised Weighted Cramér-von Mises Distance Estimators[END_REF]). Condition D is similar to Condition C of [START_REF] Woodward | A comparison of minimum distance and maximum likelihood estimation of a mixture proportion[END_REF], and if w 0 = 1 they are equal. As discussed by these authors, if it is not satisfied, the search for any consistent estimator seems hopeless (cf. Woodward et al. (1984, Note 2)). Notice that Condition D implies that the model restricted to the interval [0, τ ] is identifiable. To see this suppose that P θ|[0,τ ] = P θ 0 |[0,τ ] (where P θ|[0,τ ] is the restriction of P θ to [0, τ ]), then taking θ n = θ for all n we have

lim n→+∞ τ 0 G (F θ 0 -F θn ) w 0 dF θ 0 = 0,
which by Condition D implies θ = lim n→+∞ θ n = θ 0 . Sufficient conditions to obtain D will be discussed below. Condition E is very similar to Condition D in [START_REF] Woodward | A comparison of minimum distance and maximum likelihood estimation of a mixture proportion[END_REF] but we assume that η is measurable which insures that it belongs to any L r (0, q) for 1 ≤ r ≤ ∞. As discussed by these authors, Condition E allows a first order Taylor expansion of θ → F θ (x) around θ 0 uniformly in x.

Let us now turn to some sufficient conditions to obtain Condition D. First, let us write

d(θ) = τ 0 G(F θ -F θ 0 )w 0 dF θ 0 .
Obviously, d(θ 0 ) = 0 and if θ → d(θ) is twice continuously differentiable on Θ, then we have

d(θ n ) = d(θ 0 ) + (θ n -θ 0 ) t ḋ(θ 0 ) + 1 2 (θ n -θ 0 ) t d(θ * n )(θ n -θ 0 ) = 1 2 (θ n -θ 0 ) t d(θ * n )(θ n -θ 0 ), (6) 
where ḋ and d denote the first and second order derivative of d with respect to θ, respectively, and θ * n belongs to the line segment connecting θ n and θ 0 . Let σ(A) be the minimum eigenvalue of the p × p matrix A.

Sufficient condition (I) to obtain D:

inf θ∈Θ σ d(θ) > 0.
If (I) holds then by ( 6) it is clear that Condition D holds.

For example if F θ (t) = 1 -exp(-θt) for t > 0 we obtain choosing G(x) = x 2 , τ = +∞, and w 0 ≡ 1

d(θ) = θ 0 1 2θ + θ 0 - 2 θ + 2θ 0 + 1 3θ 0 and d(θ) = 4θ 0 2 (2θ + θ 0 ) 3 - 1 (θ + 2θ 0 ) 3 .
Here we see that if Θ = (0, +∞) we can have d(θ) < 0 for large values of θ. In fact, it is generally difficult to obtain Sufficient condition (I) on the whole parameter space Θ, but if we reduce the parameter space Θ to a subset Θ 1 where the minimum eigenvalue of d is bounded from above by a positive constant then Condition D is satisfied. Such a reduction of the parameter space to a (finite) subset is generally possible when d is twice continuously differentiable with d(θ 0 ) positive definite. In this case we obtain a local version of Condition D and it is easy to check that d

(θ 0 ) = G (0) τ 0 Ḟθ 0 Ḟ t θ 0 w 0 dF θ 0 .
In the exponential example we obtain:

d(θ 0 ) = 4G (0)/(27θ 3 0 ) > 0.
Sufficient conditions (II) to obtain D:

(i) There exist ε > 0 and η > 0 such that B(θ 0 , η) ≡ {θ ∈ R p , θ -θ 0 ≤ η} ⊂ Θ, and if θ ∈ Θ\B(θ 0 , η) then d(θ) ≥ ε, (ii) d is continuous on B(θ 0 , η), (iii) d ≥ 0 and d(θ) = 0 if and only if θ = θ 0 .
Functions satisfying (iii) are generally called contrast functions. Now using (ii) and (iii) we have that for any α > 0 there exists

β > 0 such that if θ ∈ B(θ 0 , η)\B(θ 0 , α) then d(θ) ≥ β. This with (i) imply that if θ -θ 0 > α we have d(θ) ≥ min(β, ε). As a consequence if d(θ n ) → 0 this means that for n large enough θ n belongs to B(θ 0 , α)
, and since α is arbitrary this proves that θ n tends to θ 0 .

In the above exponential example with Θ = (0, +∞) it is easy to check that (i)-(iii) of the Sufficient conditions (II) hold. Thus, Condition D is satisfied in that case. Indeed (ii) and (iii) are obvious and (i) holds because d is nonincreasing on (0, θ 0 ) and nondecreasing on (θ 0 , +∞).

More generally, if F θ 0 and the Lebesgue measure are contiguous on (0, τ ), if G is strictly positive on [-1, 1]\{0}, and if w 0 is strictly positive on (0, τ ), then d(θ) = 0 leads to F θ = F θ 0 on [0, τ ]. Moreover if τ is sufficiently large and if F is an identifiable parametric family we obtain (iii) of the Sufficient conditions (II) . Actually, F is identifiable for many parametric families like exponential, Weibull, gamma, lognormal, etc. Identifiability of mixtures of parametric families also holds for many parametric families. [START_REF] Teicher | Identifiability of finite mixtures[END_REF] gave a sufficient condition for a finite mixture to be identifiable and applied it to the normal and gamma families. This result was extended to usual survival distributions, and recently [START_REF] Atienza | A new condition for identifiability of finite mixture distributions[END_REF] gave some new conditions for identifiability of finite mixture distributions and showed that the class of all finite mixture distributions generated by the union of lognormal, gamma and Weibull distributions is identifiable. For references concerning identifiability of finite mixture distributions we refer to the paper of [START_REF] Atienza | A new condition for identifiability of finite mixture distributions[END_REF].

Obtaining property (ii) of Sufficient conditions (II) is generally easy by Lebesgue's dominated convergence theorem.

Checking property (i) of Sufficient conditions (II) may be more fussy. For example, let us consider the following two-component mixture of exponential distributions:

F θ (t) = 1 -λ exp(-αt) -(1 -λ) exp(-βt), t > 0,
with θ = (λ, α, β) ∈ Θ = (0, 1) × ∆ where ∆ = {(x, y) ∈ R 2 ; 0 < x < y}. In this case d(θ) can be written in closed form and (i) is fulfilled.

Consistency and asymptotic normality

In the proof of the consistency we will need the following Lemma a proof of which is given in the appendix.

Lemma 1. Let G fufill Condition C. Then, we have that the class of functions

Z = {G • (F θ 0 -F θ )w 0 ; θ ∈ Θ} is P-Glivenko-Cantelli.
We then have the following result.

Theorem 1. Any sequence ( θn ) n≥1 defined by ( 5

) is consistent if Conditions A-D hold. Proof. Notice first that τ 0 G n Fn -F θ 0 , ω w n d Fn ≤ sup [0,τ ] G n Fn -F θ 0 , ω × sup [0,1] |w n | = sup [0,τ ] G Fn -F θ 0 + o p (1/ √ n) × sup [0,1] |w n |. (7)
Moreover, by definition

τ 0 G n Fn -F θn , ω w n d Fn ≤ τ 0 G n Fn -F θ 0 , ω w n d Fn . (8) 
Finally, we have

sup θ∈Θ τ 0 G n Fn -F θ , ω w n d Fn - τ 0 G (F θ 0 -F θ ) w 0 dF θ 0 = sup θ∈Θ τ 0 G Fn -F θ + o p (1/ √ n) -G (F θ 0 -F θ ) w n d Fn + τ 0 G(F θ 0 -F θ )(w n -w 0 )d Fn + τ 0 G (F θ 0 -F θ ) w 0 d Fn -dF θ 0 ≤ sup θ∈Θ τ 0 G Fn -F θ + o p (1/ √ n) -G (F θ 0 -F θ ) w n d Fn + sup [-1,1] |G| × sup [0,τ ] |w n -w 0 | + sup θ∈Θ τ 0 G (F θ 0 -F θ ) w 0 d Fn -F θ 0 ≤ sup θ∈Θ sup [0,τ ] G Fn -F θ + o p (1/ √ n) -G (F θ 0 -F θ ) × sup [0,τ ] |w n | + sup [-1,1] |G| × sup [0,τ ] |w n -w 0 | + sup θ∈Θ τ 0 G (F θ 0 -F θ ) w 0 d Fn -F θ 0 . (9) 
Following the proof of Theorem 2.4.1 in van der [START_REF] Van Der Vaart | Weak Convergence and Empirical Processes[END_REF], the uniform convergence to zero of the third term on the right hand side follows from the fact that the class 

Z = {(w 0 G•z : z = F θ 0 -F θ , θ ∈ Θ} is P-Glivenko-Cantelli (cf.
G Fn -F θ + o p (1/ √ n) -G Fn -F θ × sup [0,τ ] |w n | + sup θ∈Θ sup [0,τ ] G Fn -F θ -G (F θ 0 -F θ ) × sup [0,τ ] |w n |. ( 10 
)
Using Condition C the first summand in (10) can, for every θ, be majorized by sup

[-1,1] |G | × |o P (1/ √ n)| × sup [0,τ ] |w n |.
Using Conditions B and C this turns to zero in probability which proves that the first summand in (10) converges to zero in probability. To obtain the convergence of the second summand in (10) notice that by Condition C we again obtain for every

θ ∈ Θ G Fn -F θ -G (F θ 0 -F θ ) ≤ sup [-1,1] |G | × sup [0,τ ]
Fn -F θ 0 .

From Fleming & Harrington (2005, p. 115) we have sup

[0,τ ] Fn -F θ 0 P -→ 0, (11) 
because under Condition A and the strong law of large numbers we have, for all t ∈ [0, τ ], Y (t) → +∞ as n → +∞. Hence, using the boundedness of G we obtain sup

θ∈Θ sup [0,τ ] G Fn -F θ -G (F θ 0 -F θ ) P -→ 0.
Using again that by Condition B we have sup [0,τ ] |w n | = O P (1), we obtain that the second summand in ( 10) is also o P (1). Hence, as a consequence the remaining term in ( 9) is also a o P (1).

Putting the above results all together we obtain for n large enough

τ 0 G F θ 0 -F θn w 0 dF θ 0 (9) ≤ τ 0 G n Fn -F θn , ω w n d Fn + o P (1) (8) ≤ τ 0 G n Fn -F θ 0 , ω w n d Fn + o P (1) (7) 
≤ sup

[0,τ ] G Fn -F θ 0 + o p (1/ √ n) sup [0,τ ] |w n | + o P (1) ≤ sup [-1,1] |G | sup [0,τ ] Fn -F θ 0 + o p (1/ √ n) sup [0,τ ] |w n | +o P (1). ( 12 
)
Hence, using (11) we obtain than under Conditions B and C the right hand side in (12) converges to zero in probability. We conclude by Condition D that ( θn ) n≥1 converges to θ 0 in probability.

Remark 2. (i) It can be seen from the above proof that the consistency result also holds if we only require 

G n (•, ω) = G(• + o P (1)). ( ii 
(1/ √ n) term converges almost surely for G n (•, ω) = (• + 1/(2n)) 2 and G n (•, ω) = • + 1/ 2 n i=1 I {X i ≤C i ,X i ≤τ } 2 .
Before continuing with the asymptotic distribution we introduce the following covariance function for (s, t)

∈ [0, τ ] 2 ρ(s, t) = (1 -F θ 0 (s))(1 -F θ 0 (t)) s∧t 0 dF θ 0 (u) (1 -F θ 0 (u)) 2 (1 -H(u)) ,
and we state the next result.

Lemma 2. Under Conditions A-E, √ n θn -θ 0 is bounded in probability.

The proof is presented in the Appendix. We now proceed with the asymptotic distribution.

Theorem 2. Let B be a centered Gaussian process on [0, τ ] with covariance function ρ.

If Conditions A-E hold, then √ n( θn -θ 0 ) converges to a centered normal distribution with variance Σ -1 (τ )C(τ )Σ -1 (τ ) where C(τ ) = Var τ 0 Bη • F θ 0 w 0 dF θ 0 .
Proof. First let us define the two following sequences of stochastic processes Xn and X n by

Xn (ξ) = G (0) 2 τ 0 B n -ξ t η • F θ 0 2 w 0 dF θ 0 , ξ ∈ R p ,
where

B n = √ n( Fn -F θ 0 ) and X n (ξ) = n τ 0 G n Fn -F θ 0 +ξ/ √ n , ω w n d Fn , ξ ∈ R p .
Then for any A = {ξ ∈ R p ; ξ < c} we have

sup ξ∈A X n (ξ) -Xn (ξ) P -→ 0. ( 13 
)
Indeed first note that sup

[0,τ ] | Fn -F θ 0 +ξ/ √ n | ≤ sup [0,τ ] | Fn -F θ 0 | + sup [0,τ ] |F θ 0 -F θ 0 +ξ/ √ n | ≤ sup [0,τ ] | Fn -F θ 0 | + sup [0,τ ] 1 √ n ξ t η • F θ 0 + 1 √ n o( ξ ), ( 14 
)
where the right hand side converges to 0 in probability since ξ ∈ A and by using Condition E and properties of the Kaplan-Meier estimator. Multiplying the above inequality by √ n we also obtain that

sup ξ∈A sup [0,τ ] √ n| Fn -F θ 0 +ξ/ √ n | = O P (1).
Now by using Condition C and a second order expansion of G around 0 we have

X n (ξ) = n τ 0 G Fn -F θ 0 +ξ/ √ n + o p (1/ √ n) w n d Fn , = n 2 τ 0 G (H n ) Fn -F θ 0 +ξ/ √ n + o P (1/ √ n) 2 w n d Fn , (15) 
where H n belongs to the line segment connecting 0 and Fn -F θ 0 +ξ/

√ n +o p (1/ √ n). Since |H n | ≤ | Fn -F θ 0 +ξ/ √ n + o p (1/ √ n)| we have from (14) that sup [0,τ ] |H n | = o P (1) and obtain X n (ξ) = n 2 G (0) τ 0 Fn -F θ 0 +ξ/ √ n + o p (1/ √ n) 2 w n d Fn + o P (1) = n 2 G (0) τ 0 Fn -F θ 0 +ξ/ √ n + o p (1/ √ n) 2 w 0 d Fn + o P (1),
where the last equality follows from Condition B and where the o P (1) is uniform in ξ ∈ A. Then we can write

X n (ξ) = n 2 G (0) τ 0 Fn -F θ 0 + F θ 0 -F θ 0 +ξ/ √ n + o p (1/ √ n) 2 w 0 dF θ 0 + n 2 G (0) τ 0 Fn -F θ 0 + F θ 0 -F θ 0 +ξ/ √ n + o p (1/ √ n) 2 w 0 d( Fn -F θ 0 ) = 1 2 G (0) τ 0 √ n( Fn -F θ 0 ) -ξ t η • F θ 0 + R n + o P (1) 2 w 0 dF θ 0 + 1 2 G (0) τ 0 √ n( Fn -F θ 0 ) -ξ t η • F θ 0 + R n + o P (1) 2 w 0 d( Fn -F θ 0 ) = Xn (ξ) + 1 2 G (0) τ 0 (R n + o P (1))[R n + o P (1) + 2(B n -ξ t η • F θ 0 )]w 0 dF θ 0 + 1 2 G (0) τ 0 B n -ξ t η • F θ 0 + R n + o P (1) 2 w 0 d( Fn -F θ 0 ).
Since R n converges uniformly to 0 on [0, τ ] by Condition E, since sup [0,τ ] |B n | is bounded in probability, since ξ ∈ A and because the component functions of η •F θ 0 are in L 2 (0, q) the two last terms of the right hand side of the last equation are o P (1) uniformly in ξ, and (13) holds.

Let ξn be the maximizer of Xn it is straightforward to see that

ξn = Σ -1 (τ ) τ 0 B n η • F θ 0 w 0 dF θ 0 converges weakly to ξ 0 = Σ -1 (τ ) τ 0 Bη • F θ 0 w 0 dF θ 0 .
Let ξn be the maximizer of X n it easy to see that ξn = √ n( θn -θ 0 ). Now, to prove the theorem, let us show that ξnξn = o P (1).

Let ε > 0 be a real number. Notice that from Lemma 2 and the weak convergence of ξn to the normal random variable ξ 0 it is possible to chose c > 0 such that the probability of E n = { ξn ∈ A, ξn ∈ A} is as large as we want for n large enough.

Let us define B n = {ξ ∈ R p ; ξ -ξn < ε}. We have

{ ξn ∈ A\B n } ⊂ inf ξ∈A\Bn X n (ξ) ≤ X n ( ξn )
and if ξ ∈ A\B n we can write

X n (ξ) = X n (ξ) -Xn (ξ) + Xn (ξ) ≥ X n (ξ) -Xn (ξ) + inf ξ∈A\Bn Xn (ξ) ≥ -sup ξ∈A X n (ξ) -Xn (ξ) + inf ξ∈A\Bn Xn (ξ), thus inf ξ∈A\Bn X n (ξ) ≥ inf ξ∈A\Bn Xn (ξ) -sup ξ∈A X n (ξ) -Xn (ξ)
and therefore

{ ξn ∈ A\B n } ⊂ inf ξ∈A\Bn X n (ξ) ≤ X n ( ξn ) ⊂ inf ξ∈A\Bn Xn (ξ) -sup ξ∈A X n (ξ) -Xn (ξ) ≤ X n ( ξn ) ⊂ inf ξ∈A\Bn Xn (ξ) -Xn ( ξn ) ≤ sup ξ∈A X n (ξ) -Xn (ξ) + X n ( ξn ) -Xn ( ξn ) ⊂ inf ξ∈A\Bn Xn (ξ) -Xn ( ξn ) ≤ 2 sup ξ∈A X n (ξ) -Xn (ξ) ⊂ G (0)ε 2 σ(τ ) ≤ 2 sup ξ∈A X n (ξ) -Xn (ξ) (16) 
with σ(τ ) > 0 the smallest eigenvalue of Σ(τ ) and where the last inclusion holds because Xn (ξ) being quadratic in ξ we have

Xn (ξ) -Xn ( ξn ) = ξ -ξn t X n ( ξn ) =0 + 1 2 ξ -ξn t G (0)Σ(τ ) ξ -ξn = 1 2 G (0) ξ -ξn t Σ(τ ) ξ -ξn ≥ 1 2 G (0)ε 2 σ(τ ) on A\B n .
Combining ( 13), ( 16) and the fact that the probability of E n is as close to one as we want we conclude that ξnξn = o P (1). By the Slutsky lemma it follows that ξn converges weakly to ξ 0 which finishes the proof.

Remark 3. If w 0 ≡ 1 the asymptotic variance of the estimator θn is the same for all sample size and ω-dependent functions G n fulfilling Condition C. This extends an observation by [START_REF] Öztürk | Generalised Weighted Cramér-von Mises Distance Estimators[END_REF] who remarked that taking G( Fn -F θ ), where G fulfills some regularity conditions, instead of ( Fn -F θ ) 2 as in [START_REF] Woodward | A comparison of minimum distance and maximum likelihood estimation of a mixture proportion[END_REF] does not change the asymptotic variance of the estimator θn when w 0 ≡ 1.

Robustness

One of the main advantages of using minimum distance estimators is their stability in the neighborhood of the model. [START_REF] Öztürk | Generalised Weighted Cramér-von Mises Distance Estimators[END_REF] showed that the influence curve at the model of their estimator defined by (3) does not depend on the choice of G; see also [START_REF] Lindsay | Efficiency versus robustness: the case for minimum Hellinger distance and related methods[END_REF]. Therefore, the robustness of their estimator can be obtained by choosing an appropriate weight function. Here, in contrast to the approach of [START_REF] Öztürk | Generalised Weighted Cramér-von Mises Distance Estimators[END_REF], we are integrating with respect to the empirical measure if there is no censoring, i.e. P (C i = ∞) = 1, and with respect to the measure induced by the Kaplan-Meier estimator if censoring is present. The influence curves in the latter case are readily obtained by using the results of [START_REF] Reid | Influence functions for censored data[END_REF] 

IC ∆x (H) = M -1 n (H) τ 0 Ġn (H -F θ ) | θ=T (H) × w n d(∆ x -H) + τ 0 G n H -F T (H) Ḟθ| θ=T (H) [∆ x -H]w n dH .
(ii) If w n depends on H the influence curve of H at ∆ x is given by

IC ∆x (H) + M -1 n (H) τ 0 G n H -F T (H) Ḟθ| θ=T (H) × [∆ x -H]w n (H) dH.
If H belongs to the parametric family F and if G n (•, ω) = G(•), the influence curve simplifies as follows.

Lemma 3. H ∈ F and G n (•, ω) = G(•), then (i) and (ii) in Theorem 3 are equal and IC ∆x (H) is given by

IC ∆x (H) = M -1 n (H) τ 0 Ḟθ| θ=T (H) × [∆ x -H]w n dH,
where

Mn (H) = τ 0 Ḟθ Ḟ t θ | θ=T (H) × w n dH.
The proofs are given in the Appendix. [START_REF] Öztürk | Generalised Weighted Cramér-von Mises Distance Estimators[END_REF] we see from Lemma 3 that their above mentioned observation is still true if we integrate with respect to the empirical measure instead of Lebesgue measure, i.e. by choosing an appropriate weight function the influence curves are bounded with respect to x. Moreover, we already observed in Theorem 2 that the asymptotic distribution of the estimator does not depend on the choice of G n (•, ω) = G(•); a result which is also suggested by Theorem 3 since we have G (0) = 0 and o

If G n (•, ω) = G(•) as in
P (1/ √ n) → 0.
Finally, if censoring is present we obtain the influence curves from Theorem 3, Lemma 3 and by using the results of [START_REF] Reid | Influence functions for censored data[END_REF]. Under the conditions of Lemma 3 they are given by:

IC 1 ∆x (H) = -M -1 n (H) τ 0 H(t) x∧t 0 dS u (t) (S u (t) + S c (t)) 2 + I {x≤t} S u (t) + S c (t) × Ḟθ (t) | θ=T (H) w n (t)H + (t)dt, IC 2 ∆x (H) = -M -1 n (H) τ 0 H(t) x∧t 0 dS u (t) (S u (t) + S c (t)) 2 Ḟθ (t) | θ=T (H) ×w n (t)H + (t)dt
where H + is the right hand derivative of H, S u (t) = P (T i > t, ∆ i = 1), and S c (t) = P (T i > t, ∆ i = 0).

Simulation study

In this section, we present some findings from extensive simulations to compare several estimators contained in our class of estimators based on ω-dependent generalized weighted Cramér-von Mises distances and to illustrate the usefulness of the estimators for moderate sample sizes (Subsection 4.1). Furthermore, we study the behavior of the estimators under three different contamination models (Subsection 4.2).

Illustrative examples -part I

For the simulation results presented here we took a two component Weibull mixture with d.f. F θ (x) = 1 -0.3 exp(-(x/5) 3 ) -0.7 exp(-(x/2) 3 ), and we assumed that only the mixing proportion π = 0.3 is unknown. We assumed that censoring might be present and we simulated data from the above mixture model with 0%, 20%, 40% and 60% censoring. The censoring times were assumed to be exponentially distributed. The sample size were taken to be equal to 20, 40, and 80. For each amount of censoring, and each sample size (12 cases in all), we simulated N = 10, 000 samples and we calculated the mean π and the mean square error (MSE) of different estimators. We took two groups of estimators. For the first group, which we shall call G 1 type estimators, the basis was the function G(x) = x 2 , and we looked at several modifications of this function, for example, sample size dependent modifications, i.e. G n (x) = (x + 1/(2n)) 2 or G n (x) = (x + 1/n) 2 . These functions were then combined with different weight functions. The results are given in Tables 1, 2 and3. In the first column the different estimators can be found and the rows give the effect of censoring. For the second group called G 3 type estimators we took the function G 3 (x) = ( √ x + 1 -1) 2 as the basis (cf. [START_REF] Öztürk | Generalised Weighted Cramér-von Mises Distance Estimators[END_REF]). We looked again at modifications of this function, for example G n (x) = ( x + 1 + 1/(2n) -1) 2 or G n (x) = ( x + 1 + 1/n-1) 2 . Again, we combined these functions with different weight functions. The results are given in Tables 4, 5 and6. The values given in Tables 1-6 were all calculated with the same (simulated) data. Throughout, c n stands for (2n -2 n i=1 δ i ) where (1 -Fn) (1 -Fn)

δ i = I {C i <T i } , i = 1, . . . ,
1.1 0.301 0.078 0.301 0.083 0.303 0.092 0.304 0.109

Table 3: Estimation of the mixture parameter π = 0.3 based on distance functions of the type G 1 and on n = 80 observations from a Weibull mixture with cdf

F θ (x) = 1 -0.3 exp(-(x/5) 3 ) -0.7 exp(-(x/2) 3
). The values given in the table are based on 10,000 simulations.

In what follows we discuss how the use of sample size dependent and censoring sensitive estimators as well as the use of weight functions affect the quality of the estimation. A general observation, as expected, is that as the sample size increases, the bias due to censoring decreases. More explicitly, consider the first three rows of Tables 1, 2 and 3. If there is no censoring the use of the correction term 1/(2n), i.e. G n (•, ω) = (• + 1/(2n)) 2 leads to an estimator with a negligible bias, whereas the uncorrected version, i.e. G n (•, ω) = (•) 2 , leads to underestimation, and the correction term 1/n, i.e. G n (•, ω) = (• + (1/n)) 2 , leads to overestimation. As censoring increases from 0% to 60% the mean of all three estimators also decreases. This decrease in the mean is for all three estimators of approximately the same value. As already mentioned increasing the sample size leads to a smaller bias for this three estimators. Comparing this three estimators with the sample size dependent and censoring sensitive version, i.e. G n (•, ω) = (• + 1/ c n ) 2 , it is directly seen from Tables 1, 2 and 3 that the overall performance of the sample size dependent and censoring sensitive version is much better. Even for a censoring of 60% the mean of the estimate for n = 20, n = 40, and n = 80 is 0.273, 0.276, and 0.285. The reason for this good performance seems to be as follows: In the complete i.i.d case based on n failures the correction term 1/(2n) leads to nearly unbiased estimates. Under censoring we only observe n -n i=1 δ i failures. Therefore, using the correction term 1/(2(n -n i=1 δ i )) seems to be appropriate in the case of right censoring. Comparing the first row of Tables 1,2, and 3 with the fourth and fifth line of these Tables, clarifies the use of a weight function in the case where G n does neither depend on the sample size nor on the censoring. As censoring increases the weighted versions of G n (•) = (•) 2 performs much better than the unweighted version. A similar behavior is seen if we take G n (•) = (• + 1/(2n)) 2 although the unweighted version already leads to considerable good results. Thus, when censoring is present, the small sample bias can be further reduced by using a weight function which de-emphasize the largest observations. (cf. lines 2, 7 and 8 of Tables 1, 2 and3).

Remark 4. It should be mentioned that using G n (•, ω) = (•) 2 with w n = 1 and G n (•, ω) = (• + 1/n) 2 with w n = 1 does not always lead to underestimation and overestimation, respectively. For example, if we take The qualitative behavior of the estimators based on versions of G 3 seems to be the same as for G 1 . It is interesting to see, that the correction term 1/(2n), which was suggested by MacDonald to improve the small sample behavior of (•) 2 , seems also to improve the small sample behavior of the G 3 based estimator. Moreover, comparing the results in Tables 1-6 it seems that G n (•) = ( • + 1 + 1/c n -1) 2 with w n = (1 -Fn ) 1.1 has the best performance in terms of small sample bias without decreasing too much the MSE performances.

F θ (x) = 1 -0.3 exp(-(x/ 2) 3 ) -0.7 exp(-(x/5) 3 ) instead of F θ (x) = 1 -0.3 exp(-(x/5) 3 ) -0.7 exp(-(x/ 2) 3 ), then G n (•, ω) = (•) 2 with w n = 1 leads to overestimation and G n (•, ω) = (•+ 1/n) 2 with w n = 1 to underestimation, whereas the behavior of G n (•, ω) = (• + 1/ (2n)) 2 with w n = 1, and G n (•, ω) = (• + 1/c n ) 2 with w n = 1,

Illustrative examples -part II

It is well known that minimum distance estimators, for example for a location parameter, are robust against symmetric contamination models. To study the behavior of the estimators defined by ( 5) under a contamination model when censoring might be present, we took three different contamination models, namely, CM i = { F = (1 -)F + H i }, for i = 1, 2, 3 where = 0.05, F is the d.f. of the Part-I Weibull mixture, and H 1 , H 2 and H 3 are gamma mixtures df with respective density functions: h 1 (x) = 0.1/5 exp(-x/5) + 0.9/(2 1.4 Γ(1.4))x 0.4 exp(-x/2), h 2 (x) = 0.1/(5 0.5 Γ(0.5))x -0.5 exp(-x/5) + 0.9/(2 0.2 Γ(0.2))x -0.8 exp(-x/2), h 3 (x) = 0.1/(5 1.5 Γ(1.5))x 0.5 exp(-x/5) + 0.9/(2 4.5 Γ(4.5))x 3.5 exp(-x/2).

We simulated data from the above contamination models with censoring equal to 0% and 40%. In the case of censoring, the censoring time was taken to be exponential with parameter 0.218. The sample size was taken to be equal to 40. Please note that h 1 corresponds to a 'symmetric' contamination model in the sense that P (X < Y 1 ) ≈ P (X > Y 1 ), where X ∼ F, Y 1 ∼ H 1 , and that the probability of being censored is approximately equal for X and Y 1 . Furthermore, h 2 corresponds to a 'left' contamination model, i.e. P (X < Y 2 ) ≈ 9%, Y 2 ∼ H 2 , and the probability for X to be censored is much larger than the probability for Y 2 to be censored, and h 3 corresponds to a 'right' contamination model, i.e. P (X < Y 3 ) ≈ 93%, Y 3 ∼ H 3 , the probability for Y 3 to be censored much larger than the probability for X to be censored. The results are given in Tables 7 (CM 1 ), 8 (CM 2 ), and 9 (CM 3 ). The qualitative behavior of the estimators based on G 1 and G 3 , respectively, is the same. We therefore only present the results for the G 1 -type estimators. Now, consider Table 7. Comparing these values with the values in Table 2 it is easily seen that the values of π are hardly affected, both, when there is no censoring and when censoring is present. In particular, the size dependent and censoring sensitive estimator G n (•) = (• + 1/c n ) 2 still performs rather well. To conclude, it seems that the estimators are fairly robust to 'symmetric' contamination models even when censoring is present. Let us briefly discuss the effects of CM 2 and CM 3 . When there is no censoring we have under CM 2 and CM 3 that π is shifted to the left and to the right, respectively (cf. Tables 8 and9). A simple heuristic seems to explain these observations. On average, we have under CM 2 two small observations. Therefore, by minimizing the distance between the Weibull mixture and the empirical distribution function one puts less weight on the stochastically larger component of the mixture, i.e. the Weibull distribution with d.f. 1 -exp(-(x/5) 3 ). Under CM 3 we have, on average, two large observations. Thus, one puts less weight on the stochastically smaller component of the Weibull mixture, i.e. the Weibull distribution with d.f. 1 -exp(-(x/2) 3 ).

This behavior can also be seen from Lemma 3. Since for F θ (t) = 1 -θ exp(-(t/ 5) 3 ) -(1 -θ) exp(-(t/2) 3 ) and w n ≡ 1 the influence function of H at x is, up to a positive constant, given by τ

0 -exp(-(t/5) 3 ) + exp(-(t/2) 3 ) • (I {t≥x} -H(t))dH(t).
This expression is negative for small x and positive for large x, x ≤ τ . Given the above observations, one would expect that under right censoring π is further shifted to the left under CM 2 and that under CM 3 the shift to the right of π is reduced. That is exactly what can be seen from Tables 8 and9. 

Concluding remarks

In this paper we studied a new class of minimum distance estimators for parametric models. An advantage of these estimators is that the minimum distance function, which is an extended empirical version of the generalized weighted Cramér-von Mises distance, can be obtained in closed form and accounts for right censoring. Furthermore, as indicated by a simulation study, allowing the distance function to depend on the number of censored items reduces the bias considerably without deteriorating the standard deviation of the estimates. Robustness properties of our estimators are established and checked numerically.

where the right hand side is equal to √ n) w n d Fn is bounded in probability from which, using (17), the assertion follows. Let ε > 0 be a real number. By Condition C there exists a neighborhood V of 0 and constants 0 < α < β < +∞ such that αx 2 ≤ G(x) ≤ βx 2 on V . Hence, on V we have G(x + y) ≤ 2β(G(x)/α) + 2βy 2 .

n 2 θn -θ 0 t × τ 0 G n H θn,θ0 (η • F θ 0 ) (η • F θ 0 ) t w n d Fn
(18)

From Condition E and Theorem 1 we have sup 

  ) The above uniform consistency result also holds with probability one if the o p (1/ √ n) term (or the o P (1) term) converges almost surely since, from Stute & Wang (1993), we have that the uniform convergence of the Kaplan-Meier estimator holds almost surely on [0, τ ]. For example, the o p

  1/(2n)) 2 (1 -Fn) 2 0.303 0.087 0.300 0.092 0.297 0.101 0.290 0.116 (• + 1/cn) 2

+2 τ 0 G 0 GG

 00 n H θn,θ0 η • F θ 0 w n d Fn ( θn -θ 0 ) t o( θn -θ 0 ) θn -θ 0 2 + τ n H θn,θ0 w n d Fn o( θn -θ 0 ) θnn H θn,θ0 o p (1/ √ n) η • F θ 0 ( θn -θ 0 ) t + o( θn -θ 0 ) θn -θ 0 2 w n d Fn × n 2 θn -θ 0 + o P (1) τ 0 G n H θn,θ0 w n d Fn .From Conditions B, C, and E, Theorem 1, and properties of the Kaplan-Meier estimator we obtain that the term within brackets converges to the positive definite matrix G (0)Σ(τ ) and that o P (1)τ 0 G n H θn,θ0 w n d Fn converges to zero in probability. Then we have n 2 ( θn -θ 0 ) t G (0)Σ(τ ) + o P (1) -F θ 0 + o p (1/ √ n) w n d Fn .(17)Let us now show that A n ≡ n τ 0 G F θn -F θ 0 + o p (1/

G×

  [0,τ ] |F θn -F θ 0 | = o P (1) and by properties of the Kaplan-Meier estimator we have for n≥ n 0 both sup [0,τ ] | Fn -F θ 0 | and sup [0,τ ] |F θn -F θ 0 + o p (1/ √ n)| in V with probability more than 1 -ε. α)G( Fn -F θn + o p (1/ √ n)) + ( Fn -F θ 0 ) 2 w n d Fn def. θn ≤ P A n ≤ 2nβ τ 0 (1/α)G( Fn -F θ 0 + o p (1/ √ n)) + ( Fn -F θ 0 ) 2 w n d Fn ≤ P A n ≤ 2nβ τ 0 (β/α)( Fn -F θ 0 + o p (1/ √ n)) 2 + ( Fn -F θ 0 ) 2 w n d Fn ≤ P (A n ≤ B n ) ,where, B n is equal to 2β Fn -F θ 0 )| + o P (1) by the continuous mapping theorem and because √ n( Fn -F θ 0 ) converges weakly to a Gaussian process in D[0, τ ], the sequence B n is a O P (1). By this with the above inequality we obtain that A n = O P (1) and since Σ(τ ) is positive definite we have by (17) that √ n( θn -θ 0 ) = O P (1).Proof of Theorem 3 and Lemma 3. All results follow by differentiating the right hand side in the following equation with respect to ε at ε = 0 and using thatG(0) = G (0(1 -ε)H + ε∆ x -F T ((1-ε)H+ε∆x) + o P (1/ √ n) Ḟθ| θ=T ((1-ε)H+ε∆x) w n ((1 -ε)H + ε∆ x ) d((1 -ε)H + ε∆ x ).

  once we have obtained the influence curve in the former case. Therefore, if there is no censoring we obtain the next theorem. If w n does not depend on H the influence curve of H at ∆ x , denoted by IC ∆x (H), is given by

	pose that			
	M n (H) =	0	τ	Gn (H -F θ ) | θ=T (H) w n dH
	is invertible. Then			
	(i)			
	Theorem 3. Let H be an arbitrary distribution function, ∆ x the degenerate dis-
	tribution function at x, and T (H) = arg min θ∈Θ	τ 0 G n (H -F θ , ω) w n dH. Sup-

Table 1 :

 1 n. Estimation of the mixture parameter π = 0.3 based on distance functions of the type G 1 and on n = 20 observations from a Weibull mixture with cdf F

	Censoring	0%			20%		40%		60%
	Gn(•)	wn	π	MSE	π	MSE	π	MSE	π	MSE
	(•) 2	1	0.254 0.132 0.241 0.142 0.218 0.148 0.172 0.153
	(• + 1/(2n)) 2 1	0.297 0.136 0.283 0.145 0.258 0.154 0.206 0.163
	(• + 1/n) 2	1	0.341 0.135 0.326 0.147 0.299 0.158 0.243 0.171
	(• + 1/cn) 2	1	0.297 0.135 0.294 0.147 0.288 0.161 0.273 0.191
	(•) 2	(1 -Fn) 2	0.264 0.158 0.258 0.167 0.250 0.175 0.223 0.185
	(•) 2	(1 -Fn) 4	0.268 0.180 0.265 0.186 0.260 0.195 0.237 0.203
	(• + 1/(2n)) 2 (1 -Fn) 1.1	0.307 0.149 0.300 0.159 0.286 0.169 0.253 0.185
	(• + 1/(2n)) 2 (1 -Fn) 2	0.314 0.161 0.308 0.171 0.298 0.180 0.267 0.194
	(• + 1/cn) 2	(1 -Fn) 1.1	0.307 0.149 0.311 0.161 0.319 0.176 0.331 0.211

θ (x) = 1 -0.3 exp(-(x/5) 3 ) -0.7 exp(-(x/2) 3 )). The values given in the table are based on 10,000 simulations.

Table 2 :

 2 Estimation of the mixture parameter π = 0.3 based on distance functions of the type G 1 and on n = 40 observations from a Weibull mixture with cdf F θ (x) = 1 -0.3 exp(-(x/5) 3 ) -0.7 exp(-(x/2) 3 ). The values given in the table are based on 10,000 simulations.

	Censoring	0%			20%		40%		60%
	Gn(•)	wn = 1	π	MSE	π	MSE	π	MSE	π	MSE
	(•) 2	1	0.289 0.069 0.284 0.074 0.278 0.082 0.258 0.098
	(• + 1/(2n)) 2 1	0.300 0.069 0.295 0.074 0.289 0.082 0.269 0.098
	(• + 1/n) 2	1	0.311 0.069 0.306 0.074 0.300 0.082 0.279 0.098
	(• + 1/cn) 2	1	0.300 0.069 0.297 0.074 0.296 0.083 0.285 0.099
	(•) 2	(1 -Fn) 2	0.289 0.088 0.286 0.093 0.284 0.101 0.277 0.116
	(•) 2									

Table 4 :

 4 respectively, is not changed. Estimation of the mixture parameter π = 0.3 based on distance functions of the type G 3 and on n = 20 observations from a Weibull mixture with cdf F θ (x) = 1 -0.3 exp(-(x/5) 3 ) -0.7 exp(-(x/2) 3 ). The values given in the table are based on 10,000 simulations.

	Censoring		0%	20%	40%	60%
	Gn(•) ( √ • + 1 -1) 2	wn 1	π 0.250 0.132 0.236 0.141 0.212 0.147 0.165 0.150 MSE π MSE π MSE π MSE
	( • + 1 + 1/(2n) -1) 2 1	0.293 0.135 0.278 0.145 0.252 0.153 0.199 0.161
	( • + 1 + 1/n -1) 2	1	0.336 0.136 0.321 0.147 0.293 0.157 0.235 0.170
	( • + 1 + 1/cn -1) 2 ( √ • + 1 -1) 2 ( √ • + 1 -1) 2	1 (1 -Fn) 2 (1 -Fn) 4	0.293 0.135 0.289 0.147 0.281 0.160 0.264 0.189 0.259 0.158 0.253 0.166 0.244 0.174 0.217 0.183 0.263 0.180 0.260 0.186 0.254 0.194 0.231 0.202
	( • + 1 + 1/(2n) -1) 2 (1 -Fn) 1.1	0.302 0.149 0.294 0.159 0.280 0.168 0.247 0.183
	( • + 1 + 1/(2n) -1) 2 (1 -Fn) 2	0.309 0.161 0.302 0.170 0.291 0.179 0.260 0.193
	( • + 1 + 1/cn -1) 2	(1 -Fn) 1.1	0.302 0.149 0.305 0.161 0.312 0.175 0.323 0.209
	Censoring		0%	20%	40%	60%
	Gn(•) ( √ • + 1 -1) 2	wn 1	π 0.274 0.096 0.267 0.106 0.253 0.115 0.216 0.128 MSE π MSE π MSE π MSE
	( • + 1 + 1/(2n) -1) 2 1	0.296 0.096 0.289 0.106 0.275 0.115 0.236 0.130
	( • + 1 + 1/n -1) 2	1	0.318 0.096 0.311 0.106 0.297 0.116 0.257 0.132
	( • + 1 + 1/cn -1) 2 ( √ • + 1 -1) 2 ( √ • + 1 -1) 2	1 (1 -Fn) 2 (1 -Fn) 4	0.296 0.096 0.294 0.106 0.289 0.117 0.270 0.137 0.276 0.122 0.272 0.131 0.267 0.137 0.251 0.152 0.276 0.144 0.273 0.152 0.270 0.157 0.259 0.170
	( • + 1 + 1/(2n) -1) 2 (1 -Fn) 1.1	0.300 0.109 0.295 0.119 0.288 0.127 0.267 0.145
	( • + 1 + 1/(2n) -1) 2 (1 -Fn) 2	0.303 0.121 0.299 0.130 0.293 0.137 0.276 0.154
	( • + 1 + 1/cn -1) 2	(1 -Fn) 1.1	0.300 0.109 0.301 0.119 0.307 0.129 0.305 0.151

Table 5 :

 5 Estimation of the mixture parameter π = 0.3 based on distance functions of the type G 3 and on n = 40 observations from a Weibull mixture with cdf F θ (x) = 1 -0.3 exp(-(x/5) 3 ) -0.7 exp(-(x/2) 3 ). The values given in the table are based on 10,000 simulations.

	Censoring		0%	20%	40%	60%
	Gn(•) ( √ • + 1 -1) 2	wn 1	π 0.287 0.069 0.283 0.074 0.276 0.082 0.254 0.097 MSE π MSE π MSE π MSE
	( • + 1 + 1/(2n) -1) 2 1	0.298 0.069 0.294 0.074 0.287 0.082 0.265 0.098
	( • + 1 + 1/n -1) 2	1	0.309 0.069 0.305 0.074 0.298 0.082 0.276 0.098
	( • + 1 + 1/cn -1) 2 ( √ • + 1 -1) 2 ( √ • + 1 -1) 2	1 (1 -Fn) 2 (1 -Fn) 4	0.298 0.069 0.296 0.074 0.294 0.083 0.282 0.099 0.287 0.088 0.284 0.093 0.281 0.102 0.274 0.116 0.285 0.108 0.283 0.113 0.281 0.120 0.277 0.134
	( • + 1 + 1/(2n) -1) 2 (1 -Fn) 1.1	0.300 0.079 0.296 0.083 0.293 0.092 0.282 0.108
	( • + 1 + 1/(2n) -1) 2 (1 -Fn) 2	0.301 0.088 0.298 0.092 0.295 0.101 0.287 0.116
	( • + 1 + 1/cn -1) 2	(1 -Fn) 1.1	0.300 0.079 0.299 0.084 0.301 0.092 0.301 0.109

Table 6 :

 6 Estimation of the mixture parameter π = 0.3 based on distance functions of the type G 3 and on n = 80 observations from a Weibull mixture with cdf F θ (x) = 1 -0.3 exp(-(x/5) 3 ) -0.7 exp(-(x/2) 3 ). The values given in the table are based on 10,000 simulations.

Table 7 :

 7 Estimation of the mixture parameter π = 0.3 based on distance functions of the type G 1 and on n = 40 observations from contamination model CM 1 . The values given in the table are based on 10,000 simulations.

	Censoring	0%			40%
	Gn(•)	wn	π	MSE	π	MSE
	(•) 2	1	0.245 0.099 0.224 0.115
	(• + 1/(2n)) 2 1	0.267 0.099 0.245 0.116
	(• + 1/n) 2	1	0.289 0.099 0.267 0.117
	(• + 1/cn) 2	1	0.267 0.099 0.259 0.118
	(•) 2	(1 -Fn) 2	0.225 0.124 0.217 0.137
	(•) 2	(1 -Fn) 4	0.203 0.142 0.200 0.152
	(• + 1/(2n)) 2 (1 -Fn) 1.1	0.258 0.113 0.246 0.129
	(• + 1/(2n)) 2 (1 -Fn) 2	0.250 0.125 0.241 0.139
	(• + 1/cn) 2	(1 -Fn) 1.1	0.259 0.113 0.261 0.132

Table 8 :

 8 Estimation of the mixture parameter π = 0.3 based on distance functions of the type G 1 and on n = 40 observations from contamination model CM 2 . The values given in the table are based on 10,000 simulations. The 40% censoring is with respect to the Weibull mixture. The overall censoring being less.

	Censoring	0%			40%
	Gn(•)	wn	π	MSE	π	MSE
	(•) 2	1	0.321 0.097 0.299 0.117
	(• + 1/(2n)) 2 1	0.343 0.097 0.320 0.117
	(• + 1/n) 2	1	0.365 0.096 0.342 0.117
	(• + 1/cn) 2	1	0.343 0.097 0.337 0.119
	(•) 2	(1 -Fn) 2	0.317 0.119 0.307 0.136
	(•) 2	(1 -Fn) 4	0.314 0.142 0.308 0.157
	(• + 1/(2n)) 2 (1 -Fn) 1.1	0.342 0.107 0.329 0.126
	(• + 1/(2n)) 2 (1 -Fn) 2	0.344 0.118 0.333 0.136
	(• + 1/cn) 2	(1 -Fn) 1.1	0.343 0.107 0.347 0.128

Table 9 :

 9 Estimation of the mixture parameter π = 0.3 based on distance functions of the type G 1 and on n = 40 observations from contamination model CM 3 . The values given in the table are based on 10,000 simulations. The 40% censoring is with respect to the Weibull mixture. The overall censoring being larger.

Appendix

Proof of Lemma 1. It follows from Condition C that G has finite variations on [-1, 1] and then is the difference of two bounded increasing functions G + and G -. Now, let W = {F θ ; θ ∈ Θ}. Then W = {F θ ; θ ∈ Θ} ⊂ M where M is the set of monotone increasing functions. The class M has a finite bracketing number (see van der Vaart and Wellner (1996, Theorem 2.7.5)), and hence W = {F θ -F θ 0 ; θ ∈ Θ} has a finite bracketing number. Obviously, given ε-brackets van der Vaart and Wellner (1996, p. 125)).

Proof of Lemma 2. From Condition E and Theorem 1 we have sup [0,τ ] |F θn -F θ 0 | = o P (1). By a second order expansion of G around 0 we then obtain

where H θn,θ0 satisfies 0

Notice that by using Condition E we now have