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Discrete numerical simulation, quasistatic deformation and the origins of
strain in granular materials.

Gäel Combe & Jean-Nöel Roux
Laboratoire des Mat́eriaux et des Structures du Génie Civil, Institut Navier, Champs-sur-Marne, France

ABSTRACT: Systematic numerical simulations of model dense granular materials in monotonous, quasistatic
deformation reveal the existence of two different régimes. In the first one, the macroscopic strains stem from the
deformation of contacts. The motion can be calculated by purely static means, without inertia, stress controlled
or strain rate controlled simulations yield identical smooth rheological curves for a same sample. In the second
régime, strains are essentially due to instabilities of the contact network, the approach to the limits of large
samples and of small strain rates is considerably slower andthe material is more sensitive to perturbations.
These results are discussed and related to experiments : measurements of elastic moduli with very small strain
increments, and slow deformation (creep) under constant stress.

1 INTRODUCTION

Despite its now widespread use (Kishino 2001), dis-
crete numerical simulation of granular materials, mo-
tivated either by the investigation of small scale (close
to the grain size) phenomena, or by the study of mi-
croscopic origins of known macroscopic laws, still
faces difficulties. Microscopic parameters, some of
which are to be defined at the (even smaller) scale
of the contact, are incompletely known. Macroscopic
constitutive laws do not emerge easily out of noisy
simulation curves, and the numerically observeddy-
namicsequences of rearrangements might appear to
contradict the traditional macroscopicquasistaticas-
sumption. Detailed and quantitative comparisons with
experiments can be used to adjust microscopic mod-
els, but a systematic exploration of the effect of the
various parameters throughout some admissible range
is also worthwhile. This is the purpose of the present
study, which also addresses the fundamental issues
of the macroscopic and quasistatic limits, in the case
of the biaxial compression of dense, two-dimensional
(2D) samples of disks.

In section 2, we introduce the model and the nu-
merical methods and define dimensionless parameters
that are robust indicators of the relative importance
of different phenomena. Rheological curves can be
evaluated in the large sample limit (section 3), and
their sensitivity to parameters assessed. We observe
(section 4) two different mechanical régimes, accord-
ing to whether the dominant microscopic origin of

strain is material deformation in the contacts or re-
arrangements of the contact network. Connections to
some experimental observations are suggested in part
5, while the conclusion section outlines further per-
spectives.

2 NUMERICAL MODEL AND PROCEDURES
2.1 Grain-level mechanics

Our computational procedure is one of the simplest
types of ‘molecular dynamics’ or ‘discrete element’
method (Cundall and Strack 1979) for solid grains.
We consider 2D assemblies of disks, with diameters
uniformly distributed betweena/2 anda, and masses
and moments of inertia evaluated accordingly (as for
homogeneous solid cylinders of equal lengths).m
will denote the mass of a disk of diametera, andN
the number of disks.

These grains interact in their contacts with a linear
elastic law and Coulomb friction. The normal con-
tact forceFN is thus related to the normal deflec-
tion (or apparent interpenetration)h of the contact as
FN = KNhY (h), Y being the Heaviside step func-
tion (equal to1 for h > 0, to0 otherwise). The tangen-
tial componentFT of the contact force is proportional
to the tangential elastic relative displacement, with a
tangential stiffness coefficientKT . The Coulomb con-
dition |FT | ≤ µFN requires an incremental evaluation
of FT every time step, which leads to some amount of
slip each time one of the equalitiesFT = ±µFN is
imposed. A normal viscous component opposing the
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relative normal motion of any pair of grains in contact
is also added to the elastic forceFN . Such a term – of
unclear physical origin in dense multicontact systems
– is often introduced to ease the approach to mechan-
ical equilibrium. Its influence will be assessed in part
3. The viscous force is proportional to the normal rel-
ative velocity, and the damping coefficient in the con-
tact between grainsi and j is a constant fractionζ
(0 ≤ ζ ≤ 1) of the critical value2(

KNmimj

mi+mj
)1/2. (In

a binary collision the normal ‘restitution coefficient’
is 0 for ζ = 1 and1 for ζ = 0). ζ , KN , KT , andµ
are the same in all contacts. The motion of grains is
calculated on solving Newton’s equations.

2.2 Numerical compression tests

Two different types of boundary conditions are used :
either the container walls are physical objects, with
masses, satisfying Newton’s equations (but requested
to move in the direction perpendicular to their ori-
entation), or periodic boundary conditions (no walls)
are implemented. In both cases, the changes in cell
size and shape under controlled stress involves spe-
cific dynamical parameters which could be discussed
in more detail. Here we will simply deem such param-
eter choice innocuous if results are reproducible, size-
independent and consistent. We use soil mechanics
sign conventions for stresses and strains. Samples are
first compressed isotropically under a constant pres-
sure P . Once a mechanical equilibrium is reached
under pressureP , samples are submitted to biaxial
compression tests. The lateral stress,σ1 is maintained
equal toP , while either ǫ2 is increased at a con-
stant ratėǫ2 (a procedure hereafter referred to as SRC,
for strain rate controlled) or σ2 is stepwise increased
by small fractions ofP , and one waits for the next
equilibrium configuration before changingσ2 (a SIC,
for stress increment controlled, procedure). In the se-
quel q denotes the ratio(σ2 − σ1)/σ1, while ǫ2 and
ǫv = ǫ1 + ǫ2 − ǫ1ǫ2 are respectively termed ‘axial’ and
‘volumetric’ strain, in analogy with 3D axisymmetri-
cal triaxial tests.

2.3 Dimensional analysis

Rheological curves and internal sample states ob-
tained in monotonous biaxial tests are defined in the
macroscopic limitN → ∞. If expressed by re-
lations between dimensionless quantitiesǫ2, q, ǫv,
they should depend on the friction coefficientµ and
on ratio KT /KN , and on three other dimensionless
parameters:κ = KN/P , the stiffness parameter,
which expresses the level of contact deformation,γ =

ǫ̇2

√

m/P , the inertia parameter, evaluating, in SRC
(constantǫ̇2) tests, the importance of dynamical ef-
fects, andζ , the damping parameter, introduced in
paragraph 2.1, characterizing viscous dissipation. The

contact coordination number is a decreasing function
of κ. The quasistatic limit is the limit of smallγ.

3 BIAXIAL COMPRESSION OF DENSE SYS-
TEMS : RESULTS

3.1 Preparation, initial states, procedures.

The sample preparation procedure is well known to
exert a strong influence on the mechanical properties
of a granular sample as, in particular, dense or loose
initial states respond differently (Wood 1990) to load
increments. Moreover, experiments also showed that
density is not sufficient to determine the behaviour in
a triaxial test (Benahmed 2001). Numerical simula-
tions may in principle attempt to imitate as closely
as possible laboratory experiments. The simulations
of such processes as deposition under gravity within
a walled container is however difficult, as it requires
large number of particles. Inhomogeneous states one
obtains in such cases request samples much larger
then a representative volume element, which is itself
much larger than the grain size. Moreover, the transi-
tion from an initial fluid-like configuration to a solid-
like grain assembly is bound to be sensitive to static
and dynamic parameters (Silbert et al. 2001).

Here we focus on the slow quasistatic deforma-
tion of certain types of granular assemblies, once
they have been prepared in some well defined ini-
tial state. Therefore we leave a detailed (and nec-
essary) study of the preparation process to future
research, and adopt a simple numerical procedure
which provides us with homogeneous, reproducible,
sample size -independent initial states in equilibrium
under an isotropic pressure. The numerical procedure
is an isotropic, monotonous compaction from an ini-
tial gas-like configuration with a solid fractionΦ of
about 20%. To obtain a dense sample, a different,
smaller value is attributed to the coefficient of friction
in this initial dynamic compression step. Two series of
samples are studied here. The first one – called series
A hereafter – was prepared between solid, friction-
less walls. It was observed in that case that one had
to setµ to zero in the preparation stage if we were to
obtain a homogeneous stress field. Simulations of se-
ries A were therefore performed starting from the very
dense states which result from a compression with-
out intergranular friction (Combe 2001). The results
below, some of which were presented in (Roux and
Combe 2002), were obtained withµ = 0.25 during
biaxial compressions, and a rigidity levelκ = 105.
KT /KN was set to1/2. Biaxial tests were SIC, with
small q stepsδq = 10−3. Each successive mechan-
ical equilibrium is deemed attained when the total
force (or torque) on each grain is less than10−4aP
(resp.10−4a2P ) and when the relative difference be-
tween the internal overall stresses (deduced from non-
viscous intergranular forces) and their prescribed val-

2



Table 1:Initial state data for series B simulations.

κ Φ z x0 (%)
105 0.8226 ± 8.10−4 3.59 ± 2.10−2 10.0 ± 0.5
104 0.8230 ± 8.10−4 3.64 ± 2.10−2 9.0 ± 0.6
103 0.8258 ± 9.10−4 3.77 ± 8.10−3 6.7 ± 0.3

ues is less than10−4. ζ was set to high values (near
1) and N ranged from 1024 to 4900. In the ini-
tial isotropic state, the solid fraction (extrapolated to
N → ∞) is Φ = 0.844 ± 0.001, all but 5.5% of the
disks carry forces and the coordination number, ig-
noring those inactive grains, isz ≃ 4.01, very close
to the isostatic limit (Roux 2000) of4 reached with
rigid, frictionless disks in equilibrium.

For the second series of simulations, series B, we
used periodic boundary conditions. Samples are thus
devoid of edge effects. They shrink homogeneously
in the isotropic compression stage. Series B samples
were compressed withµ = 0.15, and subsequent bi-
axial tests performed withµ = 0.5. Different stiff-
ness levels, (κ = 103, 104 and105) were used, with
KT /KN fixed to1, as well as different inertia param-
etersγ (10−3, 10−4, sometimes10−5). SRC tests were
compared to SIC ones (withδq = 10−2 andζ ≃ 1).
Samples of 1400 and 5600 disks were simulated. The
initial solid fraction, due to the finiteµ value during
compression, is lower than for A samples, as well
as the coordination numberz among force-carrying
disks. Values ofΦ, z, and the fraction of inactive disks
x0, for the investigatedκ values are given in table 1.
The typical aspect ofq versusǫ2 curves is illustrated
on fig. 1, for series B samples withκ = 104 and
γ = 10−4. They are characteristic of very dense sam-
ples, as in (Kuhn 1999).

3.2 Stress-strain curves and macroscopic limit.
The increase ofq with ǫ2 is initially quite fast,q reach-
ing about0.8 for ǫ2 < 10−3. Then the deviator stress
keeps increasing and reaches an apparent plateau for
ǫ2 ∼ 0.01. Those dense samples are markedly dilatant
(fig. 4 below), after a very small initial contraction
their volume steadily increases, even afterq appears
to have levelled off. The important stress fluctuations
in those SRC tests is striking on fig. 1, but are con-
siderably reduced, as well as sample-to-sample dif-
ferences, asN increases from1400 to5600. Dilatancy
curves (see below) are smoother. Smooth stress-strain
curves can thus be expected in the macroscopic limit
N → ∞. This was more carefully checked for sim-
ulation seriesA, on studying three sample sizes : on
fig. 2 the shaded zones extend to one standard devi-
ation on each side of the average curves, forq plot-
ted as a function ofǫ2 for N = 1024 (26 samples),
N = 3025 (10 samples), andN = 4900 (7 samples).
Fig. 2 does indicate a systematic decrease of the fluc-

Figure 1: q versus axial strainǫ2 in B samples of 2 differ-
ent sizes. Fluctuations are larger for the smaller samples.

tuation level (see inset), compatible with a regression
asN−1/2, just like for an average over a number of
independent contributions (subsystems of representa-
tive size) proportional toN . Series A samples respond
in a similar way to deviator stresses as type B ones (al-
though of course, due to different initial states,µ and
κ, constitutive laws will differ). The initial increase

Figure 2:Hashed zone (the darker the largerN ) one r.m.s.
deviation on each side of average curve for the 3 sample
sizes indicated (series A, SIC withδq = 10

−3). Inset : its
average width over theǫ2 ≤ 0.02 interval, versus1/

√
N ,

along with the average relative uncertainty onǫv
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of q, so fast that it cannot be distinguished from the
axis on fig. 2, is followed by a slower variation. (Yet,
unlike in the B case,q does not reach a maximum for
ǫ2 ≤ 0.02). ‘Volumetric’ strains are also qualitatively
similar for series A and B.

3.3 Role of parametersζ , γ, κ.

The quasistatic stress-strain curve should be the same
for SRC and SIC biaxial compressions, independent
onζ and onγ if it is small enough. To check this, five
samples of series B were submitted to SRC tests with
γ = 10−3 andζ = 1, γ = 10−4 andζ = 1, γ = 10−4

and ζ = 0, and to SIC ones withδq = 10−2. Av-
erage curves forq versusǫ2 (fig. 3) andǫv versusǫ2

(fig. 4) for those 4 sets of simulations are displayed
(and standard deviations levels indicated as on fig. 2).
Obviously, the value ofζ does not have any apprecia-
ble influence on the rheological curve. Intergranular
friction is the dominating dissipation mechanism, and
it can be checked that the differences between stresses
evaluated with and without viscous forces differ by
negligible amounts for all SRC tests. However, results
are affected by the reduced rateγ, or the choice of
an SIC procedure. A smallerγ (according to its def-
inition, this amounts to a slower compression, lighter
grains or higher pressures) results in smaller devia-
tor and dilatancy values for a given ‘axial’ strain. SIC
tests, as one waits for equilibrium, are the slowest,
and SIC curves can be regarded as an extrapolation
of SRC ones toγ = 0. (The occurrence of slightly
decreasingq values in SIC tests might seem surpris-

Figure 3: Averageq versusǫ2 for conditions indicated.
Left inset: detail of one curve with r.m.s. deviations, small
ǫ2. Right inset: averages and r.m.s. deviations forγ =

10
−3, γ = 10

−4 and SIC tests.

Figure 4: Same as fig. 3 forǫv vs. ǫ2, standard deviations
shown except for uppermost (γ = 10

−3) curve.

ing, but is due to the use of real Cauchy stresses to
draw the curve, while stresses defined in terms of ini-
tial cell dimensions are used in the calculations). The
effects of thestiffness parameterκ are illustrated on
fig. 5. It is most apparent in the initial rise ofq, which
is the faster for higherκ, and the small-strain con-
tractant régime (see inset), which develops with softer
contacts. For smallerκ, the packing appears indeed to
be softer. The curves at larger strains display no con-
spicuous difference betweenκ = 104 andκ = 105,
although the softest grains,κ = 103 appear to with-
stand a somewhat higher deviator stress. The dila-
tancy - slope of−ǫv versusǫ2 - is not affected. The
time scale for stress fluctuation during monotonous
tests at a given strain rate is a strongly decreasing
function ofκ, hence the smoother curves on fig. 5 for
softer contacts. The effects of the parameters on rheo-
logical curves are related to some changes in the inter-
nal states of the system undergoing compression. The
effect ofγ is related to the greater distance to equilib-
rium of systems under higher strain rate. Characteris-
tic quantities are the average kinetic energy per parti-
cle, ec (in units ofa2P ) and the quadratic average of
the net force on a particle (in units ofaP ), f2. Those
quantities tend to slowly increase withǫ2 during the
test, but typical values forǫ2 = 0.01 can be cited. As
for SIC tests, one only records equilibrium positions,
ensuringf2 ≤ 10−5 andec ≤ 10−8. The coordina-
tion numberz and the proportion of sliding contacts
Xs vary quickly beforeǫ2 = 10−3 and remain es-
sentially constant afterwards (one hasz = 3.12, on
average, forκ = 104 andγ = 10−4, z = 3.05 for
κ = 104 andγ = 10−3). Tests with the highestγ val-
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ues10−3 are, logically, the farthest from equilibrium
(ec = 1.5 10−5, andf2 = 0.01, while ec ≃ 5 10−7

andf2 = 0.02 for γ = 10−4). The change ofκ makes
a significantly larger difference from104 to 103 than
from 105 to 104. Unlike ec andf2, which essentially
depend onγ, z andXs are sensitive to both parame-
ters. In SIC tests (κ = 104), z decreases from its initial
value to about3.22 (for ǫ2 ∼ 0.01) which is consistent
with its dependence onγ in SRC conditions. Interme-
diate configurations of SIC tests, remarkably, do not
have any sliding contact: on approaching equilibrium,
all contact forces leave the edge of the Coulomb cone.
Upon resuming an SRC motion, very small displace-
ments can mobilize friction andXs > 0 is observed
(typically Xs ≃ 10%, if γ = 10−4 andκ = 104, Xs

increases withγ and withκ).

4 DIFFERENT ORIGINS OF STRAIN

One striking aspect of the rheological curves is the
existence of two different régimes. At smallǫ2, close
to the initial isotropic state, curves are quite smooth
and reproducible, sample to sample fluctuations are
very small (figs. 1 and 3 ), SIC and SRC tests (what-
ever γ ≤ 10−3) are in perfect agreement (figs. 3
and 4), andκ strongly affects the results (fig. 5). Co-
ordination numbers and friction mobilization change
fast from initial values (table 1) to the roughly con-
stant ones given in paragraph 3.3. At larger strains,
the system is sensitive to the strain rate, much more
than to the stiffness parameter. Fluctuations are con-
siderably larger, and the stepwise increase ofq, as
one records the ensuing sequence of equilibria, re-
sults in a staircase-shapedq versusǫ2 curve, as on

Figure 5: Results for one B-sample with 3 different stiff-
ness values,q (main plot) andǫv (inset) vs.ǫ2.

Figure 6: Two SIC q vs. ǫ2 curves. Inset : initial strictly
quasistatic régime, blown-upǫ scales. Results on one sam-
ple are identical with both static and dynamic methods.

fig. 6. q increments in those SIC simulations are very
small, δq = 10−3, so that nearly vertical segments
on those plots correspond to many different equilib-
rium configurations, each very close to the previous
one. The slope of those steep parts of the curve is
close to that of the initial, stiff rise ofq, confused
with the axis on the main plot in the figure, and visible
in the blown-up inset. Large horizontal segments are
due to motions between more distant configurations.
The origin of those two different regimes is clarified
once it is attempted to find the system response to
small load increments bypurely staticmeans. Start-
ing from an equilibrium configuration, it is possible
to regard its contact structure as a given network of
elastoplastic elements, and determine the displace-
ments leading to the new equilibrium configuration,
with a static method which is a discrete analog of
elastoplastic finite element calculations in continuum
mechanics. Such methods are seldom used (see, how-
ever, (Kishino et al. 2001)) in granular systems be-
cause they are more complicated and less versatile
than the usual dynamical approaches: a stiffness ma-
trix has to be rebuilt for each different contact list, and
calculations are limited to therange of stabilityof a
given contact network. As long as the contact struc-
ture is able to support the load, plastic strains in the
sliding contacts remain contained by elastic strains in
the non-sliding ones, and the static method is able to
determine the sequence of configurations reached on,
e.g.,stepwise increasingq. This sequence is made of
acontinuous set of equilibrium states, and the system
evolution is indeedquasistatic: we refer to such case
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as thestrictly quasistatic ŕegime. We checked, for se-
ries A samples, that static and dynamic calculations
are in perfect agreement in such cases, as shown on
fig. 6. This initial régime is the stability range of the
initial configuration. The strains are then directly due
to contact deformation – such strains will be termed
of type I in the sequel – and are inversely propor-
tional to κ, while results are not sensitive toγ (the
static method ignores completely inertia and physical
time). This range should not be regarded as an elas-
tic domain, as the non-linearity of the curves on fig. 6
(the elasticity of contacts is linear) is due to contact
losses and also to the gradual mobilization of friction.
On reversing theq increments, steeper slopes are ob-
served. In the samples of fig. 6, the very steep parts
of the staircase-shaped curves also correspond, as we
checked, to stability intervals of some intermediate
equilibrium configuration at higherq. Such intervals
are separated by large strain steps, corresponding to
rearrangements of the contact structure. Those occur
when the accumulation of sliding contacts leads to an
instability, and the ensuing motion is arrested by new
contacts as interstices between neighbouring grains
are closed. The resulting strain increments are here-
after referred to astype II strains. Their magnitude
is related to the width of interstices between neigh-
bouring grains. The system evolution, in thatrear-
rangement ŕegime, is, as shown previously, more sen-
sitive to dynamical parameterγ. Equilibrium states
do not form a continuum in configuration space, the
system has to jump between two successive ones in
a controlled deviator step test, or to flow nearby in
a controlled strain rate test. The evolution can only
be termed quasistatic in a wider sense if the statis-
tical properties of trajectories in configuration space
are independent, for slow enough motions, on dynam-
ical parameters – which can be reasonably expected
from the present study. The initial strictly quasi-static
q ≤ q1 interval does not shrink, but appears rather to
approach a finite limit (aboutq1 = 0.8 here) as the
sample size increases. Stress-strain curves depend on
KT /KN within this range, but, interestingly,q1 does
not (Combe 2001). In the rearrangement régime, in
order to approach a smooth curve in the macroscopic
limit (see fig. 2), it is necessary that the sizes of both
the steep and the flat parts of the ‘staircases’ shrink
to zero as the sample size increases. Type I and type
II strains have very different amplitudes in A samples
with κ = 105 andN ≤ 4900. It might in fact be ex-
pected that this clearcut distinction will get blurred
at smaller stiffness parameterκ (whence larger type
I strains) or largerN (as smaller type II strain incre-
ments can close contacts), and that the transition at
q1 will be fuzzier. Nevertheless, the system proper-
ties do strongly differ forq < q1 andq > q1, in two
important respects. First, the slope of the stress-strain

Figure 7: ‘Creep tests’, dots on main plot showing ini-
tial and final (equilibrium) states. Effect of resuming com-
pression SRC way shown as thick lines. Inset: creep tests
within strictly quasistatic range.

curve relates directly to the elasticity of the contacts
in the type I strain dominated, strictly quasistatic case.
The tangent at the origin on fig. 6 (smaller plot) is the
Young modulus of the packing. Second, the ampli-
tude of fluctuations, the distance to mechanical equi-
librium, and the sensitivity to perturbations are much
stronger in the rearrangement (type II strain domi-
nated) régime. This is further illustrated by the fol-
lowing ‘creep experiment’ : in a strain-rate controlled
biaxial compression, at some arbitrary instant, shift to
stress-controlled conditions and keepq constant, until
an equilibrium configuration is reached. Typical re-
sults of such tests are shown on fig. 7. As could be
expected, much larger strain variations are observed
during periods of creep in the rearrangement regime,
as the initial states are farther from equilibrium. On
resuming the constant strain rate test, the initial part
of the curve is very steep, which is characteristic of
a ‘strictly quasistatic’ interval. From an equilibrium
state (devoid of sliding contacts), friction has to be
mobilized again to produce the instabilities of the re-
arrangement régime. The dilatancy within those creep
intervals is similar to the SRC one.

The ‘creep tests’ reveal different behaviours in the
two deformation regimes in SRC tests. One might
also probe the sensitivity to perturbations of inter-
mediate equilibrium states obtained in SIC tests. We
repeatedly applied on the grains constant external
forces, each force component being randomly chosen
between−f0 andf0 (f0 is a small fraction ofaP ), un-
til new, perturbed equilibria were reached. Such ran-
dom load increments always tend to produce strains
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Figure 8: Effect of repeated random load (f0/aP =

2.5 10
−3) applied in states shown as big dots on the stress-

strain curve in the inset: increments ofǫv vs. increments of
ǫ2 on blown-up (by105) scale. The response of state A is
concentrated near the origin, only the response of state B
(q = 0.94) is visible on this scale. Dotted lines: SIC and
SRC dilatancy curves near point B, same sample.

in the same direction, as illustrated on fig. 8. Applied
when q = 0.5 within the strictly quasistatic range,
such perturbations entail very small strain increments
(hardly visible near the origin of the plot). Applied
whenq = 0.94 as equilibrium states are much more
unstable, they produce the series of strain increments
plotted as connected dots, which tend to accumu-
late proportionnally, hence the nearly straight line, the
slope of which is comparable to the dilatancy. The re-
peated application of small random perturbations thus
entails some ‘creep’ phenomenon.

5 COMPARISONS WITH EXPERIMENTS

In spite of the many differences between the numeri-
cal models and the materials studied in the laboratory,
such as sand, or even glass beads, some features of the
simulation results can be compared in a qualitative or
semi-quantitative way to experimental ones.

First, parametersκ and γ should be used to ob-
tain robust estimations of orders of magnitude. In 3
dimensions,κ should be defined asKN/(aP ) in the
case of linear elasticity in the contacts.κ measures
the normal elastic deflection in a contact, relatively to
the grain diametera, due to the typical contact force
Pa2. In a Hertzian contact between spheres of diam-
etera, it is easy to show thatκ should be defined as
(E/P )2/3, whereE is the Young modulus of the grain
material. This givesκ ≃ 6000 for glass beads un-

derP = 105Pa. (In 3D simulations, we could check
that, given these definitions, the effect ofκ on the
coordination number was similar to the 2D case, see
also (Makse et al. 2000)). ‘Real’ materials with Hertz
contacts underP = 105Pa are rather on the rigid side,
but not quite in the rigid limit. Other contact laws
might lead to even smaller stiffness parameters (e.g.,
κ ∼ (E/P )1/2 if FN ∝ Eh2, as for cone-shaped as-
perities).

An appropriate 3D definition ofγ is ǫ̇
√

m
aP

(
√

m
aP

is the time for a grain accelerated from rest by the
typical forcea2P to move on distancea/2). Substi-
tuting typical values – a fraction of millimetre fora,
10−5s−1 for ǫ̇ – this yieldsγ values as small as10−9

or 10−10. As calculations overǫ = 2% strain intervals
with γ = 10−5 still require several days of c.p.u. time
with 5000 stiff grains, real time scales of quasistatic
laboratory tests are still beyond the reach of discrete
numerical simulations.γ dependences of numerical
results can however be extrapolated to smaller values.

Although it is tempting, in view of the results il-
lustrated on fig. 7 to refer to creep experiments (Mat-
sushita et al. 1999; Di Benedetto and Tatsuoka 1997),
as the aspects of the stress-strain curves are quite sim-
ilar in several respects, this difference of time scales
precludes a direct comparison. Moreover, the exper-
imentalq-ǫ curves do not depend on strain rate if it
is constant (this corresponds to much smallerγ val-
ues than simulations), and the creep deformation is
extremely slow, often logarithmic in time (Di Prisco
and Imposimato 1997). Unlike in the numerical case,
it does not appear to stop as some equilibrium is
reached. It might well be relevant, however, to dis-
cuss such experiments in terms of the sensitivity of
the system to perturbations, which is likely to de-
pend on whether contact networks resist load incre-
ments (strictly quasistatic case) or are prone to insta-
bilities (rearrangement régime). The numerical tests
discussed in connection with fig. 8 suggest a possible
microscopic origin of such slow evolutions over long
times: a small noise level, always present in experi-
ments, could entail an accumulation of strain. Aging
and creep phenomena can also be physically expected
within one contact. Numerical simulations (devoid of
such features) might help assessing the collective as-
pects of the packing response.

Our simulations can also be likened to experimen-
tal observations about the very small strain elastic
behaviour of granular systems (Di Benedetto et al.
1999). Recent developments of precision apparati en-
abled measurements of strains in the10−5 range. To
obtain elastic moduli, small stress cycles are superim-
posed on a constant loading, producing cyclic strains
on top of a systematic drift which, on increasing the
number of cycles, gradually slows down and becomes
analogous to the one observed in creep tests. The av-
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erage slope of a cycle on a stress-strain plot, once the
effect of the drift is negligible, can be interpreted as an
elastic modulus (there remaining some small dissipa-
tion). Those small strain increment elastic constants
agree with the ones deduced from acoustic wave ve-
locities. From our simulations, it transpires that the
incremental stress-strain dependence might express a
genuinely elastic behaviour (supplemented by some
plastic dissipation which vanishes in the limit of small
stress increments) in the strictly quasistatic régime.
Elastic moduli are then related to the stiffness of the
contacts. The width of strictly quasistatic strain inter-
vals are of the order ofq1/κ – q1 being their width
in terms of stress ratio. Taking into account thatq1 is
exceptionally large for the initial small-strain régime
if our extremely dense and well coordinated systems,
and the valueκ ∼ 6000 estimated above for glass
beads, one does obtain the right order of magnitude
(≤ 10−4) for the very small strain elastic domain.
Moreover, the procedure by which these moduli are
measured can be interpreted as the preparation, ei-
ther left to random perturbations or forced by cyclic
load increments, of a better stabilized state for which
the contact network is able to resist small, but finite
stress increments (just like the stiffly responding equi-
librium states of fig. 7).

6 CONCLUSIONS AND PERSPECTIVES

Despite their limitations (due to the simplicity of the
contact model, and the inaccessibility of long time
scales), the numerical simulation results presented
here enable some investigation of the microscopic ori-
gins of many features of experimentally observed be-
haviours. The definition of reduced dimensionles pa-
rameters (κ and γ) provides a framework in which
many experimental and numerical studies can be dis-
cussed in common terms. Due to the small size of
numerical samples, constitutive laws have to be ap-
proached via statistical analyses. Most importantly,
the distinction between two different origins of strain
and two deformation régimes allows us some inter-
pretations of very small strain (tangential) elasticity
and slow deformation (creep) under constant load, in
terms of the system sensitivity to perturbations.

This work should be pursued in three directions.
First, it is desirable to extend the existing approach
to more ‘realistic’ models, so that more quantitative
comparisons with experiments will be possible (our
3D results on spheres – an obvious step in this di-
rection, were not presented here for lack of space).
Secondly, the importance of the initial state and of
the sample preparation procedure calls for systematic
studies (unlike for quasistatic monotonous compres-
sion tests, experimental knowledge is not expressed
as well established laws for such processes). And, fi-
nally, the joint use of dynamic and static methods,

which agree remarkably in strictly quasistatic do-
mains (fig. 6) opens avenues to explore fundamental
issues, such as elastoplastic contact network stability
and rearrangements, in some microscopic detail.

REFERENCES
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thesis, École Nationale des Ponts et Chaussées,
Marne-la-Vallée.

Combe, G. (2001).Origines ǵeoḿetrique du com-
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