
HAL Id: hal-00354751
https://hal.science/hal-00354751

Submitted on 20 Jan 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Particle methods revisited: a class of high-order
finite-difference schemes

Georges-Henri Cottet, Lisl Weynans

To cite this version:
Georges-Henri Cottet, Lisl Weynans. Particle methods revisited: a class of high-order finite-difference
schemes. Comptes Rendus. Mathématique, 2006, 343 (1), pp.51-56. �10.1016/j.crma.2006.05.001�.
�hal-00354751�

https://hal.science/hal-00354751
https://hal.archives-ouvertes.fr


Particle methods revisited:

a class of high order finite-difference methods

G.-H. Cottet a, L. Weynans a,b

aLMC-IMAG, Université Joseph Fourier, BP 53 Grenoble Cédex 9
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Abstract

We propose a new analysis of particle method with remeshing. We derive a class of high-order finite difference

methods. Our analysis is completed by numerical comparisons with Lax-Wendroff schemes for the Burger equation.

To cite this article: G.-H. Cottet, L. Weynans, C. R. Acad. Sci. Paris, Ser. I 340 (2006).

Résumé

Les méthodes particulaires revisitées : une classe de schémas de différences finies d’ordre élevé. On

propose dans cette note une nouvelle analyse des méthodes particulaires utilisant des remaillages. Cette analyse

fait apparâıtre une classe de schémas de différences finis d’ordre élevé. Des illustrations numériques viennent

compléter cette analyse et permettent de comparer les schémas particulaires avec le schéma de Lax-Wendroff.

Pour citer cet article : G.-H. Cottet, L. Weynans, C. R. Acad. Sci. Paris, Ser. I 340 (2006).

Version française abrégée

Méthodes particulaires avec remaillage Les méthodes particulaires (2),(3) sont des méthodes lagran-
giennes bien adaptées aux problèmes d’advection de la forme (1). Lorsque le flot subit de fortes distortions,
il est souvent conseillé de remailler les particules sur une grille régulière. On considère en général que les
remaillages successifs introduisent une erreur de troncature supplémentaire dans l’analyse numérique de
ces méthodes. Dans cette note, nous étudions directement les méthodes particulaires avec remaillage à
chaque pas de temps. Ceci nous conduit à la construction d’une classe de schémas de différences finies
d’ordre élevé que nous analysons dans le cas scalaire.
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Le cas linéaire - Nous considérons d’abord le cas d’une équation d’advection linéaire. Nous nous
intéressons aux formules de remaillage construites à l’aide de noyaux d’interpolation (5) conservant les
3 ou 4 premiers moments de la distribution de particules. Nous obtenons selon le cas une schéma de
Lax-Wendroff, ou un schéma décentré d’ordre 3.

Le cas non-linéaire - Pour étendre ces résultats au cas non-linéaire, nous sommes conduits à introduire à
une méthode originale d’advection des particules, basée sur une évaluation de vitesses utilisant la formule
(10), ou sa forme discrète (13). Nous pouvons alors donner une équation équivalente (12) pour le schéma
de différences finies associé (11), qui montre en particulier que, pour la formule de remaillage utilisant
le noyau Λ2, la méthode particulaire est d’ordre 2. On montre aussi qu’avec l’adjonction d’un terme de
viscosité artificielle approprié l’énergie est une fonction décroissante du temps.

Illustrations numériques - Nous comparons les résultats obtenus par une méthode particulaire et par le
schéma de Lax-Wendroff sur l’équation de Burgers (figure 1). Les deux modèles, complétés par les mêmes
termes de viscosité artificielle, donnent des résultats semblables. Cependant, la méthode particulaire, au
contraire du schéma de Lax-Wendroff, semble converger vers la solution entropique même en l’absence
de viscosité artificielle, ce que notre analyse ne permet pas de prévoir. Par ailleurs, de meilleurs résultats
pour la méthode particulaire sont obtenus lorsque le pas de temps est adapté au taux de déformation, ce
qui illustre une autre différence essentielle avec les schémas de différences finies.

Conclusion - Une nouvelle analyse de méthodes particulaires avec remaillage met en évidence les liens
existant entre ces méthodes et des méthodes de différences finies d’ordre élevé. Les méthodes particulaires
offrent cependant l’avantage de traiter naturellement des systèmes et le décentrage. L’absence de condition
CFL reste aussi une différence notable entre méthodes particulaires et méthodes de différences finies. Cette
analyse doit être complétée, notamment pour évaluer les termes de viscosité artificielle optimaux pour
ces méthodes.

1. Introduction

Particle methods are Lagrangian techniques that have been designed for advection-dominated physi-
cal problems. Among the features that are generally acknowledged for these methodes are the lack of
numerical dissipation and the robustness due to the absence of Courant type stability condition. A well
recognized drawback is the potential accuracy deterioration resulting form high distortion in the flow. A
common remedy to this problem is the periodic remeshing of particles in a way that conserves as much
as possible the physical invariants of the flow. Truncation errors related to remeshing can be measured
on the basis of the conservation of these invariants [2]. In practical implementation of the method, time-
scales wich control the particle advection schemes and on which particle remeshing is done are of the
same order, which often leads to remeshing particles at every time-step. In that case, it may be advisable
to revisit the truncation error analysis of the method. This is in particular true if one is interested in
subgrid behavior of particle methods for turbulent flows or entropy balance in particle methods. The goal
of this work is to undergo this analysis in the case of particle methods with remeshing at every time-step.
We rewrite particle methods as finite-difference methods. We investigate two remeshing kernels which
are commonly used in the literature. In the linear case we show that remeshing with these kernels leads
to Lax-Wendroff like schemes 1 . In the non-linear case, this interpretation leads us to propose new RK2
particle advancing schemes. With this time-stepping, we write an equivalent equation to leading order

1 as we were completing this paper, the reference [3] was brought to our attention. In this reference the authors use the
Lax-Wendroff analysis of particle methods to propose modified remeshing kernels.
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of the method, which resembles that of Lax-Wendroff schemes. For Burger’s equation we are able to
derive an energy balance which allows to propose artificial viscosity schemes that enforce energy control.
We finally show some numerical comparisons with the Lax-Wendroff scheme to complete our numerical
analysis. These preliminary results essentially focus on the 1D case ; extensions to gas dynamics are given
in [1] and in ongoing work.

2. Remeshed particle methods

Let us consider the model non-linear scalar equation, describing the evolution of the quantity u carried
by the flow at the material velocity g(u) :

ut + (g(u)u)x = 0 (1) (1)

Particle methods consist of sampling u on particles advected with velocity g(u) and constant strength :

u(x) ≃
∑

p

αpδ(x − xp) , ẋp = g(up) (2)

The strength of particles combines local volumes vp and local u values up : αp = vpup. Note that, while
particle strengths are constant, volumes and local values evolve according to

v̇p = (∂g(u)/∂x)(xp)vp , u̇p = −(∂g(u)/∂x)(xp)up (3)

In purely lagrangian particle methods, velocities and their derivatives are computed by smoothing par-
ticle strength over a space scale containing a few particles. The smoothing range must adapt to the flow
conditions to smooth out irregular motions [5]. In remeshed particle methods, every few time-steps par-
ticles are remeshed on a predefined regular grid. Here we consider the case of a uniform grid. Remeshing
is done by interpolating particle strength with a kernel Λ with compact support. If

∑

p αpδ(x − xp) and
∑

q α̃qδ(x−xq) are respectively the original and remeshed particle distribution, with x̃q = qh on a regular
grid of grid-size h, remeshing formulas read

α̃q =
∑

p

αpΛ(
xp − x̃q

h
) (4)

Conservation of successive moments
∑

α̃q =
∑

αp ,
∑

x̃qα̃q =
∑

xpαp ,
∑

x̃2
qα̃q =

∑

x2
pαp · · · can be

enforced by using kernels extending to an increasing number of points. The following formulas respectively
guarantee conservation of the 3 and 4 first moments and are widely used in CFD :

Λ2(x) =



















1 − x2 if |x| ≤ 0.5

(1 − |x|)(2 − |x|)/2 if 0.5 < |x| ≤ 1.5

0 if |x| ≥ 1.5

, Λ3(x) =



















(1 − |x|2)(2 − |x|)/2 if |x| ≤ 1

(1 − |x|)(2 − |x|)(3 − |x|)/6 if 1 < |x| ≤ 2

0 if |x| ≥ 2.

(5)

3. The linear case : g(u) = a

We denote respectively by ∆t and h the time-step and grid-size. Let us first consider the above 3-points
remeshing formula Λ2, and assume that λ = a∆t/h ≤ 1/2. In this case, a particle initially at grid point
number p with xp = ph will after one time-step be remeshed onto 3 particles located at grid points p,
p − 1 and p + 1. If we denote by αn

p = h un
p the particle strength at grid-point p and time tn = n∆t, we

can write

un+1
p = c0u

n
p + c+1u

n
p+1 + c−1u

n
p−1 (6)
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The weights ci determined from the conservation of the 3 first moments must satisfy the following rela-
tions :

c−1 + c0 + c+1 = 1 , c−1 − c+1 = λ , c−1 + c+1 = λ2 (7)

from which we readily get c0 = 1−λ2, c±1 = ∓λ(1∓λ)/2. This is the Lax-Wendroff scheme. If 1 ≥ λ > 1/2
one obtains an upwind version of the Lax-Wendroff scheme. Finally if λ > 1 and if we set m = [λ] and
t̃ = mh/a, the particle method can be interpreted as solving exactly the advection equation from tn to
tn + t̃ then using one of the above finite-difference schemes from t̃ to tn+1. This reflects the well-known
fact that particle methods are not constrained by CFL conditions.

If one now considers the case when we use the function Λ3 to remesh particles, under the CFL condition
λ ≤ 1 we obtain a 4-points upwind finite-difference scheme :

un+1
p = c0u

n
p + c+1u

n
p+1 + c−1u

n
p−1 + c−2u

n
p−2. (8)

Conservation of the 4 first moments gives the relations

c−2 + c−1 + c0 + c+1 = 1 , 2 c−2 + c−1 − c+1 = λ , 4 c−2 + c−1 + c+1 = λ2 , 8 c−2 + c−1 + c+1 = λ3(9)

The Fourier analysis of this scheme shows that it is third order accurate : if we denote by ûn
k the k−th

fourier mode of the scheme at time tn we have

ûn+1

k = ûn
k [c0 + c−2 exp (−2ikh) + c−1 exp (−ikh) + c+1 exp (ikh)]

and a Taylor expansion in K = kh gives, to third order,

ûn+1

k = ûn
k

[

c−2 + c−1 + c0 + c+1 + (−2c−2 − c−1 + c+1)iK − (4c−2 + c−1 + c+1)K
2/2

+ (8c−2 + c−1 − c+1)iK
3/6 + O(K4)

]

= ûn
k

[

1 − λiK − λ2K2/2 + λ3K3/6 + O(K4)
]

.

This is, to third order, the Taylor expansion of the exact solution of the advection equation. This scheme
is therefore third order accurate. More generally it is not difficult to see that a particle method with a
remeshing formula conserving the p first moments is equivalent to a finite-difference scheme of order p.

4. The non-linear case

Here, for a sake of simplicity, we restrict the discussion to the Λ2 remeshing formula and we assume that
the CFL condition ∆t|maxp g(up)| ≤ 1/2 is satisfied. To obtain a second order method in the non-linear
case it is clearly necessary to use a second-order time-stepping method to advance particles. In classical
implementations of particle methods, particles are moved with e.g. Runge-Kutta methods. In a mid-point
second order RK time-stepping, particles would be moved for half a time-step, and velocities would be
computed at these locations by interpolation and combined with velocities at the beginning of the time-
step. Here we propose a different method which is both numerically more efficient and analytically more
tractable. To evaluate particle velocity at time tn + ∆t/2, we use (3) and write

un+1/2
p = un

p (1 − ∆t g(u)x(xp)/2) . (10)

The finite-difference formulas corresponding to this method can be derived along the same lines as in the
linear case :

un+1
p = un

p −
∆t

2h
(g̃n

p+1u
n
p+1 − g̃n

p−1u
n
p−1) +

∆t2

2h2

(

(g̃n
p+1)

2un
p+1 − 2(g̃n

p )2un
p + (g̃n

p−1)
2un

p−1

)

(11)
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where we have set g̃n
p = g(u

n+1/2
p ).

Proposition 1 The scheme (10),(11) is second order accurate for smooth solutions. If we set µ = ∆t/h,
its equivalent equation to second order is

ut + (g(u)u)x + h2

[

1

6
(g(u)u)xxx +

µ2

6
uttt + +

µ2

8
(g(u)2xu3g′′(u))x +

µ2

2

(

g(u)g′(u)u2g(u)x

)

xx

]

= 0(12)

The proof classically relies on Taylor expansions the details of which will be given elsewhere. In practice

the calculation of u
n+1/2
p is done by finite-difference approximations of the right hand side of (10). We

obtain a fully discrete scheme if we replace formula (10) by

un+1/2
p = un

p

[

1 −
µ

4
(g(up+1) − g(up−1)

]

. (13)

Proposition 2 The scheme (13),(11) is second order accurate for smooth solutions. Its equivalent equa-
tion to second order is (12). Moreover, for the Burger’s equation (g(u) = u/2) this scheme is energy
decreasing when supplemented with an artificial viscosity term of the form Cµ∆− (|∆+uj|∆+uj) for C ≥
0.48.
In the above result, we have used the usual notations : ∆±fj = ±(fj±1 − fj). The first part of our
assertion only results from the fact that the truncation error from the centered approximation of the
derivatives of g in (13) only adds third order error terms that do not modify the equivalent equation. Our
second assertion comes from lengthy calculations in the spirit of [4]. As a matter of fact the equivalent
equations (12) and that of Lax-Wendroff are very similar. However, the numerical results that we show
below suggest that their behavior are rather different and that the form of the artificial viscosity proposed
in Proposition 2 is not optimal. Note that similar results can be obtained when the remeshing formula
Λ3 is used. The resulting upwind 4-points finite-difference scheme is second order in time and third order
in space.

To finish this section, let us comment on the computational complexity of the scheme (13),(11) for
multidimensional problems. If u is a scalar or vector quantity and G(u) is the advection velocity field, to

compute u
n+1/2
p one must evaluate the divergence of G(u). This can be easily done by a centered formula

using 2d points. Although strictly speaking based on a 5 points stencil, the scheme complexity is thus of
order 2d + 3d, to be compared respectively to 3d and 5d for 3-points and 5-points schemes.

5. Numerical illustrations

In this section we complement our numerical analysis with experimental comparisons with the Lax-
Wendroff scheme. We considered the Burger’s equation with initial condition u0(x) = 0 if x < 0.5 and
u0(x) = 1 if x ≥ 0.5. This initial profile produces a shock and an expansion wave that eventually merge
together. The top row of figure 1 shows results for the Lax-Wendroff scheme and the particle method with
Λ2 remeshing at two subsequent times. Both calculations used h = 0.01, µ = 0.8 and an artificial viscosity
coefficient 0.3 produced similar results. The bottom row illustrates the main differences between the two
schemes. The left picture shows results without artificial viscosity. These calculations suggest that, unlike
the Lax-Wendroff schemes, the particle method, at least in this case, does converge towards the entropy
solution, something that the present analysis is not able to predict. The right picture illustrates the fact
that particle method are not constrained by CFL conditions. In this calculation, the time step was locally
(in space and time) adapted to the local strain in the flow to prevent particles to cross. The corresponding
µ varied from 0.07 to 2.5. The artificial coefficient was 0.5. This calculation actually seems to give the
best results for the particle method. In all these figures, the solid lines (resp. dotted lines) correspond to
the exat (resp. computed) solutions.
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Fig. 1. Comparison of Lax-Wendroff (LW) and particle schemes. Top row : LW (left) and particle (right) schemes with
h = 0.01, artificial viscosity coefficient 0.2 and µ = 0.84. Bottom left : LW (blue curve) and particle (red curve) schemes
without artificial viscosity at t = 1.5 and h = 0.0025 . Bottom right, particle method with adaptive time-step and h = 0.01.

6. Conclusion

We have presented a new analysis of particle method with remeshing. We have shown analogies of these
method with a class high order finite-difference methods, with however definite advantages for particle
methods : natural handling of up-winding through particle advection, simple extensions to system and
added flexibility in the choice of time-steps. Further works are needed to continue this analysis and in
particular to evaluate the optimal artificial viscosity terms to implement in the particle schemes.
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