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Abstract

A new analytical description model, called the standard model, for the discretization
of Euclidean linear objects (point, m-flat, m-simplex) in dimension n is proposed.
The objects are defined analytically by inequalities. This allows a global definition
independent of the number of discrete points. A method is provided to compute the
analytical description for a given linear object. A discrete standard model has many
properties in common with the supercover model from which it derives. However,
contrary to supercover objects, a standard object does not have bubbles. A stan-
dard object is (n — 1)-connected, tunnel-free and bubble-free. The standard model
is geometrically consistent. The standard model is well suited for modelling appli-

cations.
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1 Introduction

When working in discrete geometry, aside from considering an object simply
as a set, of discrete points, the problem of defining discrete geometrical objects
arises. A discrete 2D line segment can be defined as 8-connected, 4-connected
or even disconnected as a dotted line. There is not a unique way of defining
a discrete object or of digitizing a Euclidean object. This problem has been
around for forty years and many different discrete object definitions have been
proposed. One can say that authors have followed three main approaches to
define discrete geometrical objects: an algorithmic approach, a topological ap-
proach and a more recent analytical approach followed in this paper. In the
algorithmic approach [1,10,13,16,21-24,34] a discrete object is the result of a
generation algorithm. Historically, the first approach that has been used, it
has shown a number of limitations. It is often difficult to control the proper-
ties of the so defined discrete objects. For instance, the discrete objects might
not be geometrically consistent : the edge of a 3D triangle is typically not
necessary a 3D line segment or the 3D triangle is not a piece of 3D plane
[21,22]. Tt is also difficult to propose generation algorithms for discrete objects
in dimension higher than three. Except for n-dimensional lines [34], to the
best authors knowledge, no discrete object, in dimensions higher than three,
has been algorithmically defined. In the topological approach, a discrete ob-
ject is typically defined as a class of objects verifying local properties, often
topological in nature [18-20,25,28]. While it is, by definition, easier to obtain
the desired properties, it is difficult to be sure with such an approach, that
the class of objects defined by a given set of properties is not larger than what

is initially expected. A third, more recent approach, defines a discrete object



by a global analytical definition [2-5,7,9,17,18,25,30,32]. This approach has
many advantages such as providing a compact definition (independent on the
number of points forming the discrete object), a global control of the discrete
object. It has also an advantage that is not immediatly visible when one is not
familiar with this approach. It allows a good control of the local topological
properties of the object. The many links with mathematical morphology are
also an interesting property of some analytically defined models such as the
supercover model [7,19,26,29,31,33]. One of the main advantages is that it is
relatively easy to define discrete objects in an arbitrary dimension [3,4,7,30,32].

The standard model introduced in the following pages is analytically defined.

A new analytical description model for all linear objects in dimension n (dis-
crete points, m-flats and geometrical simplices) is presented in this paper.
The analytical model is called the standard model. The names derives from
the name given by J. Frangon [18] to (n — 1)-connected analytical discrete
3D planes (see also [4] for general details on discrete analytical hyperplanes).
To the best authors knowledge, it is the first time that a discrete model is
proposed that defines a large class of discrete objects in arbitrary dimensions.
The standard model is called a discrete analytical model because the discrete
objects (points, m-flats, simplices) are defined analytically by inequalities. The
analytical definition is independent of the number of discrete points of the ob-
ject. For instance, a 3D standard triangle is defined by 17 or less inequalities

independently of its size.

The model we propose has many interesting properties. The model is geomet-
rically consistent: for instance, the vertices of a 3D standard polygon are 3D
standard points, the edges of a 3D standard polygon are 3D standard line seg-

ments and the 3D standard polygon is a piece of a 3D standard plane. It has



been shown that the standard model is in fact a O-discretisation of Brimkov,
Andres and Barneva [12] and therefore is (n — 1)-connected and tunnel-free.
In 3D, (n — 1)-connectivity in our notations corresponds to the classical 6-
connectivity. Contrary to the supercover model, from which it derives, the
standard objects are bubble-free. One of the problems of the supercover model
is that it is not topologically consistent. A supercover m-flat is always (n — 1)-
connected but sometimes it has simple points (located on so-called bubbles
on the object). This makes the model difficult to use in practice [14,15]. For
instance, a supercover of a Euclidean nD point can be composed of any 2°
discrete points, 0 < 7 < n. A standard m-flat is almost identical to the su-
percover m-flat, it remains (n — 1)-connected and tunnel-free, except for the
simple points in the bubbles that are removed. The standard digitization of
a nD Euclidean point is always composed only of one discrete point. Finally,
the standard model has a very important property in the framework of dis-
crete modelling: St (FFU G) = St (F) U St (G). This means that, for instance,
the definition of the standard 3D polygon is sufficient to define the standard

model of an arbitrary Euclidean polygonal 3D object.

The definition of the standard model is derived from the supercover model
[2,5,6,14,15,31,7]. A standard object is obtained by a simple rewriting process
of the inequalities defining analytically a supercover object [7]. A supercover
linear object is defined by a set of inequalities """ | a;X; < ag”. The simple
points in the bubbles are points that verify ">7" , a;X; = a¢”. In order to
remove the simple points, and thus bubbles, some of the inequalities need
simply to be rewritten into "> ; a; X; < a¢”. The selection of inequalities

that are modified is based on an orientation convention. Depending on the

orientation of the half-space, the corresponding inequality is modified or not.



In section 2, we introduce our notations and the principal properties of the
supercover model on which the standard model is based. In section 3 the stan-
dard model is introduced and defined. We start, in section 3.1, by explaining
why such a “heavy” mathematical machinery is necessary to define (n — 1)-
connected discrete objects. We show in particular why a classical, misleading,
approach does not work. In section 3.2, we explain the basic ideas behind
the standard model. In section 3.3, we introduce the orientation convention
that forms the basis of the definition of the standard model. The standard
model is defined for all linear primitives in dimension n in section 3.4. The
properties of the standard primitives, especially the tunnel-freeness and the
(n — 1)-connectivity, are presented in section 3.5. In section 4, we examine the
different classes of standard linear objects to see how the definition is trans-
lated in practice and how the different inequalities defining the objects are

established. Conclusion and several perpectives are presented in section 5.

2 Preliminaries

2.1 Basic notations in discrete geometry

Most of the following notations correspond to those given by Cohen and Kauf-
man in [14,15] and those given by Andres in [7]. We provide only a short recall

of these notions.

Let Z™ be the subset of the nD Euclidean space R™ that consists of all the
integer coordinate points. A discrete (resp. Euclidean) point is an element of
Z" (resp. R"). A discrete (resp. Euclidean) object is a set of discrete (resp.

Euclidean) points. A discrete inequality is an inequality with coefficients in R



A{P°P'}
T=8*({P°P",P?%)

E({P°P',P%,P?)
P2

Fig. 1. Triangle T = 2 ({PO,Pl,P2}), edge S* ({PO,PI}), straight line
A ({P°, P'}) and half-space E ({P°, P!, P?}, P?)

from which we retain only the integer coordinate solutions. A discrete analyt-
tcal object is a discrete object defined by a finite set of discrete inequalities.

An m-flat is a Euclidean affine subspace of dimension m.

Let us consider a set P of m + 1 linearly independent Euclidean points
PY ..., P™ We denote A™ (P) the m-flat induced by P (i.e. the m-flat con-
taining P). We denote S™ (P) the geometrical simplex of dimension m in
R™ induced by P (i.e. the convex hull of P). For S = S™ (P) a geometrical
simplex, we denote S = A™ (P) the corresponding m-flat. For a n-simplex
S = S"(P), we denote E (S, P?) the half-space of boundary A" ! (P \ P?)

that contains P* (see figure 1).

We denote p; the i-th coordinate of a point or vector p. Two discrete points
p and ¢ are k-neighbours, with 0 < k < n, if [p; — ¢;] < 1 for 1 < i < n, and
k <n—37,|pi— ¢l The vozel V(p) C R" of a discrete nD point p is defined
by V(p) = [pl — ;i + %] X - X [pn — 5.0+ %} For a discrete object F,
V(F)= gFV(p). We denote o™ the set of all the permutations of {1,...,n}.
Let us depnote Jn the set of all the strictly growing sequences of m integers all

between 1 and n: J?, = {j € Z™|1 < j; < j2 < ... < jm < n}. This defines a



set of multi-indices.

Let us consider an object F' in the n-dimensional Euclidean space R", with

n > 1.

The orthogonal projection is defined by:

T (F) ={(q1,-- -, Gi-1,Git1,-- -, qn) g € R }, for 1 <i < m;
mj (F) = (mj, omj, 0---om;, ) (F), for j € Jp,.
The orthogonal extrusion is defined by:
ej (F) =" (m; (F)), for j € Iy,
Example: Let us consider the set of points P = {P°(0,0,0), P (9,1,1), P?(3,8,4)}.
The corresponding simplex T' = S? (P) is a 3D triangle. The orthogonal pro-
jection my (T') = S? (12 (P)) = S? ({(0,0),(9,1),(3,4)}) is a 2D triangle. The

orthogonal extrusion e, (7') = {(0,t,0),(9,¢,1),(3,t,4)|t € R} is a 3D Eu-

clidean object defined by 3 half-spaces.
We define an axis arrangement application r;, for j € J7,, by:
rj : R" - R"

v (fvaju),xgj@), e axaj(n))

where the permutation o; € 0" is defined by:

for 1 <i<m,o;(j;) =1

else, for m <i <n,o; (k) =1



so that k, < k,yy and k., # js for all 1 < r < n—m and for all 1 <
s < m. The axis arrangement application has been specifically designed so
that it verifies the two following properties: m; (F) = T(1,2,...m) (rjfl (F)) and
& (F) =7; (c.2,m) (r;* (F))) for all F in R" and j € J7.

Example: Let us consider the 5D point P (1,2,3,4,5) and j = (2,4) € J5.
The corresponding axis arrangement application is defined by rp4) @ 2 —
(23,21, x4, X9, T5) and 7”(72}4) : & > (29, x4, 21, 23, x5). The orthogonal projection
verifies m(24) (P) = m(12) (rgy (P)) = 712) (2,4,1,3,5) = (1,3,5).

The orthogonal extrusion verifies e(2.4) (1,3,5) = r(24 (6(1,2) (r@h) (P)))

= T(2,4) (5(172) (2,4,1,3, 5)) = T(2,4) (Wa}z) (1,3, 5)) and therefore

£, (1,3,5) = ray ({(t, 6, 1,3,5) |(t,u) € R*}) = {(1,t,3,u,5)|(t,u) € R*}.

2.2 Geometric properties of the Supercover

A discrete object G is a cover of a Euclidean object F' if FF C V(G) and
Vp € G,V (p)NF # &. The supercover S (F) of a Euclidean object F is defined
by S(F) ={peZ"|V(p)NF # @} (see Figure 2a). S (F) is by definition a
cover of F. It is easy to see that if G is a cover of F' then G C S (F'). The
supercover of I’ can be defined in different ways: S (F') = (F ® B> (%))HZ” =
{p S ‘doo (p, F) < %} (see Figure 2b) where B* (r) if the ball centered

on the origin, of radius r for the distance d*°. This links the supercover to

mathematical morphology [29,31,7,26].

The supercover has many properties. Let us consider two Euclidean objects F'
and G, and a multi-index j € J7, then: S (F) = UperS (o), S(FUG) =

S(F)US(G), if F C G, then S(F) C S(G). These properties are well
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(a) (b)
Fig. 2. Supercover definitions.

known [14,15]. The following properties are more recent and are useful in the
framework of this paper: S (F' x G) = S (F) x S(GQ), r; (S (F)) = S (r; (F)),
m; (S (F)) =S (m; (F)) and &; (S (F)) =S (g; (F)) = r; (Z™ x 8 (m; (F))) [7].

Definition 1 (Bubble)

A k-bubble, with 1 < k < n, s the supercover of a Fuclidean point that has

exactly k half-integer coordinates.

A half-integer is a real [ + %, with [ an integer. A k-bubble is formed of 2* dis-
crete points. A 2-bubble can be seen in figure 2a (marked by the black circle).
The two white dots are what we call here ”"simple” points. This corresponds
to an extension of the notion of simple points that fits a supercover simplex.
A point P belonging to the supercover simplex S is said to be a simple point

if it is a simple point for S with the classical definition given in section 2.1.
Definition 2 (Bubble-free)

The cover of an m-flat is said to be bubble-free if it has no k-bubbles for k > m.

The cover of a simplex S is said to be bubble-free if S is bubble-free.



There are two types of bubbles in the supercover of an m-flat F'. The k-bubbles,
for £ < m, are discrete points that are part of all the covers of F'. If we remove
any of these points, the discrete object is not a cover anymore. In the k-
bubbles, for k£ > m, there are discrete points that are “simple” points. The
aim of this paper is to propose discrete analytical objects that are bubble-free
and (n — 1)-connected by removing some of the simple points. In figure 2a, by
removing one of the two simple points, we obtain a bubble-free, 1-connected

discrete 2D line segment.

Lemma 1 A discrete point p belongs to a k-bubble, k > m, of the supercover
of an m-flat F' if and only if there exists a point a € F with k half-integer

coordinates such that p € S («).

The proof of this lemma is obvious.

3 Standard Model

The aim of this paper is to propose a new cover class, called the standard
cover. The standard cover is so far only defined for linear objects in all di-
mensions. The discrete analytical model has been designed to conserve most
of the properties of the supercover, to be bubble-free and (n — 1)-connected.
The supercover model has almost all the properties we are looking for: tunnel-
freeness, (n — 1)-connectivity, stability for union, etc. The only property that
is missing is the bubble-freeness. Some supercover objects have simple points.
The model is therefore not topologically consistent and this is a problem for
several applications such as, for instance, polygonalization. For this reason

several attempts have been made to modify the supercover discretization by

10



modifying the definition of a pixel [27,14,15]. We show in the following sec-
tion that such attempts can’t work. In our approach, presented in section 3.2,
we explain how, by studying the analytical description of linear objects, it is
possible to remove selectively the simple points in the supercover model while
preserving the modeling properties. In the section that follow the standard

model and its properties are introduced.

3.1 What does not work with the classical approach

Several unsuccessful attempts have been made to define discrete objects that
have supercover type modeling properties with bubble-freeness and (n — 1)-
connectivity properties [27,14,15]. All these ideas basically modify, in various
ways, the definition of a voxel in order to avoid bubbles. We give here a
simple such example and show why it does not work that way (see [14] for
some other examples). In Figure 3, the pixel definition has been changed. A
pixel is now formed of the SW vertex (black disk), the two corresponding edges
(bold edges) and its’ interior. The three other vertices and two other edges
do not belong to the pixel. This definition derives that U,cz. V(p) = R* with
V(p) NV (q) = @ for p # q. The discretisation of a discrete line is necessarily
bubble-free. However, as we see in figure 3, the discretised line x; — xy = 0 is
not 1-connected. In fact, it has been shown as early as in 1970 [27], that no
change in the definition of the pixel or voxel can lead to a correct solution. This
means that a simple pixel definition modification avoids bubbles but creates
primitives that aren’t topologically consistent. This makes such a model useless
for applications such as polygonalization. Tunnel-freeness property is also lost

with such an approach.

11
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Fig. 3. Supercover discretisation of 1 — x9 = 0 and z; + x2 = 0 with classical and

modified pixel definition.

3% -Tx2=-5 .

s

3x1-Tx2=-5

L~ 4

3'X1 . 7'X2 = _,2-bubble

e |

[=]

Fig. 4. Standard and Supercover straight line. The black points belong to both line.

The white point belongs only to the supercover.

3.2 Standard model approach : a modification of the supercover definition

The discrete analytical description of the supercover of a linear convex is de-
fined as intersection of half-spaces defined by discrete inequalities Y 7" ; a;x; <
ap [2,5-7]. A linear concave object is simply considered as union of convexes.
The orientation of each half-space is checked with an orientation convention
and depending on it, its inequality “ " ; a;x; < a¢” remains unchanged or is

replaced by “3% , a;x; < ag”.

12



Let us give a simple example, the 2D straight line D : 32y — T2y = 0 shown in
figure 4, to illustrate why and how this works. The general case in dimension n
works exactly in the same way. The supercover of the Euclidean line D is de-
scribed by the two inequalities S (D) = {(z1,x2) € Z%|—5 < 3xy — Tzo <5}
A bubble occurs only when the straight line D contains half-integer coordi-
nate points. We have then (and only then) discrete points verifying on one
side 31 — 7Tz = —5 and on the other side 3z, — 7z = 5. All these points
are simple points. Removing the points on one side only leads to a discrete
straight line that is 1-connected, separating, 1-minimal and bubble-free. This
can be done simply by replacing a “<” by a “<” for one of the two in-
equalities in the supercover analytical description. In the case of Figure 4,
we have St (D) = {(z1,7s) € Z%|-5 < 3z, — Tz < 5}. The change is based
on an orientation convention. Opposing half-spaces such as ”3x; — 7Txy < 57
and " —3x; + 7xy < 5”7 have a different orientation in this convention and thus
only one of them will have its’ ”<” changed into ” <”. This ensures that only

one simple point for the 2D line will be removed.

3.3 Orientation convention

The standard model, contrary to the supercover, is not unique [7,9]. For in-
stance, in example of Figure 4, one of two possible simple points can be re-
moved. Each selection leads to another standard model definition. It depends
on the orientation convention selection. One orientation convention per di-
mension R™ m > 0, is required. This selection must then remain unchanged
for all the primitives handled. The selection of an orientation convention per

dimension has to be coherent with the operator «. The property St (r; (F')) =

13



7; (St (F')) for the operator = should be verified. If this is not the case, the
modelling properties won’t be verified (such as St (FFUG) = St (F)) U St (G),
etc.). In general, with arbitrary orientation conventions there is no reason for
this property to be verified. We propose a set of orientation conventions, de-
noted O™ and called the basic orientation conventions. The basic orientation

conventions verify the above mentioned property.

Definition 3 (Standard orientation)

Let us consider a discrete analytical half-space E : >0, C;X; < B and the

basic orientation convention O™. We say that E has a standard orientation if

o () >0;

e orif C; =0 and Cy > 0;

o

e orif Ci=---=C,,_1=0and C, > 0.

If E has not a standard orientation then we say that E has a supercover

ortentation.

We consider from now on, without loss of generality, only the basic orientation
conventions for all n > 0. All the standard primitives are defined with these
basic orientation conventions. The basic orientation conventions are coherent
with respect to the operators 7. After 7;, for j € J7, the orientation convention

O"™ in R"® becomes O™ ™ in R*~™,

14



3.4 Standard model definition

All the elements required to define the standard discretisation model of linear

objects in R" are available:
Definition 4 (Standard Model)

Let F' be a linear Fuclidean object in R" whose supercover is described ana-
lytically by a finite set of inequalities Fy, : 31 CixX; < By. The standard
model St (F') of F, for the basic orientation convention O™, is the discrete
object described analytically by o finite set of discrete inequalities F,; obtained

by substituting each inequality F} by F,; defined as follows:

o [f F} has a standard orientation then F,; : i Cip Xy < By

e clse F]; : Z?:l Cz,sz S Bk

This definition is algorithmically easy to set up. Once a discrete analytical
description of an object is available, the transition from the supercover model

to the standard model and vice-versa is trivial.

3.5  Geometric properties of the Standard model

In this section, some properties of the standard model are presented. These
properties are very important for the derivation of our model description. Let
us consider a Euclidean linear object F' of topological dimension m in R*. We
have by definition St (F') C S (F') even more precisely, if p € S (F) \ St (F),
then d* (p, F) = % A standard object is a supercover object from which some

discrete points have been removed. These points are all at a distance % from

15



the Euclidean primitive. We have St (F') = S (F) if no point, with at least
m + 1 half-integer coordinates, belongs to the boundary of F'. The differences
between the supercover of F' and the standard model of F' are located in the
k-bubbles of F', for £ > m. Figure 4 illustrates this in dimension 2. One of
the immediate consequences of this last property, is that the standard model
remains a cover: F' C V(St(F)). That is why the standard model is also

sometimes called standard cover [33,31].

The standard model retains most of the set properties of the supercover. It
is easy to deduce from definition 4, that if we consider two Euclidean linear

objects F' and G in R", then:

St(FUG) =St (F)USt(G); St(FNG) CSt(F)NSt(G)
FCG=St(F)CSt(@); St(FxG)=St(F)xSt(G);

St (m; (F)) = m; (St (F)); St (¢ (F)) = ¢; (St (F)) .

The first property ensures that we’ll be able to construct complex discrete
objects out of basic elements such as simplices. These last properties are char-
acteristic of correct orientation conventions. The properties are only verified
if the orientation conventions are defined for all dimensions lower or equal to
n and if they are coherent with respect to the operator 7. This is the case for

the basic orientation conventions OF, for k < n.

It is important to notice that, in general, St (F') # Uyer St (). This property
of the supercover is not conserved. We have St (F'UG) = St (F))USt (G) for a
union of a finite number of objects. This comes simply from the fact that the

standard model is not defined for an analytical description that has an infinite

16



number of discrete inequalities. One simple example for that is given by the 2D
line D : xy—x9 = 0. The standard model of the lineis St (D) : =1 < z1—x5 < 1

while Uper St () 1 =1 < zp — 29 < 1.

One of the main properties of the standard model concerns the connectivity

and the tunnel-freeness:

Theorem 2 (connectivity and tunnel-freeness)

Let F be a Fuclidean linear object of topological dimension m in R". Its stan-

dard model St (F') is (n — 1)-connected and tunnel-free.

The standard model is a particular case of k-discretisations as introduced by
Brimkov, Andres and Barneva in [12]. It is shown that the standard model
is in fact a O-discretisation (Theorem 3 in [12]) and that O-discretisations are
(n — 1)-connected and tunnel-free (proposition 3 in [11] and theorem 4 in [12]).
Another property proved in [31,33,12] is that the standard model minimizes

the Hausdorff distance with the Euclidean object.

4 Description of standard primitives

We'll examine now the discrete analytical description of the different classes
of standard linear primitives (half-space, point, m-flat and m-simplex) and
how they can be computed. Our purpose here is to propose a discretisation
scheme that can be used is practical applications. As stated in definition 4,
every analytical description of a standard linear primitive is based on the
analytical description of a standard half-space. That is the one we present

first. We deduce from it the discrete analytical formulas describing a standard

17



point, m-flat and m-simplex in the sections that follow.

4.1 Standard Half-space

The standard half-space is given by :
Proposition 3 (Standard half-space)

Let us consider a Euclidean half-space E : 7' C; X; < B. The standard model

St (E) of E, according to an orientation convention, is analytically described

by:

e If E has a standard orientation then St (E) = {p ez

n T: Cl
i:1Cipi<B+Zz+};

e clse St(F) = {p SV

iz Cipi §B+#}_

The proposition is an immediate extension to dimension n of results on the

supercover [2,4,5,7] and of definition 4.

4.2 Standard point

The analytical description of a standard point can easily be deduced from the
one of the standard half-space. It is however interesting to notice that the
standard discretisation of a Euclidean point is always composed of one and
only one discrete point contrary to what happens with a supercover discretiza-
tion of a Euclidean point that can be formed of 2% points, 0 < k < n (in case

of a k-bubble).

Proposition 4 (Standard point)

18
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Fig. 5. Different configurations of 2D standard points. A standard point is formed

of only one discrete point.

Let us consider a Euclidean point o € R* and the basic orientation convention

O™. The standard model St () of « is the discrete point:

The proof is obvious. In figure 5, the cross represents the Euclidean point. The
black dot represents the corresponding discrete standard point. The square
with the doted lines represent the zone covered by the 4 inequalities corre-

sponding to the analytical description of a standard point.

4.8  Standard m-flat

One of the consequences of the properties St (; (F')) = m; (St (F')) and St (¢; (F)) =

g (St (F')) is that the formulas that lead to the discrete analytical description
of a standard m-flat or of a standard m-simplex are simple transpositions of

the formulas that have been established for the supercover [7].

Proposition 5 (Standard m-flat)

Let us consider an m-flat F' in R* and the basic orientation conventions OF,

for all k > 0.
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a) If F is a 0-flat in R™, we apply proposition 4,
b) If F is a (n — 1)-flat, we apply twice proposition 3,

c) else the analytical description of the standard model of F is given by:

St(F)= [1 Stle;F)= () r5(@" xSt(m;(F)))

FISU JelIy

n—1l-—m n—1l-—m

We reapply then, recursively, the corresponding cases a), b) or c¢) on m; (F)

forallj el | ..

This proposition is composed of several steps that lead to the analytical de-
scription of the standard m-flat. Let us discuss step ¢). The formula St (F') =

N St(eg; (F)) alone is not sufficient to describe the standard m-flat, with
JeIy

n—1l—m

0 <m <n—1,since ¢; (F) is not necessarily a hyperplane in R”. We might

n
n—1-m-

even have F' = ¢; (F) for some j € J The way around this problem is
to examine 7; (F') in R™*!. The new orientation convention for R™*! after m;
is O™t

We have different cases that occur:

e If r; (F) is a hyperplane in R™*! then ¢; (F) is a hyperplane in R". We do
not actually need to consider 7; (F'). We can directly use case b). It is easy
to see that we obtain the same result by applying directly proposition 3 on
g (F)) or by applying r; (Z™ x St (7 (F))).

e If 7; (F) is a point in R™*! then we consider case a) in R™*!, with the basic
orientation convention, and formula r; (Z™ x St (7 (F))).

o If m; (F) is a k-flat, 0 < k < m, in R™"! then we consider again case c),
with the basic orientation convention. We have, by definition, St (r; (F')) =

N St(ej (m; (F))). We repeat the operation described in case c) for

. m+1
JlEJm—k

7y (7 (F)) in RFL.
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We know that this process ends since each time we repeat case c¢) we consider
a new object in a space of strictly lower dimension. The following example

illustrates how this definition works in practice:

Example : Let us consider the 3D line F' = {¢(6,7,3) |t € R}. The supercover

of F' contains a 2-bubble. We are in case c) of proposition 5 and thus

St(F) = () St (e (F)) = St (1 (F)) NSt (g5 (F)) NSt (e5 (F))

cT3
ey

We have 7, (F) = {t(7,3) |t € R} which is a 1-flat in R?* and therefore case
b) of proposition 5 applies. We have m (F) = {X € R?|3X;, —TX, =0}
that corresponds to two haf-spaces ”"3X; — 7Xy, < 0”7 and "—3X; + 7X, <
0”. The half-space "3X; — 7X, < 0” has a standard orientation (definition
3). The standard analytical description is therefore ”3p; — 7py < 5”. The
half-space ”—3X; + 7Xs < 0” has a supercover orientation and its stan-
dard description is thus ”—3p; + 7py < 5”. We have therefore St (m, (F)) =
{p € Z*|-5<3p, — Tps <5}. The analytical description in dimension 3 is
obtained with the formula St (g1 (F)) = ry (Z x St (7, (F))). The axis renu-
merotation is 71 : x +— (21, T9, X3).

We have therefore St (g, (F)) = {p € Z*|—5 < Op; + 3po — Tp3 < 5}. In the
same way we obtain St (g5 (F)) and St (e5 (F)):

As a final result, we have a discrete analytical description of the standard
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Fig. 6. Supercover and Standard 3D line.

cover of I

—5<3py —Tp3 <5

3

—13/2 < Tp; — 6ps < 13/2 J

Notice that here St (e5 (F))) =S (62 (F')) and St (3 (F')) =S (3 (F')). The only
difference between the standard line and the supercover line comes from e, (F).
This is illustrated by figure 6 that shows the supercover and the standard

model of F'.

Notice that the standard 3D line is in general defined as the intersection of
three standard 3D planes. Only straight lines aligned with an axis or orthog-
onal to an axis require less than three planes (two actually) to be describes

analytically in the standard model. This is very different from what happens
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in the Euclidean world where two arbitrary, different, planes containing the
line are sufficient to describe analytically a 3D line. It is also very different
from the classical methods used to defined discrete 3D lines that use only two
projections and orthogonal extrusions to define a 3D line [1,16,17].

Example: Let us examine the discrete analytical description of a standard

2-flat in R®. The standard 2-flat F is defined by:

F={(0,1,2,3,4) +£(1,2,3,4,5) + u(3,3,6,8,10) € R* |(t,u) € K |

Let us examine the analytical description of some of the St (¢; (F)) for j € J5:

e We have w19 (F) = {(2,3,4) +t(3,4,5) +u (6,8,10) € R*|(t,u) € R*},
and after simplification 7 9y (F) = {(2,3,4)+1(3,4,5) e R*|t € R}. We
can’t apply case b) since (1 9y (F') is straight line and not a hyperplane in di-
mension 3. As a 1-flat in R?, we reapply case c¢) and we obtain St (71'(1,2) (F)) =

Q}SSt (Q- (71'(1,2) (F))) We are now exactly in the case of the previous ex-

1edy

ample. We obtain the analytical description of a 3D line: St (71'(1’2) (F)) =

23



peZ?

We have St (5(1,2) (F)) =Tr(1,2) (Z2 X St (7T(1,2) (F)))

with 119y 1 @ = (@1, T2, 3, T4, T5).

— L < Bpy —4ps < §

—2 <dp; —3py < 2

)

p € LS

)
— L < Bpy —4Aps < §

—6 < 5p3 — 3ps < 2

5

—3 <dpy—3ps < 3 J

o Wehave 713 (F) = {(1,3,4) +(2,4,5) + u (3,8,10) € R |(£,u) € R? } which

is a plane in R*. We can therefore apply case b) of proposition 5. The

Euclidean analytical description of the 3D plane is given by w3y (F) =

{X € R |4X, — 6X, + X3 + 10 = 0}. By applying proposition 3 we obtain

St (71'(1,3) (F)) = {p WA ‘—3—21 <dp; —6ps +p3 < —% } . We have St (5(173) (F)) =

r(1,3) (Z2 x St (7r(173) (F))) with r(1 3) 1 @ — (21, 3, ¥2, 24, x5) . This leads to

the discrete analytical description of

St (6(1,3) (F)) = {p <A ‘—3—21 < dpy — 6py + ps < —g }

e The same applies to all the other St (¢; () which leads to the discrete

analytical description of St (F') :
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St(F)={peZ’

|
[N

_29

_1_7§

\

Sy

5p3

4p3

4py

4py

3p2

—4ps <I
—3ps <2
—3p4 <z
—b6py  +ps < —% ;
—8ps +ps < -3
—5ps +ps <3

1< 4dpq
-3 < Ap
—2<  3;
—§ < 8
—5< Oy
—2—21 < 8

4—3p4

+4p3

4—2p3

+4py

4—2p2

+2py

Notice that the discrete analytical description of an m-flat in R" is always

described as an intersection of standard hyperplanes [4,18].

4.4 simplex standard cover

Let us finish with the formulas describing a standard simplex. These formulas

are direct transposition of the formulas obtained for the supercover [2,5-7,9].

Proposition 6 : Let us consider a set P of m + 1 linearly independent Eu-

clidean point P°, ..., P™ and the corresponding simplex S = S™ (P). We con-

sider the basic orientation conventions OF, for all k > 0. The standard cover

of S is defined by:

a) If m =n then St (S) = (N St (E (S, P"))) N (M7=, St (5 (S))) ;

b) If m=n—1 then St (S) =St (S) N (M=, St (£; (9))) ;

c) If m <n—2 then St (S) =

N

NS

St (e (5))-

n—m—1
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Fig. 7. Standard cover of a 2D triangle

Let us just recall some notations. If S is a simplex of dimension m then we
denote S the m-flat containing all the points defining S. If S is a simplex of

dimension n in R” then we denote E (S, P*) the half-space that contains P

and of border the (n — 1)-flat {P°, ..., Pi=1 pitl . pm}.

Example: Let us consider now the triangle 7' = S? (P) with
P ={P"(0,0,0),P'(3,8,4),P%(9,1,1)} in R®*. We are in case b) of proposi-
tion 6: St (T') = St (A% (P)) NSt (e, (T)) NSt (2 (T)) NSt (e3 (T)).

e The discrete analytical description of the 3D plane St (4% (P)) is given by
St (A% (P)) = {p € Z* |—53 < 4p; + 33p, — 69p3 < 53 }.

e The orthogonal projection 73 (T') is a 2D triangle 73 (T') = S* (P}, P}, P?)
with P) = 3 (P°) = (0,0), P = m3 (P') = (9,1) and P} = m3 (P?) = (3,8)
(See Figure 7).

e We have a 2-simplex in R? and case a) of proposition 6 applies:

St (s (1)) = (N St (E (75 (T), P1))) N (NZ_y St (5 (73 (1)))). Let us ex-
amine each part of the formula.

e The half-space E (w3 (T') , PY) is delimited by the straight line A' ({ P}, PZ}) :
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7X1+6X,—69 = 0. Since P} belongs to the half-space, we have E (w3 (T) , Py) :
7X1+6X,—69 < 0. By applying 3, we obtain the discrete analytical descrip-

tion of the standard half-space St (E (73 (T) , PY)) = {p €72 ‘7p1 + 6py < B* }
The half-space has a standard orientation (marked by a grey line in Figure

7). In the same way, we have St (E (73 (T), PJ)) = {p € Z? ‘—Spl +3pe < %}

with a supercover orientation and St (E (73 (T) , P?)) = {p € Z* |p1 — 9p» < 5}
with a standard orientation.

The orthogonal projection 7y (73 (7)) is the interval [0,8] and therefore

St (1 (73 (1)) = {p € Z? "71 <p< ¥ } .The same way, we have St (¢5 (73 (T))) =
{pezz‘—% <p1 < 1—29}

The discrete analytical description of the standard triangle is therefore:
(

T 46py <t opy <Y
—8p1 43p2 <H 5 —p2 <3
St (w3 (T)) = p € Z2
D1 —9py, <5 C P < 12—9
. 1
\ ) —P1 S 2 )

The analytical descriptions of St (my (7)) and St (my (T)) are obtained in a
similar way. The analytical description of the standard triangle St (T) is

defined by 17 discrete inequalities:
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| 4dpy +33p2
—4py —33p2
4ps
—D2
St(T)=<peZ —3p,
—4p
D1
4
\ p1 +06py

Figure 8 shows three views of the standard triangle St (T'): Figure 8(a) presents
a classical, voxel view, of the standard triangle; figure 8(b) presents the same
triangle in a cell-complex space representation; finally figure 8(c) represents

what we have called the analytical view and represents the different inequali-

—69p;3

+69p3

—8p3

+p3

-|-7p3

+3p3

—9p3

+2p3

ties describing the standard triangle.

5 Conclusion

We have defined in this paper the standard model for half-spaces, m-flats and
simplices in dimension n. This is, to the authors best knowledge, the first
time that a large class of geometrically consistent discrete primitives has been

described analytically in dimension n. The standard model is geometrically
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consistent, defined analytically and standard objects are tunnel-free, (n — 1)-

connected and bubble-free.

The theoretical work in this paper needs now to be completed by the imple-
mentation of a standard object generation library for objects in dimension n.
Such a library already exists as a prototype in dimension 2 and 3. It is not
very difficult to design linear generation algorithms (linear in the number of
voxels belonging to the discrete object) in 2D and 3D. The 3D standard line
for instance can be generated by the algorithm proposed by Cohen-Or in 1997
[16]. It is more difficult however to design efficient generation algorithms in
an arbitrary dimension. One major limitation of the standard model is that it
is only defined for linear objects while the supercover is defined for arbitrary
objects. The question of the extension of the standard model to arbitrary, non
linear, objects remains an open question. The standard model is particularly
well suited for the problem of the polygonalization. The border discrete 3D
object can be decomposed into discrete polygons. Of course, in order to do
this, a notion of discrete polygon was needed. The standard polygon seems to
be an interesting answer as it comes with a definition of discrete 3D line and
discrete 3D point. The actual algorithm that allows a discrete polygonaliza-
tion and then transforming these discrete polygonals into Euclidean polygons

is still a largely open question.

In order to facilitate the research on, the implementation and the test of such
polygonalization algorithms, we are developing a discrete modeling tool, called
SpaMod (for Spatial Modeler, see [8] for details), at the University of Poitiers
(France). The standard model, as well as the supercover model, are part of the
discrete objects models handled by Spamod. Spamod is still in the preliminary

stages of its development, however Figure 8 and Figure 9 have been produced
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Fig. 8. Standard triangle with (a) Voxel view (b) Cell-complex view (c) Analytical

view

Fig. 9. From left to right, a Euclidean view of a polygonal torus, a voxel view and

an analytical view.

with this software.
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