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Abstra
tA new analyti
al des
ription model, 
alled the standard model, for the dis
retizationof Eu
lidean linear obje
ts (point, m-
at, m-simplex) in dimension n is proposed.The obje
ts are de�ned analyti
ally by inequalities. This allows a global de�nitionindependent of the number of dis
rete points. A method is provided to 
ompute theanalyti
al des
ription for a given linear obje
t. A dis
rete standard model has manyproperties in 
ommon with the super
over model from whi
h it derives. However,
ontrary to super
over obje
ts, a standard obje
t does not have bubbles. A stan-dard obje
t is (n� 1)-
onne
ted, tunnel-free and bubble-free. The standard modelis geometri
ally 
onsistent. The standard model is well suited for modelling appli-
ations.Key words: dis
rete geometry, digitization, dimension n, simplexe, m-
at
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1 Introdu
tion
When working in dis
rete geometry, aside from 
onsidering an obje
t simplyas a set of dis
rete points, the problem of de�ning dis
rete geometri
al obje
tsarises. A dis
rete 2D line segment 
an be de�ned as 8-
onne
ted, 4-
onne
tedor even dis
onne
ted as a dotted line. There is not a unique way of de�ninga dis
rete obje
t or of digitizing a Eu
lidean obje
t. This problem has beenaround for forty years and many di�erent dis
rete obje
t de�nitions have beenproposed. One 
an say that authors have followed three main approa
hes tode�ne dis
rete geometri
al obje
ts: an algorithmi
 approa
h, a topologi
al ap-proa
h and a more re
ent analyti
al approa
h followed in this paper. In thealgorithmi
 approa
h [1,10,13,16,21{24,34℄ a dis
rete obje
t is the result of ageneration algorithm. Histori
ally, the �rst approa
h that has been used, ithas shown a number of limitations. It is often diÆ
ult to 
ontrol the proper-ties of the so de�ned dis
rete obje
ts. For instan
e, the dis
rete obje
ts mightnot be geometri
ally 
onsistent : the edge of a 3D triangle is typi
ally notne
essary a 3D line segment or the 3D triangle is not a pie
e of 3D plane[21,22℄. It is also diÆ
ult to propose generation algorithms for dis
rete obje
tsin dimension higher than three. Ex
ept for n-dimensional lines [34℄, to thebest authors knowledge, no dis
rete obje
t, in dimensions higher than three,has been algorithmi
ally de�ned. In the topologi
al approa
h, a dis
rete ob-je
t is typi
ally de�ned as a 
lass of obje
ts verifying lo
al properties, oftentopologi
al in nature [18{20,25,28℄. While it is, by de�nition, easier to obtainthe desired properties, it is diÆ
ult to be sure with su
h an approa
h, thatthe 
lass of obje
ts de�ned by a given set of properties is not larger than whatis initially expe
ted. A third, more re
ent approa
h, de�nes a dis
rete obje
t2



by a global analyti
al de�nition [2{5,7,9,17,18,25,30,32℄. This approa
h hasmany advantages su
h as providing a 
ompa
t de�nition (independent on thenumber of points forming the dis
rete obje
t), a global 
ontrol of the dis
reteobje
t. It has also an advantage that is not immediatly visible when one is notfamiliar with this approa
h. It allows a good 
ontrol of the lo
al topologi
alproperties of the obje
t. The many links with mathemati
al morphology arealso an interesting property of some analyti
ally de�ned models su
h as thesuper
over model [7,19,26,29,31,33℄. One of the main advantages is that it isrelatively easy to de�ne dis
rete obje
ts in an arbitrary dimension [3,4,7,30,32℄.The standard model introdu
ed in the following pages is analyti
ally de�ned.A new analyti
al des
ription model for all linear obje
ts in dimension n (dis-
rete points, m-
ats and geometri
al simpli
es) is presented in this paper.The analyti
al model is 
alled the standard model. The names derives fromthe name given by J. Fran�
on [18℄ to (n� 1)-
onne
ted analyti
al dis
rete3D planes (see also [4℄ for general details on dis
rete analyti
al hyperplanes).To the best authors knowledge, it is the �rst time that a dis
rete model isproposed that de�nes a large 
lass of dis
rete obje
ts in arbitrary dimensions.The standard model is 
alled a dis
rete analyti
al model be
ause the dis
reteobje
ts (points,m-
ats, simpli
es) are de�ned analyti
ally by inequalities. Theanalyti
al de�nition is independent of the number of dis
rete points of the ob-je
t. For instan
e, a 3D standard triangle is de�ned by 17 or less inequalitiesindependently of its size.The model we propose has many interesting properties. The model is geomet-ri
ally 
onsistent: for instan
e, the verti
es of a 3D standard polygon are 3Dstandard points, the edges of a 3D standard polygon are 3D standard line seg-ments and the 3D standard polygon is a pie
e of a 3D standard plane. It has3



been shown that the standard model is in fa
t a 0-dis
retisation of Brimkov,Andres and Barneva [12℄ and therefore is (n� 1)-
onne
ted and tunnel-free.In 3D, (n� 1)-
onne
tivity in our notations 
orresponds to the 
lassi
al 6-
onne
tivity. Contrary to the super
over model, from whi
h it derives, thestandard obje
ts are bubble-free. One of the problems of the super
over modelis that it is not topologi
ally 
onsistent. A super
over m-
at is always (n� 1)-
onne
ted but sometimes it has simple points (lo
ated on so-
alled bubbleson the obje
t). This makes the model diÆ
ult to use in pra
ti
e [14,15℄. Forinstan
e, a super
over of a Eu
lidean nD point 
an be 
omposed of any 2idis
rete points, 0 � i � n. A standard m-
at is almost identi
al to the su-per
over m-
at, it remains (n� 1)-
onne
ted and tunnel-free, ex
ept for thesimple points in the bubbles that are removed. The standard digitization ofa nD Eu
lidean point is always 
omposed only of one dis
rete point. Finally,the standard model has a very important property in the framework of dis-
rete modelling: St (F [G) = St (F ) [ St (G). This means that, for instan
e,the de�nition of the standard 3D polygon is suÆ
ient to de�ne the standardmodel of an arbitrary Eu
lidean polygonal 3D obje
t.The de�nition of the standard model is derived from the super
over model[2,5,6,14,15,31,7℄. A standard obje
t is obtained by a simple rewriting pro
essof the inequalities de�ning analyti
ally a super
over obje
t [7℄. A super
overlinear obje
t is de�ned by a set of inequalities "Pni=1 aiXi � a0". The simplepoints in the bubbles are points that verify "Pni=1 aiXi = a0". In order toremove the simple points, and thus bubbles, some of the inequalities needsimply to be rewritten into "Pni=1 aiXi < a0". The sele
tion of inequalitiesthat are modi�ed is based on an orientation 
onvention. Depending on theorientation of the half-spa
e, the 
orresponding inequality is modi�ed or not.4



In se
tion 2, we introdu
e our notations and the prin
ipal properties of thesuper
over model on whi
h the standard model is based. In se
tion 3 the stan-dard model is introdu
ed and de�ned. We start, in se
tion 3.1, by explainingwhy su
h a \heavy" mathemati
al ma
hinery is ne
essary to de�ne (n� 1)-
onne
ted dis
rete obje
ts. We show in parti
ular why a 
lassi
al, misleading,approa
h does not work. In se
tion 3.2, we explain the basi
 ideas behindthe standard model. In se
tion 3.3, we introdu
e the orientation 
onventionthat forms the basis of the de�nition of the standard model. The standardmodel is de�ned for all linear primitives in dimension n in se
tion 3.4. Theproperties of the standard primitives, espe
ially the tunnel-freeness and the(n� 1)-
onne
tivity, are presented in se
tion 3.5. In se
tion 4, we examine thedi�erent 
lasses of standard linear obje
ts to see how the de�nition is trans-lated in pra
ti
e and how the di�erent inequalities de�ning the obje
ts areestablished. Con
lusion and several perpe
tives are presented in se
tion 5.2 Preliminaries2.1 Basi
 notations in dis
rete geometryMost of the following notations 
orrespond to those given by Cohen and Kauf-man in [14,15℄ and those given by Andres in [7℄. We provide only a short re
allof these notions.Let Zn be the subset of the nD Eu
lidean spa
e Rn that 
onsists of all theinteger 
oordinate points. A dis
rete (resp. Eu
lidean) point is an element ofZn (resp. Rn). A dis
rete (resp. Eu
lidean) obje
t is a set of dis
rete (resp.Eu
lidean) points. A dis
rete inequality is an inequality with 
oeÆ
ients in R5



Fig. 1. Triangle T = S2 ��P 0; P 1; P 2	�, edge S1 ��P 0; P 1	�, straight lineA1 ��P 0; P 1	� and half-spa
e E ��P 0; P 1; P 2	 ; P 2�from whi
h we retain only the integer 
oordinate solutions. A dis
rete analyt-i
al obje
t is a dis
rete obje
t de�ned by a �nite set of dis
rete inequalities.An m-
at is a Eu
lidean aÆne subspa
e of dimension m.Let us 
onsider a set P of m + 1 linearly independent Eu
lidean pointsP 0; : : : ; Pm. We denote Am (P ) the m-
at indu
ed by P (i.e. the m-
at 
on-taining P ). We denote Sm (P ) the geometri
al simplex of dimension m inRn indu
ed by P (i.e. the 
onvex hull of P ). For S = Sm (P ) a geometri
alsimplex, we denote S = Am (P ) the 
orresponding m-
at. For a n-simplexS = Sn (P ), we denote E (S; P i) the half-spa
e of boundary An�1 (P n P i)that 
ontains P i (see �gure 1).We denote pi the i-th 
oordinate of a point or ve
tor p. Two dis
rete pointsp and q are k-neighbours, with 0 � k � n, if jpi � qij � 1 for 1 � i � n, andk � n�Pni=1 jpi � qij. The voxel V (p) � Rn of a dis
rete nD point p is de�nedby V (p) = hp1 � 12 ; p1 + 12i � � � � � hpn � 12 ; pn + 12i. For a dis
rete obje
t F ,V (F ) = Sp2F V (p). We denote �n the set of all the permutations of f1; : : : ; ng.Let us denote Jnm the set of all the stri
tly growing sequen
es of m integers allbetween 1 and n: Jnm = fj 2 Zm j1 � j1 < j2 < : : : < jm � ng. This de�nes a6



set of multi-indi
es.Let us 
onsider an obje
t F in the n-dimensional Eu
lidean spa
e Rn , withn > 1.The orthogonal proje
tion is de�ned by:�i (F ) = f(q1; : : : ; qi�1; qi+1; : : : ; qn) jq 2 Rn g ; for 1 � i � n;�j (F ) = (�j1 Æ �j2 Æ � � � Æ �jm) (F ) ; for j 2 Jnm:The orthogonal extrusion is de�ned by:"j (F ) = ��1j (�j (F )) , for j 2 Jnm:Example: Let us 
onsider the set of points P = fP 0 (0; 0; 0) ; P 1 (9; 1; 1) ; P 2 (3; 8; 4)g.The 
orresponding simplex T = S2 (P ) is a 3D triangle. The orthogonal pro-je
tion �2 (T ) = S2 (�2 (P )) = S2 (f(0; 0) ; (9; 1) ; (3; 4)g) is a 2D triangle. Theorthogonal extrusion "2 (T ) = f(0; t; 0) ; (9; t; 1) ; (3; t; 4)j t 2 Rg is a 3D Eu-
lidean obje
t de�ned by 3 half-spa
es.We de�ne an axis arrangement appli
ation rj, for j 2 Jnm, by:rj : Rn ! Rnx 7! �x�j(1); x�j(2); : : : ; x�j(n)�where the permutation �j 2 �n is de�ned by:�j = 8>>>>>><>>>>>>: for 1 � i � m; �j (ji) = ielse, for m < i � n; �j (kr) = i7



so that kr < kr+1 and kr 6= js for all 1 � r � n � m and for all 1 �s � m. The axis arrangement appli
ation has been spe
i�
ally designed sothat it veri�es the two following properties: �j (F ) = �(1;2;:::;m) �r�1j (F )� and"j (F ) = rj �"(1;2;:::;m) �r�1j (F )�� for all F in Rn and j 2 Jnm.Example: Let us 
onsider the 5D point P (1; 2; 3; 4; 5) and j = (2; 4) 2 J52.The 
orresponding axis arrangement appli
ation is de�ned by r(2;4) : x 7!(x3; x1; x4; x2; x5) and r�1(2;4) : x 7! (x2; x4; x1; x3; x5). The orthogonal proje
tionveri�es �(2;4) (P ) = �(1;2) �r�1(2;4) (P )� = �(1;2) (2; 4; 1; 3; 5) = (1; 3; 5) :The orthogonal extrusion veri�es "(2;4) (1; 3; 5) = r(2;4) �"(1;2) �r�1(2;4) (P )��= r(2;4) �"(1;2) (2; 4; 1; 3; 5)� = r(2;4) ���1(1;2) (1; 3; 5)� and therefore"(2;4) (1; 3; 5) = r(2;4) (f(t; u; 1; 3; 5) j(t; u) 2 R2 g) = f(1; t; 3; u; 5) j(t; u) 2 R2 g.
2.2 Geometri
 properties of the Super
overA dis
rete obje
t G is a 
over of a Eu
lidean obje
t F if F � V (G) and8p 2 G;V (p)\F 6= ?. The super
over S (F ) of a Eu
lidean obje
t F is de�nedby S (F ) = fp 2 Zn jV (p) \ F 6= ?g (see Figure 2a). S (F ) is by de�nition a
over of F . It is easy to see that if G is a 
over of F then G � S (F ). Thesuper
over of F 
an be de�ned in di�erent ways: S (F ) = �F � B1 �12��\Zn =np 2 Zn ���d1 (p; F ) � 12 o (see Figure 2b) where B1 (r) if the ball 
enteredon the origin, of radius r for the distan
e d1. This links the super
over tomathemati
al morphology [29,31,7,26℄.The super
over has many properties. Let us 
onsider two Eu
lidean obje
ts Fand G, and a multi-index j 2 Jnm, then: S (F ) = S�2F S (�), S (F [G) =S (F ) [ S (G), if F � G, then S (F ) � S (G). These properties are well8



Fig. 2. Super
over de�nitions.known [14,15℄. The following properties are more re
ent and are useful in theframework of this paper: S (F �G) = S (F ) � S (G), rj (S (F )) = S (rj (F )),�j (S (F )) = S (�j (F )) and "j (S (F )) = S ("j (F )) = rj (Zm � S (�j (F ))) [7℄.De�nition 1 (Bubble)A k-bubble, with 1 � k � n, is the super
over of a Eu
lidean point that hasexa
tly k half-integer 
oordinates.A half-integer is a real l+ 12 , with l an integer. A k-bubble is formed of 2k dis-
rete points. A 2-bubble 
an be seen in �gure 2a (marked by the bla
k 
ir
le).The two white dots are what we 
all here "simple" points. This 
orrespondsto an extension of the notion of simple points that �ts a super
over simplex.A point P belonging to the super
over simplex S is said to be a simple pointif it is a simple point for S with the 
lassi
al de�nition given in se
tion 2.1.De�nition 2 (Bubble-free)The 
over of an m-
at is said to be bubble-free if it has no k-bubbles for k > m.The 
over of a simplex S is said to be bubble-free if S is bubble-free.9



There are two types of bubbles in the super
over of anm-
at F . The k-bubbles,for k � m; are dis
rete points that are part of all the 
overs of F . If we removeany of these points, the dis
rete obje
t is not a 
over anymore. In the k-bubbles, for k > m; there are dis
rete points that are \simple" points. Theaim of this paper is to propose dis
rete analyti
al obje
ts that are bubble-freeand (n� 1)-
onne
ted by removing some of the simple points. In �gure 2a, byremoving one of the two simple points, we obtain a bubble-free, 1-
onne
teddis
rete 2D line segment.Lemma 1 A dis
rete point p belongs to a k-bubble, k > m, of the super
overof an m-
at F if and only if there exists a point � 2 F with k half-integer
oordinates su
h that p 2 S (�).The proof of this lemma is obvious.
3 Standard ModelThe aim of this paper is to propose a new 
over 
lass, 
alled the standard
over. The standard 
over is so far only de�ned for linear obje
ts in all di-mensions. The dis
rete analyti
al model has been designed to 
onserve mostof the properties of the super
over, to be bubble-free and (n� 1)-
onne
ted.The super
over model has almost all the properties we are looking for: tunnel-freeness, (n� 1)-
onne
tivity, stability for union, et
. The only property thatis missing is the bubble-freeness. Some super
over obje
ts have simple points.The model is therefore not topologi
ally 
onsistent and this is a problem forseveral appli
ations su
h as, for instan
e, polygonalization. For this reasonseveral attempts have been made to modify the super
over dis
retization by10



modifying the de�nition of a pixel [27,14,15℄. We show in the following se
-tion that su
h attempts 
an't work. In our approa
h, presented in se
tion 3.2,we explain how, by studying the analyti
al des
ription of linear obje
ts, it ispossible to remove sele
tively the simple points in the super
over model whilepreserving the modeling properties. In the se
tion that follow the standardmodel and its properties are introdu
ed.
3.1 What does not work with the 
lassi
al approa
hSeveral unsu

essful attempts have been made to de�ne dis
rete obje
ts thathave super
over type modeling properties with bubble-freeness and (n� 1)-
onne
tivity properties [27,14,15℄. All these ideas basi
ally modify, in variousways, the de�nition of a voxel in order to avoid bubbles. We give here asimple su
h example and show why it does not work that way (see [14℄ forsome other examples). In Figure 3, the pixel de�nition has been 
hanged. Apixel is now formed of the SW vertex (bla
k disk), the two 
orresponding edges(bold edges) and its' interior. The three other verti
es and two other edgesdo not belong to the pixel. This de�nition derives that Sp2ZnV (p) = Rn withV (p) \ V (q) = ? for p 6= q: The dis
retisation of a dis
rete line is ne
essarilybubble-free. However, as we see in �gure 3, the dis
retised line x1 � x2 = 0 isnot 1-
onne
ted. In fa
t, it has been shown as early as in 1970 [27℄, that no
hange in the de�nition of the pixel or voxel 
an lead to a 
orre
t solution. Thismeans that a simple pixel de�nition modi�
ation avoids bubbles but 
reatesprimitives that aren't topologi
ally 
onsistent. This makes su
h a model uselessfor appli
ations su
h as polygonalization. Tunnel-freeness property is also lostwith su
h an approa
h. 11



Fig. 3. Super
over dis
retisation of x1 � x2 = 0 and x1 + x2 = 0 with 
lassi
al andmodi�ed pixel de�nition.

Fig. 4. Standard and Super
over straight line. The bla
k points belong to both line.The white point belongs only to the super
over.3.2 Standard model approa
h : a modi�
ation of the super
over de�nitionThe dis
rete analyti
al des
ription of the super
over of a linear 
onvex is de-�ned as interse
tion of half-spa
es de�ned by dis
rete inequalities Pni=1 aixi �a0 [2,5{7℄. A linear 
on
ave obje
t is simply 
onsidered as union of 
onvexes.The orientation of ea
h half-spa
e is 
he
ked with an orientation 
onventionand depending on it, its inequality \Pni=1 aixi � a0" remains un
hanged or isrepla
ed by \Pni=1 aixi < a0". 12



Let us give a simple example, the 2D straight line D : 3x1� 7x2 = 0 shown in�gure 4, to illustrate why and how this works. The general 
ase in dimension nworks exa
tly in the same way. The super
over of the Eu
lidean line D is de-s
ribed by the two inequalities S (D) = f(x1; x2) 2 Z2 j�5 � 3x1 � 7x2 � 5g.A bubble o

urs only when the straight line D 
ontains half-integer 
oordi-nate points. We have then (and only then) dis
rete points verifying on oneside 3x1 � 7x2 = �5 and on the other side 3x1 � 7x2 = 5. All these pointsare simple points. Removing the points on one side only leads to a dis
retestraight line that is 1-
onne
ted, separating, 1-minimal and bubble-free. This
an be done simply by repla
ing a \�" by a \<" for one of the two in-equalities in the super
over analyti
al des
ription. In the 
ase of Figure 4,we have St (D) = f(x1; x2) 2 Z2 j�5 � 3x1 � 7x2 < 5g. The 
hange is basedon an orientation 
onvention. Opposing half-spa
es su
h as "3x1 � 7x2 � 5"and "�3x1+7x2 � 5" have a di�erent orientation in this 
onvention and thusonly one of them will have its' "� " 
hanged into "<". This ensures that onlyone simple point for the 2D line will be removed.
3.3 Orientation 
onventionThe standard model, 
ontrary to the super
over, is not unique [7,9℄. For in-stan
e, in example of Figure 4, one of two possible simple points 
an be re-moved. Ea
h sele
tion leads to another standard model de�nition. It dependson the orientation 
onvention sele
tion. One orientation 
onvention per di-mension Rm , m > 0, is required. This sele
tion must then remain un
hangedfor all the primitives handled. The sele
tion of an orientation 
onvention perdimension has to be 
oherent with the operator �. The property St (�j (F )) =13



�j (St (F )) for the operator � should be veri�ed. If this is not the 
ase, themodelling properties won't be veri�ed (su
h as St (F [G) = St (F ) [ St (G),et
.): In general, with arbitrary orientation 
onventions there is no reason forthis property to be veri�ed. We propose a set of orientation 
onventions, de-noted On and 
alled the basi
 orientation 
onventions. The basi
 orientation
onventions verify the above mentioned property.De�nition 3 (Standard orientation)Let us 
onsider a dis
rete analyti
al half-spa
e E : Pni=1CiXi � B and thebasi
 orientation 
onvention On. We say that E has a standard orientation if:� C1 > 0;� or if C1 = 0 and C2 > 0;� ...� or if C1 = � � � = Cn�1 = 0 and Cn > 0:If E has not a standard orientation then we say that E has a super
overorientation.We 
onsider from now on, without loss of generality, only the basi
 orientation
onventions for all n > 0. All the standard primitives are de�ned with thesebasi
 orientation 
onventions. The basi
 orientation 
onventions are 
oherentwith respe
t to the operators �. After �j, for j 2 Jnm, the orientation 
onventionOn in Rn be
omes On�m in Rn�m . 14



3.4 Standard model de�nitionAll the elements required to de�ne the standard dis
retisation model of linearobje
ts in Rn are available:De�nition 4 (Standard Model)Let F be a linear Eu
lidean obje
t in Rn whose super
over is des
ribed ana-lyti
ally by a �nite set of inequalities Fk : Pni=1Ci;kXi � Bk. The standardmodel St (F ) of F , for the basi
 orientation 
onvention On, is the dis
reteobje
t des
ribed analyti
ally by a �nite set of dis
rete inequalities F 0k obtainedby substituting ea
h inequality Fk by F 0k de�ned as follows:� If Fk has a standard orientation then F 0k : Pni=1Ci;kXi < Bk;� else F 0k : Pni=1Ci;kXi � Bk.This de�nition is algorithmi
ally easy to set up. On
e a dis
rete analyti
aldes
ription of an obje
t is available, the transition from the super
over modelto the standard model and vi
e-versa is trivial.
3.5 Geometri
 properties of the Standard modelIn this se
tion, some properties of the standard model are presented. Theseproperties are very important for the derivation of our model des
ription. Letus 
onsider a Eu
lidean linear obje
t F of topologi
al dimension m in Rn . Wehave by de�nition St (F ) � S (F ) even more pre
isely, if p 2 S (F ) n St (F ),then d1 (p; F ) = 12 . A standard obje
t is a super
over obje
t from whi
h somedis
rete points have been removed. These points are all at a distan
e 12 from15



the Eu
lidean primitive. We have St (F ) = S (F ) if no point, with at leastm+1 half-integer 
oordinates, belongs to the boundary of F . The di�eren
esbetween the super
over of F and the standard model of F are lo
ated in thek-bubbles of F , for k > m. Figure 4 illustrates this in dimension 2. One ofthe immediate 
onsequen
es of this last property, is that the standard modelremains a 
over: F � V (St (F )). That is why the standard model is alsosometimes 
alled standard 
over [33,31℄.The standard model retains most of the set properties of the super
over. Itis easy to dedu
e from de�nition 4, that if we 
onsider two Eu
lidean linearobje
ts F and G in Rn , then:St (F [G) = St (F ) [ St (G) ; St (F \G) � St (F ) \ St (G)F � G) St (F ) � St (G) ; St (F �G) = St (F )� St (G) ;St (�j (F )) = �j (St (F )) ; St ("j (F )) = "j (St (F )) :The �rst property ensures that we'll be able to 
onstru
t 
omplex dis
reteobje
ts out of basi
 elements su
h as simpli
es. These last properties are 
har-a
teristi
 of 
orre
t orientation 
onventions. The properties are only veri�edif the orientation 
onventions are de�ned for all dimensions lower or equal ton and if they are 
oherent with respe
t to the operator �. This is the 
ase forthe basi
 orientation 
onventions Ok, for k � n.It is important to noti
e that, in general, St (F ) 6= S�2F St (�). This propertyof the super
over is not 
onserved. We have St (F [G) = St (F )[St (G) for aunion of a �nite number of obje
ts. This 
omes simply from the fa
t that thestandard model is not de�ned for an analyti
al des
ription that has an in�nite16



number of dis
rete inequalities. One simple example for that is given by the 2DlineD : x1�x2 = 0: The standard model of the line is St (D) : �1 � x1�x2 < 1while S�2F St (�) : �1 < x1 � x2 < 1::One of the main properties of the standard model 
on
erns the 
onne
tivityand the tunnel-freeness:Theorem 2 (
onne
tivity and tunnel-freeness)Let F be a Eu
lidean linear obje
t of topologi
al dimension m in Rn . Its stan-dard model St (F ) is (n� 1)-
onne
ted and tunnel-free.The standard model is a parti
ular 
ase of k-dis
retisations as introdu
ed byBrimkov, Andres and Barneva in [12℄. It is shown that the standard modelis in fa
t a 0-dis
retisation (Theorem 3 in [12℄) and that 0-dis
retisations are(n� 1)-
onne
ted and tunnel-free (proposition 3 in [11℄ and theorem 4 in [12℄).Another property proved in [31,33,12℄ is that the standard model minimizesthe Hausdor� distan
e with the Eu
lidean obje
t.
4 Des
ription of standard primitivesWe'll examine now the dis
rete analyti
al des
ription of the di�erent 
lassesof standard linear primitives (half-spa
e, point, m-
at and m-simplex) andhow they 
an be 
omputed. Our purpose here is to propose a dis
retisations
heme that 
an be used is pra
ti
al appli
ations. As stated in de�nition 4,every analyti
al des
ription of a standard linear primitive is based on theanalyti
al des
ription of a standard half-spa
e. That is the one we present�rst. We dedu
e from it the dis
rete analyti
al formulas des
ribing a standard17



point, m-
at and m-simplex in the se
tions that follow.
4.1 Standard Half-spa
eThe standard half-spa
e is given by :Proposition 3 (Standard half-spa
e)Let us 
onsider a Eu
lidean half-spa
e E : Pni=1CiXi � B. The standard modelSt (E) of E, a

ording to an orientation 
onvention, is analyti
ally des
ribedby:� If E has a standard orientation then St (E) = �p 2 Zn ����Pni=1Cipi < B + Pni=1jCij2 � ;� else St (E) = �p 2 Zn ����Pni=1Cipi � B + Pni=1jCij2 �.The proposition is an immediate extension to dimension n of results on thesuper
over [2,4,5,7℄ and of de�nition 4.
4.2 Standard pointThe analyti
al des
ription of a standard point 
an easily be dedu
ed from theone of the standard half-spa
e. It is however interesting to noti
e that thestandard dis
retisation of a Eu
lidean point is always 
omposed of one andonly one dis
rete point 
ontrary to what happens with a super
over dis
retiza-tion of a Eu
lidean point that 
an be formed of 2k points, 0 � k � n (in 
aseof a k-bubble).Proposition 4 (Standard point) 18



Fig. 5. Di�erent 
on�gurations of 2D standard points. A standard point is formedof only one dis
rete point.Let us 
onsider a Eu
lidean point � 2 Rn and the basi
 orientation 
onventionOn. The standard model St (�) of � is the dis
rete point:St (�) = ���1 � 12� ; : : : ; ��n � 12��The proof is obvious. In �gure 5, the 
ross represents the Eu
lidean point. Thebla
k dot represents the 
orresponding dis
rete standard point. The squarewith the doted lines represent the zone 
overed by the 4 inequalities 
orre-sponding to the analyti
al des
ription of a standard point.4.3 Standard m-
atOne of the 
onsequen
es of the properties St (�j (F )) = �j (St (F )) and St ("j (F )) ="j (St (F )) is that the formulas that lead to the dis
rete analyti
al des
riptionof a standard m-
at or of a standard m-simplex are simple transpositions ofthe formulas that have been established for the super
over [7℄.Proposition 5 (Standard m-
at)Let us 
onsider an m-
at F in Rn and the basi
 orientation 
onventions Ok,for all k > 0. 19



a) If F is a 0-
at in Rn , we apply proposition 4,b) If F is a (n� 1)-
at, we apply twi
e proposition 3,
) else the analyti
al des
ription of the standard model of F is given by:St (F ) = \j2Jnn�1�mSt ("j (F )) = \j2Jnn�1�m rj (Zm � St (�j (F )))We reapply then, re
ursively, the 
orresponding 
ases a), b) or 
) on �j (F )for all j 2 Jnn�1�m.This proposition is 
omposed of several steps that lead to the analyti
al de-s
ription of the standard m-
at. Let us dis
uss step 
). The formula St (F ) =Tj2Jnn�1�mSt ("j (F )) alone is not suÆ
ient to des
ribe the standard m-
at, with0 < m < n � 1, sin
e "j (F ) is not ne
essarily a hyperplane in Rn . We mighteven have F = "j (F ) for some j 2 Jnn�1�m. The way around this problem isto examine �j (F ) in Rm+1 . The new orientation 
onvention for Rm+1 after �jis Om+1.We have di�erent 
ases that o

ur:� If �j (F ) is a hyperplane in Rm+1 then "j (F ) is a hyperplane in Rn . We donot a
tually need to 
onsider �j (F ). We 
an dire
tly use 
ase b). It is easyto see that we obtain the same result by applying dire
tly proposition 3 on"j (F ) or by applying rj (Zm � St (�j (F ))).� If �j (F ) is a point in Rm+1 then we 
onsider 
ase a) in Rm+1 , with the basi
orientation 
onvention, and formula rj (Zm � St (�j (F ))).� If �j (F ) is a k-
at, 0 < k < m, in Rm+1 then we 
onsider again 
ase 
),with the basi
 orientation 
onvention. We have, by de�nition, St (�j (F )) =Tj02Jm+1m�kSt ("j0 (�j (F ))). We repeat the operation des
ribed in 
ase 
) for�j0 (�j (F )) in Rk+1 . 20



We know that this pro
ess ends sin
e ea
h time we repeat 
ase 
) we 
onsidera new obje
t in a spa
e of stri
tly lower dimension. The following exampleillustrates how this de�nition works in pra
ti
e:
Example : Let us 
onsider the 3D line F = ft (6; 7; 3) jt 2 R g. The super
overof F 
ontains a 2-bubble. We are in 
ase 
) of proposition 5 and thus

St (F ) = \i2J31St ("i (F )) = St ("1 (F )) \ St ("2 (F )) \ St ("3 (F ))
We have �1 (F ) = ft (7; 3) jt 2 R g whi
h is a 1-
at in R2 and therefore 
aseb) of proposition 5 applies. We have �1 (F ) = fX 2 R2 j3X1 � 7X2 = 0gthat 
orresponds to two haf-spa
es "3X1 � 7X2 � 0" and "�3X1 + 7X2 �0": The half-spa
e "3X1 � 7X2 � 0" has a standard orientation (de�nition3). The standard analyti
al des
ription is therefore "3p1 � 7p2 < 5". Thehalf-spa
e "�3X1 + 7X2 � 0" has a super
over orientation and its stan-dard des
ription is thus "�3p1 + 7p2 � 5". We have therefore St (�1 (F )) =fp 2 Z2 j�5 � 3p1 � 7p2 < 5g. The analyti
al des
ription in dimension 3 isobtained with the formula St ("1 (F )) = r1 (Z� St (�1 (F ))). The axis renu-merotation is r1 : x 7! (x1; x2; x3).We have therefore St ("1 (F )) = fp 2 Z3 j�5 � 0p1 + 3p2 � 7p3 < 5g. In thesame way we obtain St ("2 (F )) and St ("3 (F )):As a �nal result, we have a dis
rete analyti
al des
ription of the standard21



Fig. 6. Super
over and Standard 3D line.
over of F :
St (F ) = 8>>>>>>>>>>>><>>>>>>>>>>>>:p 2 Z3 ������������������

�5 � 3p2 � 7p3 < 5�3=2 � p1 � 2p3 < 3=2�13=2 � 7p1 � 6p2 < 13=2
9>>>>>>>>>>>>=>>>>>>>>>>>>;Noti
e that here St ("2 (F )) = S ("2 (F )) and St ("3 (F )) = S ("3 (F )). The onlydi�eren
e between the standard line and the super
over line 
omes from "1 (F ).This is illustrated by �gure 6 that shows the super
over and the standardmodel of F .Noti
e that the standard 3D line is in general de�ned as the interse
tion ofthree standard 3D planes. Only straight lines aligned with an axis or orthog-onal to an axis require less than three planes (two a
tually) to be des
ribesanalyti
ally in the standard model. This is very di�erent from what happens22



in the Eu
lidean world where two arbitrary, di�erent, planes 
ontaining theline are suÆ
ient to des
ribe analyti
ally a 3D line. It is also very di�erentfrom the 
lassi
al methods used to de�ned dis
rete 3D lines that use only twoproje
tions and orthogonal extrusions to de�ne a 3D line [1,16,17℄.Example: Let us examine the dis
rete analyti
al des
ription of a standard2-
at in R5 . The standard 2-
at F is de�ned by:F = n(0; 1; 2; 3; 4) + t (1; 2; 3; 4; 5) + u (3; 3; 6; 8; 10) 2 R5 ���(t; u) 2 R2 o
From 
ase 
) of proposition 5 we derive that St (F ) = Tj2J52St ("j (F )), thus:St (F ) = St �"(1;2) (F )� \ St �"(1;3) (F )� \ St �"(1;4) (F )� \ St �"(1;5) (F )�\ St �"(2;3) (F )� \ St �"(2;4) (F )� \ St �"(2;5) (F )�\ St �"(3;4) (F )� \ St �"(3;5) (F )� \ St �"(4;5) (F )�
Let us examine the analyti
al des
ription of some of the St ("j (F )) for j 2 J52:
� We have �(1;2) (F ) = f(2; 3; 4) + t (3; 4; 5) + u (6; 8; 10) 2 R3 j(t; u) 2 R2 g,and after simpli�
ation �(1;2) (F ) = f(2; 3; 4) + t (3; 4; 5) 2 R3 jt 2 R g. We
an't apply 
ase b) sin
e �(1;2) (F ) is straight line and not a hyperplane in di-mension 3. As a 1-
at in R3 , we reapply 
ase 
) and we obtain St ��(1;2) (F )� =Ti2J31St �"i ��(1;2) (F )��. We are now exa
tly in the 
ase of the previous ex-ample. We obtain the analyti
al des
ription of a 3D line: St ��(1;2) (F )� =23



8>>>>>>>>>>>><>>>>>>>>>>>>:p 2 Z3 ������������������
�112 � 5p2 � 4p3 < 72�6 � 5p1 � 3p3 < 2�92 � 4p1 � 3p2 < 52

9>>>>>>>>>>>>=>>>>>>>>>>>>; :
We have St �"(1;2) (F )� = r(1;2) �Z2 � St ��(1;2) (F )�� = 8>>>>>>>>>>>><>>>>>>>>>>>>:p 2 Z5 ������������������

�112 � 5p4 � 4p5 < 72�6 � 5p3 � 3p5 < 2�92 � 4p3 � 3p4 < 52
9>>>>>>>>>>>>=>>>>>>>>>>>>;with r(1;2) : x 7! (x1; x2; x3; x4; x5).� We have �(1;3) (F ) = f(1; 3; 4) + t (2; 4; 5) + u (3; 8; 10) 2 R3 j(t; u) 2 R2 g whi
his a plane in R3 . We 
an therefore apply 
ase b) of proposition 5. TheEu
lidean analyti
al des
ription of the 3D plane is given by �(1;3) (F ) =fX 2 R3 j4X1 � 6X2 +X3 + 10 = 0g. By applying proposition 3 we obtainSt ��(1;3) (F )� = np 2 Z3 ����312 � 4p1 � 6p2 + p3 � �92 o :We have St �"(1;3) (F )� =r(1;3) �Z2 � St ��(1;3) (F )�� with r(1;3) : x 7! (x1; x3; x2; x4; x5) : This leads tothe dis
rete analyti
al des
ription ofSt �"(1;3) (F )� = np 2 Z5 ����312 � 4p2 � 6p4 + p5 < �92 o.� The same applies to all the other St ("j (F )) whi
h leads to the dis
reteanalyti
al des
ription of St (F ) :

24



St (F ) =
8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:
p 2 Z5

�������������������������������������

�112 � 5p4 �4p5 < 72 ; 1 � 4p1 +3p4 �p5 < 9�6 � 5p3 �3p5 < 2 ; �12 � 4p1 +4p3 �p5 < 172�92 � 4p3 �3p4 < 52 ; �2 � 3p1 +2p3 �p4 < 4�312 � 4p2 �6p4 +p5 < �92 ; �132 � 8p1 +4p2 �p5 < 132�292 � 4p2 �8p3 +p5 < �32 ; �5 � 5p1 +2p2 �p4 < 3�172 � 3p2 �5p3 +p4 < 12 ; �212 � 8p1 +2p2 �3p3 < 52

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;Noti
e that the dis
rete analyti
al des
ription of an m-
at in Rn is alwaysdes
ribed as an interse
tion of standard hyperplanes [4,18℄.
4.4 simplex standard 
overLet us �nish with the formulas des
ribing a standard simplex. These formulasare dire
t transposition of the formulas obtained for the super
over [2,5{7,9℄.Proposition 6 : Let us 
onsider a set P of m + 1 linearly independent Eu-
lidean point P 0; : : : ; Pm and the 
orresponding simplex S = Sm (P ). We 
on-sider the basi
 orientation 
onventions Ok, for all k > 0. The standard 
overof S is de�ned by:a) If m = n then St (S) = (Tni=0 St (E (S; P i))) \ �Tnj=1 St ("j (S))� ;b) If m = n� 1 then St (S) = St �S� \ �Tnj=1 St ("j (S))� ;
) If m � n� 2 then St (S) = Tj2Jnn�m�1St ("j (S)) :25



Fig. 7. Standard 
over of a 2D triangleLet us just re
all some notations. If S is a simplex of dimension m then wedenote S the m-
at 
ontaining all the points de�ning S. If S is a simplex ofdimension n in Rn then we denote E (S; P i) the half-spa
e that 
ontains P iand of border the (n� 1)-
at fP 0; : : : ; P i�1; P i+1; : : : ; Pmg.Example: Let us 
onsider now the triangle T = S2 (P ) withP = fP 0 (0; 0; 0) ; P 1 (3; 8; 4) ; P 2 (9; 1; 1)g in R3 . We are in 
ase b) of proposi-tion 6: St (T ) = St (A2 (P )) \ St ("1 (T )) \ St ("2 (T )) \ St ("3 (T )).� The dis
rete analyti
al des
ription of the 3D plane St (A2 (P )) is given bySt (A2 (P )) = fp 2 Z3 j�53 � 4p1 + 33p2 � 69p3 < 53g.� The orthogonal proje
tion �3 (T ) is a 2D triangle �3 (T ) = S2 (P 03 ; P 13 ; P 23 )with P 03 = �3 (P 0) = (0; 0), P 13 = �3 (P 1) = (9; 1) and P 23 = �3 (P 2) = (3; 8)(See Figure 7).� We have a 2-simplex in R2 and 
ase a) of proposition 6 applies:St (�3 (T )) = �T2i=0 St (E (�3 (T ) ; P i3))� \ �T2j=1 St ("j (�3 (T )))�. Let us ex-amine ea
h part of the formula.� The half-spa
e E (�3 (T ) ; P 03 ) is delimited by the straight lineA1 (fP 13 ; P 23 g) :26



7X1+6X2�69 = 0. Sin
e P 03 belongs to the half-spa
e, we have E (�3 (T ) ; P 03 ) :7X1+6X2�69 � 0. By applying 3, we obtain the dis
rete analyti
al des
rip-tion of the standard half-spa
e St (E (�3 (T ) ; P 03 )) = np 2 Z2 ���7p1 + 6p2 < 1512 o.The half-spa
e has a standard orientation (marked by a grey line in Figure7). In the same way, we have St (E (�3 (T ) ; P 13 )) = np 2 Z2 ����8p1 + 3p2 � 112 owith a super
over orientation and St (E (�3 (T ) ; P 23 )) = fp 2 Z2 jp1 � 9p2 < 5gwith a standard orientation.� The orthogonal proje
tion �1 (�3 (T )) is the interval [0; 8℄ and thereforeSt ("1 (�3 (T ))) = np 2 Z2 ����12 � p2 < 172 o :The same way, we have St ("2 (�3 (T ))) =np 2 Z2 ����12 � p1 < 192 o.� The dis
rete analyti
al des
ription of the standard triangle is therefore:
St (�3 (T )) =

8>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>:p 2 Z
2
������������������������
7p1 +6p2 < 1512 ; p2 < 172�8p1 +3p2 � 112 ; �p2 � 12p1 �9p2 < 5 ; p1 < 192; �p1 � 12

9>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>;� The analyti
al des
riptions of St (�1 (T )) and St (�2 (T )) are obtained in asimilar way. The analyti
al des
ription of the standard triangle St (T ) isde�ned by 17 dis
rete inequalities:
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St (T ) =

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

p 2 Z3

�������������������������������������������������������

4p1 +33p2 �69p3 < 53 ; �8p1 +3p2 � 112�4p1 �33p2 +69p3 � 53 ; p1 �9p2 < 54p2 �8p3 < 6 ; p1 < 192�p2 +p3 � 1 ; �p1 � 12�3p2 +7p3 � 9 ; p2 < 172�4p1 +3p3 � 72 ; �p2 � 12p1 �9p3 < 5 ; p3 < 92p1 +2p3 < 252 ; �p3 � 127p1 +6p2 < 1512 ;

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;Figure 8 shows three views of the standard triangle St (T ): Figure 8(a) presentsa 
lassi
al, voxel view, of the standard triangle; �gure 8(b) presents the sametriangle in a 
ell{
omplex spa
e representation; �nally �gure 8(
) representswhat we have 
alled the analyti
al view and represents the di�erent inequali-ties des
ribing the standard triangle.
5 Con
lusionWe have de�ned in this paper the standard model for half-spa
es, m-
ats andsimpli
es in dimension n. This is, to the authors best knowledge, the �rsttime that a large 
lass of geometri
ally 
onsistent dis
rete primitives has beendes
ribed analyti
ally in dimension n. The standard model is geometri
ally28




onsistent, de�ned analyti
ally and standard obje
ts are tunnel-free, (n� 1)-
onne
ted and bubble-free.The theoreti
al work in this paper needs now to be 
ompleted by the imple-mentation of a standard obje
t generation library for obje
ts in dimension n.Su
h a library already exists as a prototype in dimension 2 and 3. It is notvery diÆ
ult to design linear generation algorithms (linear in the number ofvoxels belonging to the dis
rete obje
t) in 2D and 3D. The 3D standard linefor instan
e 
an be generated by the algorithm proposed by Cohen-Or in 1997[16℄. It is more diÆ
ult however to design eÆ
ient generation algorithms inan arbitrary dimension. One major limitation of the standard model is that itis only de�ned for linear obje
ts while the super
over is de�ned for arbitraryobje
ts. The question of the extension of the standard model to arbitrary, nonlinear, obje
ts remains an open question. The standard model is parti
ularlywell suited for the problem of the polygonalization. The border dis
rete 3Dobje
t 
an be de
omposed into dis
rete polygons. Of 
ourse, in order to dothis, a notion of dis
rete polygon was needed. The standard polygon seems tobe an interesting answer as it 
omes with a de�nition of dis
rete 3D line anddis
rete 3D point. The a
tual algorithm that allows a dis
rete polygonaliza-tion and then transforming these dis
rete polygonals into Eu
lidean polygonsis still a largely open question.In order to fa
ilitate the resear
h on, the implementation and the test of su
hpolygonalization algorithms, we are developing a dis
rete modeling tool, 
alledSpaMod (for Spatial Modeler, see [8℄ for details), at the University of Poitiers(Fran
e). The standard model, as well as the super
over model, are part of thedis
rete obje
ts models handled by Spamod. Spamod is still in the preliminarystages of its development, however Figure 8 and Figure 9 have been produ
ed29



Fig. 8. Standard triangle with (a) Voxel view (b) Cell-
omplex view (
) Analyti
alview

Fig. 9. From left to right, a Eu
lidean view of a polygonal torus, a voxel view andan analyti
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