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Abstract

In this paper, we present a new implementation of the Ridgelet transform based on
discrete analytical 2-D lines: the Discrete Analytical Ridgelet Transform (DART).
This transform uses the Fourier strategy (the projection-slice formula) for the com-
putation of the associated discrete Radon transform. The innovative step of the
DART is the construction of discrete analytical lines in the Fourier domain. These
discrete analytical lines have a parameter called arithmetical thickness, allowing us
to define a DART adapted to a specific application. Indeed, the DART representa-
tion is not orthogonal it is associated with a flexible redundancy factor (depending
on the arithmetical thickness). The DART has a very simple forward/inverse algo-
rithm that provides an exact reconstruction. We discuss the choice of the wavelet
transform applied to the Radon projections and illustrate the extension of the DART
to a Local-DART (with smooth windowing) and Curvelet-DART (with undecimated
quincunx scheme). We apply the DART and its extensions to the denoising and the
partial reconstruction of some images. These experimental results show that the
simple thresholding of the DART coeflicients is competitive or more effective than
the classical denoising techniques.

Key words: Ridgelet Transform, Discrete Analytical Lines, Denoising, Partial
Reconstruction.

1 Introduction

Image analysis is traditionally aimed at understanding digital signals obtained
by sensors (in our case cameras). Digital information is considered as sampled
continuous information and the theoretical background for it is signal theory.
This is sometimes referred to as “digital geometry” in opposition to “discrete
geometry” for computer graphics. These last ten years, since J-P. Reveillés has
introduced it [16], discrete analytical geometry has made an important progress
in defining and studying classes of discrete objects and transformations. This
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greatly enhanced our understanding of the links between the discrete world
ZI* and the continuous world R*. In the same time, a new discrete signal de-
composition has been developed in image analysis: the wavelet representation.
This new representation has many applications such as denoising, compres-
sion, analysis, etc. One of the aims of this paper is to apply this new insight in
discrete geometry to image analysis and more specifically to a particular 2-D
wavelet transform: the Ridgelet transform (Candés and Donoho, 1998 [5]).

Wavelets are very good at representing point singularities ; however they are
significantly less efficient when it comes to linear singularities. Because edges
are an extremely common phenomena in natural images, an efficient multires-
olution representation of images with edges would be quite advantageous in a
number of applications. A team of Stanford has recently developed an alterna-
tive system of multiresolution analysis, called Ridgelet, specifically designed to
efficiently represent edges in images [5]. The Ridgelet transform can be com-
puted by performing a wavelet analysis in the Radon domain. However, most
of the work done with Ridgelets has been theorical in nature and discussed in
the context of continuous functions. The important bridge to discrete imple-
mentation is tenuous at best. To our knowledge, we can find in the literature
only two solutions for the discrete Ridgelet decomposition [9,18]. These two
strategies are recalled in section 2. This paper presents a new approach that
aims at representing linear singularities with a discrete Ridgelet transform
based on discrete analytical 2-D lines: the Discrete Analytical Ridgelet Trans-
form (DART). The idea behind the associated discrete Radon transform is
to define each Radon projection by a discrete analytical line in the Fourier
domain:

w
foa] = {(1’171‘2) e 7 ‘Iqxl — pay| < 5}

with [p,q] € 72 the direction of the Radon projection and w, a function of
(p,q), the arithmetical thickness.

There are several advantages at using discrete analytical lines: they offer a
theoretical framework for the definition of the discrete Radon projections.
The parameter w allows us to define a DART adapted to specific application
(control of the redundancy factor of the transform). We have used, in this
paper, three types of discrete analytical lines: the closed naive lines (DART
redundancy factor ~ 2), the pythagorean lines ( DART redundancy factor
~ 2.3) and supercover lines (DART redundancy factor ~ 3). This compares
to the transform redundancies of a factor 4 for the Stanford team [18] and a
factor 1 (orthogonal transform) for the Lausanne team [9].

The forward DART is based on the extraction of the 2-D Fourier coeflicients

belonging to the discrete analytical line L, 1. The inverse DART is simply



performed by putting the Fourier coefficients back on the exact same place
in the Fourier lattice. The DART has therefore a very simple and rapid for-
ward /inverse algorithm. This simple straightforward approach ensures an ex-
act reconstruction without interpolation nor iterative process (that might be
sensible to noise).

In order to compare the performances of the DART, we have applied the DART
and its extensions (local-DART and Curvelet-DART) to the denoising and the
partial reconstruction of some images. We have compared our approach to ex-
isting ones. The recent developments have shown that the Ridgelet decompo-
sition has very attractive results for the denoising problem [18]. For this, the
Stanford team proposed to apply a thresholding on Ridgelet coefficients. Our
experimental results show that the simple thresholding of the DART coeffi-
cients is competitive or more effective than the wavelet transform. Moreover
the DART denoising results seems to be similar (visually and PSNR measure)
than Stanford’s strategy but without any iterative reconstruction algorithm
and with a more flexible definition. The analysis reported here show how re-
sults of discrete analytical geometry can be successfully used in image analysis.

In section 2, we recall the continuous theory of the Ridgelet transform and de-
scribe the existing discrete Ridgelet transforms [9,18]. In section 3, we present
the Discrete Analytical Radon Transform with some details on the theoret-
ical framework of discrete analytical lines. The Discrete Analytical Ridgelet
Transform (DART) is introduced at the end of the section 3. Several illustra-
tions of the DART are proposed in the section 4. In this section, we discuss
the choice of the discrete line type and 1-D wavelet transform associated with
the DART. We compare also the DART with other Ridgelet transform imple-
mentations for the denoising and the partial reconstruction problematics. We
present several extensions of the DART to a local-DART and to the Curvelet
formalism. We end this section with some thoughts on the extension of the

DART to 3-D. We conclude in section 3.

2 The Ridgelet transform
2.1  Continuous theory of Ridgelet transform

A substantial foundation for Ridgelet analysis is documented in the Ph.D.
thesis of Candés [5]. The continuous Ridgelet transform of s € [?(IR?) is
defined by :

r(a,b,0) = [ apa(x)s(x)dx



with x = (21, 23) € R? and 1, ,¢(x) the Ridgelet 2-D function defined from a
wavelet 1-D function ¢ as:

a

¢a,b,€(X) - a_1/2¢ (:1:1 cosf + z9sin  — b)

b ¢ Ris the translation parameter, a € R is the dilatation parameter and
6 € [0,27[ is the direction parameter.

The function 1,4 is oriented at the angle # and is constant along lines
r1cos B + rosinf = cst

Transverse to these ridges it is a wavelet function. In comparison, the con-
tinuous 2-D wavelet function are tensor products of 1-D wavelets v, , defined

by:

$—bl

Yab(X) = Vay by (1), b, (22) With g, b (2) = a;1/2¢( )

a1

With the Ridgelet transform, the translation parameters (b1, bz) of the 2-D
wavelet transform are replaced by the line parameters (b, 6).

A basic tool for calculating Ridgelet coefficients is to view Ridgelet analysis as
a wavelet analysis in the Radon domain: in 2-D, points and lines are related
via the Radon transform, thus the wavelet and Ridgelet transforms are linked
via the Radon transform.

The Radon transform of s is defined as:

Rs(0,t) = / s(x)6(xq cos O + xgsin @ — t)dxqday
R2

where § is the Dirac distribution. The Ridgelet coefficients r; of s are given by

the 1-D wavelet transform to the projections of the Radon transform where

the direction 6 is constant and ¢ is varying:

rs(f,a,b) :/R%/)a,b(t)RS(H,t)dt

The Radon transform can be obtained by applying the 1-D inverse Fourier
transform to the 2-D Fourier transform restricted to radial lines going through
the origin (this is exactly what we are going to do in the discrete Fourier
domain with help of discrete analytical lines):

S(wecos b wsinb) :/ e Rs(0,t)dt
R



with s the 2-D Fourier transform of s.

This is the projection-slice formula that is used in image reconstruction from
projection methods. All these relations are resumed in figure 1.

1-D Fourier 1-Dv weawel et
transfortn transforn

2-D Fourier Radon
Domain Domain

h

Ridgelet
Domain

b

Fig. 1. Relation between transforms

2.2 Strategies for Discrete Ridgelet Transform

As we have seen, a basic strategy for calculating the continuous Ridgelet trans-
form is first to compute the Radon transform Rs and secondly, to apply a 1-D
wavelet transform to the slices Rs(f,.). The implementation of the discrete
Ridgelet transform can use the same principle.

The discrete wavelet decomposition, associated to a filter bank [15], is easy
to implement, is stable and invertible, and can be associated to a discrete
orthogonal representation. The discretization of the Radon transform is more
difficult to achieve. The majority of methods proposed in the literature have
been devised to approximate the continuous formula. None of them, however,
were specifically designed to be invertible transforms for discrete images and
can therefore not be used for the discrete Ridgelet transform.

The discrete Radon transform can be computed with one the two following
strategies:

e Spatial strategy for digital Radon transform. The Radon transform is de-
fined as summations of image pixels over a certain set of lines, that are
defined in a finite geometry.

Rs([p,ql,0)= Y s(z1,22)

(z1 79”2)€L[p,q],b

with Ly s = {(21,22) € [0,N — 1] x [0, N — 1] : gz — pry — b= 0} and
(p, q) the normal vector.

o Fourier strategy for digital Radon transform. The projection-slice formula
suggests that approximate Radon transforms for digital data can be based
on discrete Fast Fourier transforms (FFT). The Fourier-domain computa-
tion of an approximate digital Radon transform is defined as:

(1) Compute the 2-D FFT of s



(2) Extract Fourier coefficients along the lines Ly going through the origin.
(3) Compute the 1-D inverse FFT on each line Ly (defined for each value of
the angular parameter 6).
This approach can be problematic since step 2 is not naturally defined on
discrete data.

Recently, some articles studied the implementation of the discrete Ridgelet
transform. Do and Vetterli proposed in [9] an implementation method of
Ridgelet transform based on the use of the finite Radon transform for Z7,
the cartesian product of two sets of integers mod p, where p is a prime. This
method achieves both invertibility (the inverse transform is stable) and non-
redundancy (the associated Ridgelet transform is orthogonal). The obtained
denoising results presented in [9] illustrate that this strategy is more effective
than the Wavelet transform in recovering straight edges. This transform is
not geometrically faithful (the finite Radon transform has an important wrap-
around effect) and is only defined for image s such that s € l[20...p—1]><[0...p—1]
where p is a prime number. Moreover this Radon transform integrates over
lines that can be rather arbitrarily spread out over the spatial domain and
discrete lines in the Fourier domain associated with this decomposition are
not closed. This approach is not based on a geometrically faithful notion of
Ridgelets and suffers from artifacts (for example in denoising application: fig-
ure 10).

In [18], Starck et al. proposed to use an interpolation scheme that substitutes
the sampled values of the Fourier transform obtained on the square lattice with
sampled values of 5 on a polar lattice. They use a pseudopolar Fourier domain
that offers a notion of polar Fourier domain better adapted to digital data (the
digital Fourier domain is viewed as a sequence of squares, not circles). The
discrete pseudopolar Fourier transform of a digital image s € l[20...n—1]><[0...n—1]
is defined by sampling the 2-D Fourier transform at the collection of pseu-
dopolar grid points illustrated by figure 2 (from [3]). The paper [18] follows
the strategy based on the pseudopolar grid. However, it uses a simple nearest-
neighbor interpolation scheme to evaluate pseudopolar grid points in terms of
nearby cartesian grid points. More recently Donoho et al. proposed in [3] a
fast pseudopolar Fourier transform based on a chirp-Z transform (for the exact
evaluation of the 2-D Fourier transform at these non cartesian points). The
associated Radon transform (called Slant) is algebrically exact and geometri-
cally faithful. However in order to be invertible this transform requires a fixed
factor four of redundancy. Moreover, the inverse transform is ill-conditioned
in the presence of noise and requires an iterative approximation algorithm.

In this paper, we propose to use the Fourier strategy for the digital Radon
transform. Our lines Ly are defined with help of the discrete analytical ge-
ometry theory in the Fourier domain [2,16]. This solution allows us to have
different Ridgelet decompositions according to the arithmetical thickness of
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Fig. 2. (a) The pseudopolar grid (b) The conversion from cartesian grid to pseu-
dopolar grid (from [3])

the discrete lines. This approach presents a limited wrap-around effect. As
for the Donoho’s transform [3], our representation is redundant however the
degree of redundancy can be adapted by our thickness parameter. Our Radon
backprojection is very simply and permits an exact reconstruction (analytical
Radon transform followed by backprojection analytical Radon transform is
a one-to-one transform). The objects defined in discrete analytical geometry
(3D lines, planes, hyperplanes, ...) allows extensions to 3D and even higher
dimensions (see section 4.4).

2.3  Multiscale Ridgelet: Curvelet

The Curvelet transform proposed by Donoho [13] allows us to obtain a multi-
scale Ridgelet analysis with interscale orthogonality. The Curvelet transform
is obtained by filtering and then applying a windowed Ridgelet transform on
each bandpass image. The motivation behind the Curvelet transform is that by
smooth windowing, segments of smooth curves would look straight in subim-
ages, hence they can be well captured by a local Ridgelet transform. Subband
decomposition is used to keep the number of Ridgelets at multiple scales under
control by the fact that Ridgelets of a given scale exist in a certain subband.
The window’s size and subband frequency are linked such that Curvelets have
support verifying the key anisotropy scaling relation for curves [13]:

width ~ length?

Starck et al. propose a Curvelet transform that uses an undecimated filter
bank [18] for the subband decomposition. They applied their digital Curvelet
transform to the denoising of some standard images embedded in white noise.
These empirical results reported in [18] and based on simple thresholding of
the Curvelet coefficients show that this strategy is very competitive with state
of the art techniques based on wavelets.



The study of the DART generalization to the Curvelet transform is not the
aim of our article but some examples will illustrate how our Ridgelet tranform
can be extended to the multiscale approach.

3 Discrete Analytical Ridgelet Transform : DART

The idea behind our associated discrete Radon transform is to represent each
direction by a discrete analytical straight line. For this we need a discrete
straight line that has a central symmetry and that forms a “good” approxi-
mation of the corresponding Euclidean straight line (i.e. direction). Without
central symmetry (i.e. if (x,y) and (—x, —y) both belongs to the line), the in-
verse Fourier transform leeds to imaginery values. This excludes the classical
Bresenham discrete 2-D line [4]. Instead we chose discrete analytical 2D lines.
It defines not a unique line but a family of lines with a thickness parameter,
called arithmetical thickness. The arithmetical thickness provides a control
over the transform redundancy factor and properties such as the connectivity
of the straight line. This thickness allows us to choose the discrete straight
line definition that fits best a given application. The discrete line is analyti-
cally defined meaning that the discrete line is defined by equations that allow
a precise study of the properties and immediate extensions to higher dimen-
sions. An important body of theory, called discrete analytical geometry, is now
available since J-P. Reveilles first proposed such an approach [16].

3.1  Definition and properties of the closed discrete analytical lines

The discrete analytical line we use for our transform are defined as follows [2]:

w
[oa] = {(51?171‘2) S Zz‘k]l‘l — pxa| < 5}

with [p, ¢] € Z? the direction of the Radon projection (we have § = arctan (%))
and w, a function of (p, q), the arithmetical thickness. J-P. Reveilles introduced
the discrete analytical lines in 1991 [16], defined as 0 < gz — py +r < w. In
this paper, since we need central symmetry, we chose a variant of the closed
discrete analytical lines, defined as 0 < g — py < w, studied in [2].

It is easy to see that the closed discrete analytical lines Ly , have a central
symmetry regardless of the value of w. Moreover, the discrete analytical line
can easily be extended to higher dimensions as discrete analytical hyperplanes

defined by [377, giwi| < % [1].



The arithmetical thickness w is an important parameter that controls, among
other things, the connectivity of the discrete lines: let’s consider the closed
discrete analytical line Lf, ; and its Euclidean counterpart Ly, g : gz1 — pra =

0, then:

e Forw < max(|p| ) |Q|)v L([Az)a,q
e For w = maX(|P| ) |Q|)v L([Azja,q]
line. It is directly related to the distance d; since

] is not connected;
is 8-connected. This is called the closed naive

pmax(iellal) _ {M c 7

[p.q]

d (M, Lp.g) < %}
with dy (A, B):‘l'l —:1;1‘—|—‘:1;2 —xf‘

o For w > max([p[,[q]), L, is 8-connected.
o For w = p?+ ¢, Ly, i 8-connected. This is called the Pythagorean line.

This type of line is directly related to the distance dy since

[p.q]

LY {M622 ds (M, Lp,.q) < %}

with d (4, B) =/ (af — 2F) + (24 — 2F)’

o lorw = |[p[+|q|, L, , is 4-connected. This is called the supercover line and
has a theoretical 1mp0rtance [2]. This type of line is directly related to the
distance d., since

s o < 2

with d., (A, B) = max (‘xf — B

oo (M, L) < %}

A _ B
o7 =)

Y

o For w > |p| + |ql, Ly, is 4-connected.

These results are direct consequence of a well known result in discrete ana-
lytical geometry and more recent studies on distances [16,2]. The fact that
these lines can be defined with help of distances makes a direct link with
mathematical morphology [17].

In this paper we studied the DART with the closed naive lines, the pythagorean
lines and the supercover lines.



3.2 Definition of the discrete analytical Radon transform

We use the Fourier domain for the computation of discrete Radon transform:
Fourier coeflicients of s are extracted along the discrete analytical line L, |

w A w
By s = UJ 5(fF, f5) such that ‘qflk —pfzk‘ < 5

keZ+

and we take the 1-D inverse FF'T' of F; s on each value of the direction [p, q]-
Formally, our discrete analytical Radon transform is defined by:

K-1
Bs([p.q],b) = Z P[(;,q]s(k)-@%j%b with K length of L,
k=0

We must define the set of discrete directions [p, g] in order to provide a com-
plete representation. The set of line segments must cover all the square lattice
in the Fourier domain. For this, we define the directions [p, ¢] according to
pairs of symmetric points from the boundary of the 2-D discrete Fourier spec-
tra. Figure 3a illustrates this choice of angles with the covering of the Fourier
domain by the associated Euclidean lines. Notice that this set of angles is not
equispaced.

Proposition 1 Let a square lattice be defined as Qi = [-N; N] x [-N; NJ.
Let us consider the set of directions (pu,Gm) with 0 < m < 2N, (pm, Gm) =
(N,m — N) and for 2N +1 < m < AN — 1, (pm,qm) = BN —m,N). The
set of all discrete analytical lines defined by |gn fi1 — pm fo] < 22 with w, >
sup (|pml, |qm|) provides a complete cover of the lattice Q3.

The proof of this proposition is obvious since we are dealing here with discrete
lines that are at least 8-connected as stated in the previous section. As soon
as we take w = sup (|pm|, |gm|) — 1 the lattice is not covered anymore (because
of Lf&ﬁ’](lpmmmh_lzo and LFLO])‘ More complex formulas for w can probably be
propose that provide a complete cover and a lower redundancy. This is still an
open and somewhat difficult question. In our applications we chose to work
only with connected discrete lines.

Figure 3 illustrates the cover of the Fourier lattice (on the first octant) for
two different types of discrete lines. The grey value of the pixel represents
the redundancy in the projection (number of times a pixel belongs to a dis-
crete line). One isolated line is drawn to illustrate shape of the discrete lines
depending on its arithmetical thickness.

o In figure 3b, we show the redundancy for the closed naive lines. They provide
a relatively small DART redundancy factor of ~ 2.05. These lines are well

10



fl L E[pﬂnqﬂ] :

Fig. 3. (a) Cover of the Fourier domain with the Euclidean line L, ;1. (b) Redundancy
on the cover of the Fourier lattice by closed naive lines, (c) by supercover lines

suited for applications such as partial reconstruction where a relatively small
redundancy is an asset.

e in Figure 3¢, we show the redundancy for the supercover lines. They provide
a more important DART redundancy factor of ~ 3.05. These lines are well
suited for applications such as denoising.

o The pythagorean lines provide an intermediate DART redundancy factor of
~ 2.35.

We now give two examples of the discrete analytical Radon transform in ac-
tion. We propose a comparison with the differents solutions proposed in the lit-
erature. The papers of Stanford [18] reference a Matlab Toolbox developed by
Stanford researchers for performing Ridgelet and Curvelet analysis. Although
this code is actually not open to the public. In place, we use the Radon trans-
form developped by Mathworks that is based on a geometrically faithful no-
tion of Radon and that does not presents wrap-around effect. The result of the
Mathworks transform is visually similar than the Stanford transform. The code
of Do and Vetterli [9] is open to the public (http://lcavwww.epfl.ch/“minhdo).
In figure 4, we show the result of the discrete Radon decomposition of an array
containing a single nonzero entry. We observe that :

o In this case, the Radon transform follows a broken line as for the Mathwork
transform.

o The finite Radon transform of Do and Vetterli has an important wrap-
around effect and is difficult to interpret.
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e Our transform obtains a broken line without wrap-around effect.

Figure 4d illustrates the influence of the increasing of the redundancy of the
decomposition (in this case, supercover lines are used) : the Radon is an in-
terpolated broken line.
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Fig. 4. The Radon transform of a point : (a) with a geometrical strategy (b) with
the Do and Vetterli approach. (c) with our strategy using the closed naive lines, (d)
the supercover lines

We want now to find for a given coefficient ([p, ¢],b) of the Radon transform,
which pixels have contributed [3]. For this, we apply the Radon backprojection.
Our analytical reconstruction procedure works as follows:

(1) Compute the 1-D FFT transform for each set Rs([p,q],.)
(2) Substitue the sampled value of § on the lattice where the points fall on
lines L, ; with the sampled value of 5 on the square lattice.

(3) Apply the 2-D TFFT transform.

The previous procedure allows us to obtain an exact reconstruction if the set
of directions of lines provide a complete cover of the square lattice. To make a
comparison, we use the [Radon procedure of Mathworks that uses the filtered
backprojection algorithm (based on an interpolation in the Fourier domain)
to perform the inverse Radon transform. Notice that the results obtained with
this backprojection are visually similar to Stanford’s results. We use also the
code of Do and Vetterli. All these backprojections are presented in figure 5.

12



We can see that our strategy does not exhibit geometrical distortions and a
very limited wrap-around artifacts (that could be removed by zero-padding
in the Fourier domain). The results are similar for the different types discrete
analytical lines.

coe s T \ .
a0 | o A0 \\\ L an f \\\
: : D B n
o )

Fig. 5. The Radon backtransform of a point : (a) with a geometrical strategy (b)
with the Do and Vetterli approach. (¢) with our strategy using the closed naive lines,
(d) and the supercover lines

3.3  Definition of the DART

Now, to obtain the Ridgelet transform, we must take a 1-D wavelet trans-
form along the radial variable in Radon space. The choice of discrete one-
dimensional wavelet transform is discussed by Starck et al. in [18]. They indi-
cate that experience has shown that compactly-supported wavelets can lead
to many visual artifacts when used with nonlinear processing. This is due to
the lack of localization of such compactly-supported wavelets in the frequency
domain. The first Stanford implementations have made the choice of bandlim-
ited wavelets, whose support is compact in the Fourier domain. For this, they
use the periodic discrete Meyer wavelet that consists of a system of division
in the frequential domain. The discrete Meyer wavelet transform is studied
in Kolaczyk’s thesis [14]. After that, Starck et al. chose a specific overcom-
plete system: they define the scaling function in the frequency domain as a
renormalized Bs;—spline and the wavelet function as the difference between
two consecutive resolutions. With this choice, each subband is sampled above
the Nyquist rate, hence avoiding aliasing (this phenomenon is present when
a nonlinear processing is applied on orthogonal wavelet transforms). Do and
Vetterli use classical decimated Symlet Wavelet for the denoising problematic.

In this article, we do not propose a “definitive” solution associated with the
different discrete analytical lines. The choice of the type of 1-D wavelet trans-
form depends of the goal of the transform. This wavelet transform can be
decimated or undecimated and the wavelet base can be adapted according to
the application, as for the classical wavelet decomposition. In the following sec-

13



tion, we compare the use of Meyer wavelets (whose support is compact in the
Fourier domain) and the use of decimated /undecimated compactly-supported
wavelets for two applications : denoising and partial reconstruction.

4 TIllustration of the DART

4.1 naive lines vs pythagorean lines vs supercover lines

A. Denoising

The denoising procedure by Ridgelet transform consists simply in threshold-
ing the Ridgelet coefficients and computing the inverse Ridgelet transform.
The thresholding is performed with help of an undecimated method devel-
oped for the wavelet decomposition [8,7]. The redundancy of the wavelet de-
composition, associated with this method, reduces artifacts that appear after
thresholding. Let r¥ be the noisy undecimated Ridgelet coefficients, we use

the following hard-thresholding:

T?([p, Q] 7avb) if r:)([P, Q] ,Cl,b) > ao

0 otherwise

T‘:([p, Q] 7avb) =

a can be defined as o = 4/2log(N) [10]. We can use two strategies for the
estimation of the variance of the noisy Ridgelet coefficients o

o We consider that the DART is not norm-preserving and the variance de-
pends thus on the projection index. In this case, the individual variance is es-
timated using the absolute median of the wavelet decomposition’s first scale
of each radial projection (if the wavelet decomposition is norm-preserving).

e By evaluating the DART (defined with Daubechies D20 wavelets) of a few
standard white noise images, we have observed that the variance of noisy
coefficients remains constant. The variance can then be estimated before
the Ridgelet transform and used for all the Ridgelet transform.

Our experiments have shown that the first strategy is better for denoising with
the DART (the SNR measure of reconstructed image is higher). We use thus
this first method.

In order to illustrate precisely the result of the denoising algorithm with dif-
ferent types of discrete analytical lines we have generated an artificial image
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(Figure 6a) and added important white noise (Figure 6b). The SNR* of the
noisy image is equal to 15 dB. Figures 6¢c, d and e are the results obtained
with the three definitions of discrete analytical lines (naive, pythagorean and
supercover) and with the Daubechies D20 wavelets. For a more redundant
decomposition (based on supercover discrete lines, figure 6e) the denoising re-
sult is better than for a less redundant decomposition (figure 6¢): the edge is
reconstructed more precisely and the uniform areas are smoother. As for the
wavelet decomposition, overcompletness provides advantages for denoising.

For comparison the result of a denoising carried out by classical decimated
wavelet coefficient threshold (figure 6f) is also given. The result is obtained
with a decimated decomposition by Daubechies D20 wavelets and a "hard”
thresholding. The threshold is based on the noise variance, as Donoho et al.
introduced in [10]. Noise variance is estimated using the absolute median of
the first decomposition scale. The wavelet method obtains the best SNR mea-
sure, but it exhibits numerous blemishes, that are a result of the nonlinear
processing with critical sampling. This experiment illustrates the limits of the
SNR measure since it does not quantify well this type of artifacts.
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Fig. 6. (a) original image (b) noisy image (to show more precisely the effect of
the noise we plot a vertical line of each image). (¢) denoising with naive lines (d)
denoising with pythagoricean lines (e) denoising with supercover lines (f) denoising
with decimated wavelet transform

B. Partial reconstruction

1 All the SNR measures are done with the Stanford Matlab function.
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Contrary to the denoising problematic, for a partial reconstruction, redun-
dancy is of course not interesting. Figure 7 compares partial reconstruction
of an artificial image by using the 30% largest naive-DART coefficients with
reconstruction by using the 30% largest supercover-DART coefficients. This
illustrates how the arithmetical thickness of the discrete lines employed in our
Ridgelet transform influences the quality of the "compressed” image. The lower
redundancy representation (naive discrete lines) preserves all the features of
the original image after a simple thresholding (Figure 7 b). On the other hand,
with the higher redundancy representation (supercover lines) we loose features
and the image is globally of lower quality.
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Fig. 7. Partial reconstruction of an artificial image (a) naive-DART (b) super-
cover-DART
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4.2 Influence of the 1-D wavelet transform choice

We discuss now the choice of 1-D wavelet transform with the DART. For this,
several 1-D wavelet transforms were tested along the radial variable in discrete
analytical Radon space (for these experiments, we use only the naive discrete
line definition, the results are equivalent with the others types of lines):

(1) The discrete Meyer wavelet (whose support is compact in the Fourier
domain) transform.

(2) The Daubechies D20 wavelet (whose support is compact in the time do-
main) transform.

(3) The undecimated Daubechies D20 wavelet transform.

(4) The overcomplete system based on the work of Starck et al. [18] (whose
support is compact in the Fourier domain).

A. Denoising

Figure 8 considers an object used by Do and Vetterli in their paper [9], and
compares the denoising of this image by thresholding of the DART with dif-
ferent wavelet bases. We use the SNR and the visual analysis to measure the
performance. We observe that :

o The undecimated methods offer superior performances over orthogonal wavelet
decompositions.

o With decimated wavelet decomposition, the compactly-supported wavelets
in the frequency domain obtain better SNR measures than compactly-
supported wavelets in the time domain.

o The Starck-DART reconstruction and undecimated Daubechies D20 DART

reconstruction are very similar.

For denoising with the DART, we can not conclude that the undecimated
compactly-supported wavelets in the frequency domain enjoys superior per-
formance over the undecimated compactly-supported wavelets in the time
domain. However, in this study, we use time filters (D20 filters) that have
very large supports. In this case the filter profile in Fourier domain converges
rapidly to 0 after the cut-off frequency. If the same experiments are done
with too small filters, the reconstructed image will contain some disturbing
artifacts.

More generally, we have generated a set of noisy images from both Do’s Object
image and Lenna image. We have then compared the four different filtering
procedures. These experimental results have confirmed that the Starck-DART
reconstruction and undecimated Daubechies D20 DART reconstruction are
similar and seem to be the better choice.

17



50
100
150
200

200

250
200 250 50 100 150 200 250 50 100 150 200 250

“@ ®) ©
(SNR = 19.58 dB) (SNR =27.50 dB) (SNR =26.54 dB)

250

50

50

50

100

150

200 200

250 250

200 250 50

50

150 200 250

IDO(d)‘.'SO 100 (e)
(SNR =27.70 dB) (SNR = 27.68 dB)

Fig. 8. (a) Noisy image (b) denoising with the Meyer-DART transform (c) denoising
with D20-DART transform (d) denoising with undecimated D20-DART transform
(e) denoising with Starck-DART transform

B. Partial reconstruction

We now consider the partial reconstruction of Do’s object by the 30% largest
DART coefficients (figure 9). Only the decimated wavelet transforms are tested
since the redundancy is irrelevant for partial reconstruction. We observe that,
in the frequency domain, the more compact the wavelet support is, the better
the SNR measure is. These results confirm Stanford’s experience. However,
comparing the different reconstructed images, one can hardly see the differ-
ence. We have generated a set of partial reconstructions from both Do’s object
and Lenna. These experiments confirm previous visual analyzes: partial recon-
structions from D20-DART and Meyer-DART are equivalent.

From these experiments (denoising and partial reconstruction), we propose
to use the D20 wavelets for the DART because the D20 basis can be simply
associated to an orthogonal transform or an undecimated transform (with the
"a trous” algorithm) and moreover this base is norm-preserving.
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Fig. 9. Partial reconstruction of Do’s image (a) Meyer-DART (b) D20-DART (c)
D8-DART

4.3 DART vs litterature Ridgelet transform

We briefly compare the DART with the other Ridgelet transform implementa-
tions we know about. As we have said the Stanford’s code is actually not open
to the public (a comparison with Stanford’s results in PSNR terms is done
in the following section). In place, we use the Radon transform developped
by Mathworks that satisfies a geometrically faithful notion of Radon (with no
wrap-around effect). This allows us to measure the importance of having or
not a wrap-around effect.

A. Denoising with DART and Local DART

Figure 10 compares the denoising of the very noisy Do’s image (SNR 18.73
dB) by thresholding the Ridgelet transform:

e The Ridgelet based on "geometrical” Radon transform (Mathworks code)
and the Starck overcomplete wavelet system. In this case, the noise variance
is estimated by evaluating the "geometrical” Ridgelet transform of standard
white noise images (as proposed in [18]).

e The Do and Vetterli orthogonal Ridgelet.

o The DART based on supercover lines and undecimated D20 wavelets.

We illustrate also the results obtain with decimated and undecimated wavelet
transform (implemented by Stanford in the toolbox Wavelab).

We observe that :

o The "geometrical” Ridgelet and the DART reconstruction does not contain
the many blemishes that one sees in the wavelet reconstructions. The SNR
measures of these two transforms are better.

19



o The decimated wavelet transform displays disturbing artifacts. The use of a
redundant wavelet transform considerably reduces the number of artifacts.

e The Do’s Ridgelet transform corresponds to a critical sampling. The recon-
struction associated with a nonlinear processing contains thus many visual
artifacts.

e The DART enjoys superior performance over Geometrical Ridgelet trans-

form 2.
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Fig. 10. (a) noisy image ; denoising with (b) the decimated wavelet transform (c)
the undecimated wavelet transform (d) the undecimated geometrical Ridgelet (e)
the Do and Vetterli approach (f) The supercover-DART

B. Extension to Local DART and Curvelet DART

The DART can be easily extended to a local transform by a smooth partition-
ing, or more generally to a Curvelet transform by the following steps:

e Decompose the image into a set of wavelet bands.
e Fach subband is smoothly windowed into squares.

o Analyse each square by the DART.

Notice that the subbands used in the discrete Curvelet transform of continuum

2 We can obtain better results with the "Mathworks” Radon transform by using an
other level of threshold. However, because the Radon and the Wavelet transform
associated with this strategy is not norm-preserving, it is difficult to define a general

level of threshold.
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functions have the non-standard form [221, 221"'2} . Starck et al. propose to use
a specific overcomplete subband filtering: the wavelet function is defined as the
spatial difference between two consecutive resolutions. We extend our digital
Ridglelet transform with the same principle, but we substitute the Starck’s
overcomplete subband filtering with an undecimated quincunux wavelet de-
composition in order to preserve the interscale orthogonality. Moreover this
wavelet transform preserves the variance of the noise. The comparison between
Ridgelet denoising results and Curvelet denoising results is however not the
subject of this paper. These experiments are done precisely by Starck et al.
(http://www-stat.stanford.edu/ ~jstarck). We illustrate only how the DART
can be extended to the Curvelet formalism.

To illustrate the local DART and the new discrete Curvelet transform based on
discrete analytical lines, we have developed an example of denoising algorithm.
As for the Ridgelet transform, the denoising by Curvelet transform consists
simply in thresholding the Curvelet coefficients and computing the inverse
Curvelet transform. For the estimation of the variance o of the noisy Curvelet-
DART coefficients, we consider that the Curvelet-DART is "norm preserving”.
The noise variance is then estimated before the Curvelet transform.

In our example, a Gaussian noise with a standard deviation equal to 60 was
added to the classical Lenna image (Figure 11a). Several methods were used
to filter the noisy image: thresholding of the undecimated wavelet transform
(Figure 11b), thresholding of "supercover” DART (Figure 11c¢), thresholding of
local "supercover” DART (Figure 11d), thresholding of Curvelet DART based
on supercover discrete lines and undecimated quincunux scheme (Figure 11e).
We observe that the Curvelet DART and Local DART enjoy superior per-
formance over the other transforms. For these decompositions the analysis is
better localized in the spatial domain. This property eliminates the parasitic
lines present in the DART reconstruction and due to the selection of an im-
portant contour in an area of the image. As for the Ridgelet transform, we can
use other definitions of discrete analytical lines for Local DART and Curvelet

DART.

To study the dependency of these methods on the noise level, we generated
a set of noisy images from both Do’s Object and Lenna. We then compared
the different filtering procedures. This series of experiments is summarized in
Figure 12 for Lenna. These experimental results show that the Local DART
and Curvelet-DART correspond, in general, to the better results.

In order to make a comparison with Stanford’s results, we use one of the ex-
ample of denoising proposed in [18]: a Gaussian noise with a standard de-
viation equal to 20 is added to the Lenna image (size: 512 by 512). The
reconstruction by local DART and Curvelet-DART are presented figure 13.
The results of Stanford’s algorithm are visible at the website http://www-
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Fig. 11. (a) noisy image (b) denoising with the undecimated wavelet transform (c)
denoising with DART based on supercover lines (d) denoising with local DART
based on supercover lines (e) denoising with DART-Curvelet based on undecimated
quinconx wavelet transform and supercover lines

64 (1) | 32 (1) | 16 (1) | Curvelet

DART 31.42 | 31.38 | 30.61 | 31.23

Stanford | 30.79 | 30.97 | 30.87 | 31.95

Table 1
PSNR measures of DART and Stanford reconstructions. (1) Size of the window

stat.stanford.edu/ “jstarck. From the figure 13 and the Stanford Web site,
one can not see important differences between the Stanford strategy and the

DART strategy.

In order to make an quantitative measure we used the PSNR. We indicate in
the table 1,

e The PSNR values? after filtering with the local DART and Curvelet-DART.
o The PSNR values after filtering with the Stanford algorithm indicated in
[18].

3 The PSNR measures of DART are done with the Stanford Matlab function.
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Fig. 13. (a) noisy image with the same level of noise than [18] (b) denoising with
local DART based on supercover lines (¢) denoising with DART-Curvelet based on
undecimated quincunux wavelet transform and supercover lines.

These measures confirm the visualy analysis: the Stanford reconstruction and
DART reconstruction are very similar. However, as we have said, the back-
projection DART algorithm is simpler and the DART representation is more
flexible (with the variable line thickness).

Notice that Color denoising results obtained with the DART are presented in

[6].
C. Partial reconstruction

We now consider the partial reconstruction of Do’s object by the 512 most
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important Ridgelet coefficients (figure 14). Only the decimated wavelet trans-
forms associated with naive lines are tested. Since our decomposition is re-
dundant, we observe that the DART is not adapted to this problematic con-
trary to the orthogonal wavelet representation and Do’s Ridgelet. However in
order to obtain a more sparse representation, we use the strategy called ortho-
Ridgelet by Stanford and introduced very recently in [11]. This transform may
be viewed as a discrete Radon transform followed by an orthogonal 2-D wavelet
transform (we obtain ortho-Ridgelets by taking the wavelet transform along
the angular variable of the Ridgelet projection). The ortho-Ridgelet represen-
tation is more sparse: the transform along the angular variable has compressed
the laterally features of the Ridgelet transform into point-like features. If we
apply this §—wavelet transform to the DART representation, we obtain for the
partial reconstruction a result that is close to Do’s result. However the ortho-
DART reconstruction has a smaller SNR measure than the two orthogonal
transforms. This result is a first experimentation and needs to be developed
(choice of the best basis along the angular variable, a local approach ...).
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Fig. 14. Partial reconstruction of Do’s image (512 coefficients) (a) Wavelet (b) Do’s
Ridgelet (c) Naive DART. Bad result because of the redundancy (d) Naive or-
tho-DART

/4 DART 3-D ?

As for the 2-D domain, the 3-D Radon transform of an object is related to
its 3-D Fourier transform via the central slice theorem: the 3-D Radon trans-
form can be obtained by applying the 1-D inverse Fourier transform to the
3-D Fourier transform restricted to radial lines going through the origin. Once
again, we propose to extract the Fourier coefficients along a 3-D discrete an-
alytical line going through the origin. Once a discrete 3-D line is defined, the
principle of the method is the same as in the 2-D case with the same properties
(exact reconstruction, rapidity, flexible definition). This idea works well for the
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supercover model as the 3-D supercover discrete analytical line is connected
(see example in figure 15). Thus the set of 3-D supercover lines covers the
3-D Fourier cubic lattice if we define the line directions according to pairs of
symetric border points of the lattice. The definition of a 3-D supercover line
of direction [p, ¢, r] is given by [2]:

e = ) < LV
s gn <

In the same way, all the supercover of all m-flats in dimension n are well defined
[2]. This allows us to generalize this approach to 3-D planes (see example in
figure 15) and dimension n. For the other models (naive and pythagorean
for example) however the definition and the extension to 3-D lines or higher
dimensions is more problematic. For instance, the 3-D naive discrete analytical
line is not connected in general and does not ensure a complete cover of the
3-D cubic Fourier lattice. We hope to report on this developpements in a
forthcoming paper.

=

Fig. 15. Discrete analytical 3-D line and plane

5 Conclusion

In this paper, we have proposed a new strategy for implementing the discrete
Ridgelet transform. So far, the developement of the discrete Ridgelet trans-
form has been investigated by two teams (Stanford and EPFL) in previous
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works. Our innovative choice is to use the formalism of the discrete analyti-
cal geometry theory in the Fourier domain, in order to define a new discrete
Ridgelet transform: the Discrete Analytical Ridgelet Transform (DART).

The DART algorithm is easy to implement. It provides an exact reconstruc-
tion property: the DART followed by a reverse DART is a one-to-one trans-
form. Our experiments have shown that our approach presents a limited wrap-
around effect, that does not influence the denoising or partial reconstruction
results. Moreover, by using the analytical formalisation, we define a flexible
Ridgelet transform: we can define different DART decompositions according
to the arithmetical thickness of the analytical discrete lines. As for Stanfords
transform, our representation is redundant but the transform redundancy fac-
tor depends on the type of the discrete lines used and can be adapted for each
application.

Our DART uses a 1-D wavelet transform based on Daubechies D20 wavelet.
Our experiments have shown that this basis associated with the analytical
Radon transform obtains satisfactory results for the two studied problematics.
Moreover, this basis can be simply associated to an orthogonal transform
for partial reconstruction or to an undecimated transform for denoising, and
it is norm-preserving. We have seen that if, instead, we use a basis that is
compactly supported in the Fourier domain (orthogonal or redundant), it does
not improve the results of the DART, but the decomposition is less flexible.

We have illustrated the performances of the DART for denoising problemat-
ics, even with very noisy images (with gaussian noise). This study indicates
that the Local-DART and the Curvelet-DART thresholding rivals Stanford’s
Ridgelet denoising results, that are considered as the reference for Ridgelet’s
denoising applications, and more generally, classical denoising techniques that
have been developped over the last decade. Howerver, contrary to the Stan-
ford strategy, the reverse DART does not require an iterative approximation
algorithm and the redundancy factor of the representation is not fixed.

This work can be extended in several directions. One of the theoretical ques-
tions in discrete geometry is the problem of defining an arithmetical thickness
function that provides a smaller redundancy and a cover of the Fourier lat-
tice. This is still an open and difficult arithmetical problem. One of the most
important interests of the discrete analytical approach is the possibility to ex-
tend easily our work to 3-D. We are currently investigating the application of
a 3-D DART to the denoising process of animated video images. In this paper
we present some first thoughts abouth these questions.

We are also considering extending our "partial reconstruction” algorithm with

more sophisticated representations. The ortho-Ridgelet proposed by Stanford
seems to obtain good results for partial reconstruction [12] and constitutes an
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interesting new area of research.
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