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Discrete analytical Ridgelet TransformPhilippe CARRÉ, Eric ANDRESLaboratoire IRCOM-SIC,bât. SP2MI, av. Marie et Pierre CurieBP 30179 - 86960 Chasseneuil-Futuroscope Cédex - FRANCEAbstractIn this paper, we present a new implementation of the Ridgelet transform based ondiscrete analytical 2-D lines: the Discrete Analytical Ridgelet Transform (DART).This transform uses the Fourier strategy (the projection-slice formula) for the com-putation of the associated discrete Radon transform. The innovative step of theDART is the construction of discrete analytical lines in the Fourier domain. Thesediscrete analytical lines have a parameter called arithmetical thickness, allowing usto de�ne a DART adapted to a speci�c application. Indeed, the DART representa-tion is not orthogonal it is associated with a �exible redundancy factor (dependingon the arithmetical thickness). The DART has a very simple forward/inverse algo-rithm that provides an exact reconstruction. We discuss the choice of the wavelettransform applied to the Radon projections and illustrate the extension of the DARTto a Local-DART (with smooth windowing) and Curvelet-DART (with undecimatedquincunx scheme). We apply the DART and its extensions to the denoising and thepartial reconstruction of some images. These experimental results show that thesimple thresholding of the DART coe�cients is competitive or more e�ective thanthe classical denoising techniques.Key words: Ridgelet Transform, Discrete Analytical Lines, Denoising, PartialReconstruction.1 IntroductionImage analysis is traditionally aimed at understanding digital signals obtainedby sensors (in our case cameras). Digital information is considered as sampledcontinuous information and the theoretical background for it is signal theory.This is sometimes referred to as �digital geometry� in opposition to �discretegeometry� for computer graphics. These last ten years, since J-P. Reveillès hasintroduced it [16], discrete analytical geometry has made an important progressin de�ning and studying classes of discrete objects and transformations. ThisPreprint submitted to Elsevier Preprint 18 March 2002



greatly enhanced our understanding of the links between the discrete worldZn and the continuous world Rn. In the same time, a new discrete signal de-composition has been developed in image analysis: the wavelet representation.This new representation has many applications such as denoising, compres-sion, analysis, etc. One of the aims of this paper is to apply this new insight indiscrete geometry to image analysis and more speci�cally to a particular 2-Dwavelet transform: the Ridgelet transform (Candès and Donoho, 1998 [5]).Wavelets are very good at representing point singularities ; however they aresigni�cantly less e�cient when it comes to linear singularities. Because edgesare an extremely common phenomena in natural images, an e�cient multires-olution representation of images with edges would be quite advantageous in anumber of applications. A team of Stanford has recently developed an alterna-tive system of multiresolution analysis, called Ridgelet, speci�cally designed toe�ciently represent edges in images [5]. The Ridgelet transform can be com-puted by performing a wavelet analysis in the Radon domain. However, mostof the work done with Ridgelets has been theorical in nature and discussed inthe context of continuous functions. The important bridge to discrete imple-mentation is tenuous at best. To our knowledge, we can �nd in the literatureonly two solutions for the discrete Ridgelet decomposition [9,18]. These twostrategies are recalled in section 2. This paper presents a new approach thataims at representing linear singularities with a discrete Ridgelet transformbased on discrete analytical 2-D lines: the Discrete Analytical Ridgelet Trans-form (DART). The idea behind the associated discrete Radon transform isto de�ne each Radon projection by a discrete analytical line in the Fourierdomain: L![p;q] = �(x1; x2) 2Z2 ����jqx1 � px2j � !2 �with [p; q] 2 Z2 the direction of the Radon projection and !, a function of(p; q), the arithmetical thickness.There are several advantages at using discrete analytical lines: they o�er atheoretical framework for the de�nition of the discrete Radon projections.The parameter ! allows us to de�ne a DART adapted to speci�c application(control of the redundancy factor of the transform). We have used, in thispaper, three types of discrete analytical lines: the closed naive lines (DARTredundancy factor � 2), the pythagorean lines ( DART redundancy factor� 2:3) and supercover lines (DART redundancy factor � 3). This comparesto the transform redundancies of a factor 4 for the Stanford team [18] and afactor 1 (orthogonal transform) for the Lausanne team [9].The forward DART is based on the extraction of the 2-D Fourier coe�cientsbelonging to the discrete analytical line L![p;q]. The inverse DART is simply2



performed by putting the Fourier coe�cients back on the exact same placein the Fourier lattice. The DART has therefore a very simple and rapid for-ward/inverse algorithm. This simple straightforward approach ensures an ex-act reconstruction without interpolation nor iterative process (that might besensible to noise).In order to compare the performances of the DART, we have applied the DARTand its extensions (local-DART and Curvelet-DART) to the denoising and thepartial reconstruction of some images. We have compared our approach to ex-isting ones. The recent developments have shown that the Ridgelet decompo-sition has very attractive results for the denoising problem [18]. For this, theStanford team proposed to apply a thresholding on Ridgelet coe�cients. Ourexperimental results show that the simple thresholding of the DART coe�-cients is competitive or more e�ective than the wavelet transform. Moreoverthe DART denoising results seems to be similar (visually and PSNR measure)than Stanford's strategy but without any iterative reconstruction algorithmand with a more �exible de�nition. The analysis reported here show how re-sults of discrete analytical geometry can be successfully used in image analysis.In section 2, we recall the continuous theory of the Ridgelet transform and de-scribe the existing discrete Ridgelet transforms [9,18]. In section 3, we presentthe Discrete Analytical Radon Transform with some details on the theoret-ical framework of discrete analytical lines. The Discrete Analytical RidgeletTransform (DART) is introduced at the end of the section 3. Several illustra-tions of the DART are proposed in the section 4. In this section, we discussthe choice of the discrete line type and 1-D wavelet transform associated withthe DART. We compare also the DART with other Ridgelet transform imple-mentations for the denoising and the partial reconstruction problematics. Wepresent several extensions of the DART to a local-DART and to the Curveletformalism. We end this section with some thoughts on the extension of theDART to 3-D. We conclude in section 5.2 The Ridgelet transform2.1 Continuous theory of Ridgelet transformA substantial foundation for Ridgelet analysis is documented in the Ph.D.thesis of Candès [5]. The continuous Ridgelet transform of s 2 L2 (R2) isde�ned by : r(a; b; �) = ZR2  a;b;�(x)s(x)dx3



with x = (x1; x2) 2 R2 and  a;b;�(x) the Ridgelet 2-D function de�ned from awavelet 1-D function  as: a;b;�(x) = a�1=2  x1 cos � + x2 sin � � ba !b 2 R is the translation parameter, a 2 R is the dilatation parameter and� 2 [0; 2�[ is the direction parameter.The function  a;b;� is oriented at the angle � and is constant along linesx1 cos � + x2 sin � = cstTransverse to these ridges it is a wavelet function. In comparison, the con-tinuous 2-D wavelet function are tensor products of 1-D wavelets  a;b de�nedby:  a;b(x) =  a1;b1(x1) a2;b2(x2) with  a1;b1(x) = a�1=21  (x� b1a1 )With the Ridgelet transform, the translation parameters (b1; b2) of the 2-Dwavelet transform are replaced by the line parameters (b; �).A basic tool for calculating Ridgelet coe�cients is to view Ridgelet analysis asa wavelet analysis in the Radon domain: in 2-D, points and lines are relatedvia the Radon transform, thus the wavelet and Ridgelet transforms are linkedvia the Radon transform.The Radon transform of s is de�ned as:Rs(�; t) = ZR2 s(x)�(x1 cos � + x2 sin � � t)dx1dx2where � is the Dirac distribution. The Ridgelet coe�cients rs of s are given bythe 1-D wavelet transform to the projections of the Radon transform wherethe direction � is constant and t is varying:rs(�; a; b) = ZR a;b(t)Rs(�; t)dtThe Radon transform can be obtained by applying the 1-D inverse Fouriertransform to the 2-D Fourier transform restricted to radial lines going throughthe origin (this is exactly what we are going to do in the discrete Fourierdomain with help of discrete analytical lines):bs(! cos �; ! sin �) = ZRe�j!tRs(�; t)dt4



with bs the 2-D Fourier transform of s.This is the projection-slice formula that is used in image reconstruction fromprojection methods. All these relations are resumed in �gure 1.Fig. 1. Relation between transforms2.2 Strategies for Discrete Ridgelet TransformAs we have seen, a basic strategy for calculating the continuous Ridgelet trans-form is �rst to compute the Radon transform Rs and secondly, to apply a 1-Dwavelet transform to the slices Rs(�; :). The implementation of the discreteRidgelet transform can use the same principle.The discrete wavelet decomposition, associated to a �lter bank [15], is easyto implement, is stable and invertible, and can be associated to a discreteorthogonal representation. The discretization of the Radon transform is moredi�cult to achieve. The majority of methods proposed in the literature havebeen devised to approximate the continuous formula. None of them, however,were speci�cally designed to be invertible transforms for discrete images andcan therefore not be used for the discrete Ridgelet transform.The discrete Radon transform can be computed with one the two followingstrategies:� Spatial strategy for digital Radon transform. The Radon transform is de-�ned as summations of image pixels over a certain set of lines, that arede�ned in a �nite geometry.Rs([p; q] ; b) = X(x1;x2)2L[p;q];b s(x1; x2)with L[p;q];b = f(x1; x2) 2 [0; N � 1]� [0; N � 1] : qx1 � px2 � b = 0g and(p; q) the normal vector.� Fourier strategy for digital Radon transform. The projection-slice formulasuggests that approximate Radon transforms for digital data can be basedon discrete Fast Fourier transforms (FFT). The Fourier-domain computa-tion of an approximate digital Radon transform is de�ned as:(1) Compute the 2-D FFT of s 5



(2) Extract Fourier coe�cients along the lines L� going through the origin.(3) Compute the 1-D inverse FFT on each line L� (de�ned for each value ofthe angular parameter �).This approach can be problematic since step 2 is not naturally de�ned ondiscrete data.Recently, some articles studied the implementation of the discrete Ridgelettransform. Do and Vetterli proposed in [9] an implementation method ofRidgelet transform based on the use of the �nite Radon transform for Z2p ,the cartesian product of two sets of integers mod p, where p is a prime. Thismethod achieves both invertibility (the inverse transform is stable) and non-redundancy (the associated Ridgelet transform is orthogonal). The obtaineddenoising results presented in [9] illustrate that this strategy is more e�ectivethan the Wavelet transform in recovering straight edges. This transform isnot geometrically faithful (the �nite Radon transform has an important wrap-around e�ect) and is only de�ned for image s such that s 2 l2[0:::p�1]�[0:::p�1]where p is a prime number. Moreover this Radon transform integrates overlines that can be rather arbitrarily spread out over the spatial domain anddiscrete lines in the Fourier domain associated with this decomposition arenot closed. This approach is not based on a geometrically faithful notion ofRidgelets and su�ers from artifacts (for example in denoising application: �g-ure 10).In [18], Starck et al. proposed to use an interpolation scheme that substitutesthe sampled values of the Fourier transform obtained on the square lattice withsampled values of bs on a polar lattice. They use a pseudopolar Fourier domainthat o�ers a notion of polar Fourier domain better adapted to digital data (thedigital Fourier domain is viewed as a sequence of squares, not circles). Thediscrete pseudopolar Fourier transform of a digital image s 2 l2[0:::n�1]�[0:::n�1]is de�ned by sampling the 2-D Fourier transform at the collection of pseu-dopolar grid points illustrated by �gure 2 (from [3]). The paper [18] followsthe strategy based on the pseudopolar grid. However, it uses a simple nearest-neighbor interpolation scheme to evaluate pseudopolar grid points in terms ofnearby cartesian grid points. More recently Donoho et al. proposed in [3] afast pseudopolar Fourier transform based on a chirp-Z transform (for the exactevaluation of the 2-D Fourier transform at these non cartesian points). Theassociated Radon transform (called Slant) is algebrically exact and geometri-cally faithful. However in order to be invertible this transform requires a �xedfactor four of redundancy. Moreover, the inverse transform is ill-conditionedin the presence of noise and requires an iterative approximation algorithm.In this paper, we propose to use the Fourier strategy for the digital Radontransform. Our lines L� are de�ned with help of the discrete analytical ge-ometry theory in the Fourier domain [2,16]. This solution allows us to havedi�erent Ridgelet decompositions according to the arithmetical thickness of6



Fig. 2. (a) The pseudopolar grid (b) The conversion from cartesian grid to pseu-dopolar grid (from [3])the discrete lines. This approach presents a limited wrap-around e�ect. Asfor the Donoho's transform [3], our representation is redundant however thedegree of redundancy can be adapted by our thickness parameter. Our Radonbackprojection is very simply and permits an exact reconstruction (analyticalRadon transform followed by backprojection analytical Radon transform isa one-to-one transform). The objects de�ned in discrete analytical geometry(3D lines, planes, hyperplanes, ...) allows extensions to 3D and even higherdimensions (see section 4.4).2.3 Multiscale Ridgelet: CurveletThe Curvelet transform proposed by Donoho [13] allows us to obtain a multi-scale Ridgelet analysis with interscale orthogonality. The Curvelet transformis obtained by �ltering and then applying a windowed Ridgelet transform oneach bandpass image. The motivation behind the Curvelet transform is that bysmooth windowing, segments of smooth curves would look straight in subim-ages, hence they can be well captured by a local Ridgelet transform. Subbanddecomposition is used to keep the number of Ridgelets at multiple scales undercontrol by the fact that Ridgelets of a given scale exist in a certain subband.The window's size and subband frequency are linked such that Curvelets havesupport verifying the key anisotropy scaling relation for curves [13]:width � length2Starck et al. propose a Curvelet transform that uses an undecimated �lterbank [18] for the subband decomposition. They applied their digital Curvelettransform to the denoising of some standard images embedded in white noise.These empirical results reported in [18] and based on simple thresholding ofthe Curvelet coe�cients show that this strategy is very competitive with stateof the art techniques based on wavelets.7



The study of the DART generalization to the Curvelet transform is not theaim of our article but some examples will illustrate how our Ridgelet tranformcan be extended to the multiscale approach.3 Discrete Analytical Ridgelet Transform : DARTThe idea behind our associated discrete Radon transform is to represent eachdirection by a discrete analytical straight line. For this we need a discretestraight line that has a central symmetry and that forms a �good� approxi-mation of the corresponding Euclidean straight line (i.e. direction). Withoutcentral symmetry (i.e. if (x; y) and (�x;�y) both belongs to the line), the in-verse Fourier transform leeds to imaginery values. This excludes the classicalBresenham discrete 2-D line [4]. Instead we chose discrete analytical 2D lines.It de�nes not a unique line but a family of lines with a thickness parameter,called arithmetical thickness. The arithmetical thickness provides a controlover the transform redundancy factor and properties such as the connectivityof the straight line. This thickness allows us to choose the discrete straightline de�nition that �ts best a given application. The discrete line is analyti-cally de�ned meaning that the discrete line is de�ned by equations that allowa precise study of the properties and immediate extensions to higher dimen-sions. An important body of theory, called discrete analytical geometry, is nowavailable since J-P. Reveillès �rst proposed such an approach [16].3.1 De�nition and properties of the closed discrete analytical linesThe discrete analytical line we use for our transform are de�ned as follows [2]:L![p;q] = �(x1; x2) 2Z2 ����jqx1 � px2j � !2 �with [p; q] 2Z2 the direction of the Radon projection (we have � = arctan � qp�)and !, a function of (p; q), the arithmetical thickness. J-P. Reveillès introducedthe discrete analytical lines in 1991 [16], de�ned as 0 � qx� py + r < !. Inthis paper, since we need central symmetry, we chose a variant of the closeddiscrete analytical lines, de�ned as 0 � qx� py � !; studied in [2].It is easy to see that the closed discrete analytical lines L![p;q] have a centralsymmetry regardless of the value of !. Moreover, the discrete analytical linecan easily be extended to higher dimensions as discrete analytical hyperplanesde�ned by jPni=1 qixij � !2 [1]. 8



The arithmetical thickness ! is an important parameter that controls, amongother things, the connectivity of the discrete lines: let's consider the closeddiscrete analytical line L![p;q] and its Euclidean counterpart L[p;q] : qx1� px2 =0, then:� For ! < max(jpj ; jqj), L![p;q] is not connected;� For ! = max(jpj ; jqj), L![p;q] is 8-connected. This is called the closed naiveline. It is directly related to the distance d1 sinceLmax(jpj;jqj)[p;q] = �M 2Z2 ����d1 �M;L[p;q]� � 12 �with d1 (A;B) = ���xA1 � xB1 ���+ ���xA2 � xB2 ���� For ! � max(jpj ; jqj), L![p;q] is 8-connected.� For ! = pp2 + q2, L![p;q] is 8-connected. This is called the Pythagorean line.This type of line is directly related to the distance d2 sinceLpp2+q2[p;q] = �M 2Z2 ����d2 �M;L[p;q]� � 12 �with d2 (A;B) = q(xA1 � xB1 )2 + (xA2 � xB2 )2� For ! = jpj+ jqj, L![p;q] is 4-connected. This is called the supercover line andhas a theoretical importance [2]. This type of line is directly related to thedistance d1 since Ljpj+jqj[p;q] = �M 2Z2 ����d1 �M;L[p;q]� � 12 �with d1 (A;B) = max����xA1 � xB1 ��� ; ���xA2 � xB2 ����.� For ! � jpj+ jqj, L![p;q] is 4-connected.These results are direct consequence of a well known result in discrete ana-lytical geometry and more recent studies on distances [16,2]. The fact thatthese lines can be de�ned with help of distances makes a direct link withmathematical morphology [17].In this paper we studied the DARTwith the closed naive lines, the pythagoreanlines and the supercover lines. 9



3.2 De�nition of the discrete analytical Radon transformWe use the Fourier domain for the computation of discrete Radon transform:Fourier coe�cients of bs are extracted along the discrete analytical line L![p;q]P ![p;q]s = [k2Z+ bs(fk1 ; fk2 ) such that ���qfk1 � pfk2 ��� � !2and we take the 1-D inverse FFT of P ![p;q]s on each value of the direction [p; q].Formally, our discrete analytical Radon transform is de�ned by:R!s([p; q] ; b) = K�1Xk=0 P ![p;q]s(k):e2�j kK b with K length of L![p;q]We must de�ne the set of discrete directions [p; q] in order to provide a com-plete representation. The set of line segments must cover all the square latticein the Fourier domain. For this, we de�ne the directions [p; q] according topairs of symmetric points from the boundary of the 2-D discrete Fourier spec-tra. Figure 3a illustrates this choice of angles with the covering of the Fourierdomain by the associated Euclidean lines. Notice that this set of angles is notequispaced.Proposition 1 Let a square lattice be de�ned as 
2N = [�N ;N ] � [�N ;N ].Let us consider the set of directions (pm; qm) with 0 � m � 2N , (pm; qm) =(N;m�N) and for 2N + 1 � m � 4N � 1, (pm; qm) = (3N �m;N). Theset of all discrete analytical lines de�ned by jqmf1 � pmf2j � !m2 with !m �sup (jpmj ; jqmj) provides a complete cover of the lattice 
2N .The proof of this proposition is obvious since we are dealing here with discretelines that are at least 8-connected as stated in the previous section. As soonas we take ! = sup (jpmj ; jqmj)�1 the lattice is not covered anymore (becauseof Lsup(jpmj;jqmj)�1=0[0;1] and L0[1;0]). More complex formulas for ! can probably bepropose that provide a complete cover and a lower redundancy. This is still anopen and somewhat di�cult question. In our applications we chose to workonly with connected discrete lines.Figure 3 illustrates the cover of the Fourier lattice (on the �rst octant) fortwo di�erent types of discrete lines. The grey value of the pixel representsthe redundancy in the projection (number of times a pixel belongs to a dis-crete line). One isolated line is drawn to illustrate shape of the discrete linesdepending on its arithmetical thickness.� In �gure 3b, we show the redundancy for the closed naive lines. They providea relatively small DART redundancy factor of � 2:05. These lines are well10



Fig. 3. (a) Cover of the Fourier domain with the Euclidean line L[p;q]. (b) Redundancyon the cover of the Fourier lattice by closed naive lines, (c) by supercover linessuited for applications such as partial reconstruction where a relatively smallredundancy is an asset.� in Figure 3c, we show the redundancy for the supercover lines. They providea more important DART redundancy factor of � 3:05. These lines are wellsuited for applications such as denoising.� The pythagorean lines provide an intermediate DART redundancy factor of� 2:35.We now give two examples of the discrete analytical Radon transform in ac-tion. We propose a comparison with the di�erents solutions proposed in the lit-erature. The papers of Stanford [18] reference a Matlab Toolbox developed byStanford researchers for performing Ridgelet and Curvelet analysis. Althoughthis code is actually not open to the public. In place, we use the Radon trans-form developped by Mathworks that is based on a geometrically faithful no-tion of Radon and that does not presents wrap-around e�ect. The result of theMathworks transform is visually similar than the Stanford transform. The codeof Do and Vetterli [9] is open to the public (http://lcavwww.ep�.ch/~minhdo).In �gure 4, we show the result of the discrete Radon decomposition of an arraycontaining a single nonzero entry. We observe that :� In this case, the Radon transform follows a broken line as for the Mathworktransform.� The �nite Radon transform of Do and Vetterli has an important wrap-around e�ect and is di�cult to interpret.11



� Our transform obtains a broken line without wrap-around e�ect.Figure 4d illustrates the in�uence of the increasing of the redundancy of thedecomposition (in this case, supercover lines are used) : the Radon is an in-terpolated broken line.

Fig. 4. The Radon transform of a point : (a) with a geometrical strategy (b) withthe Do and Vetterli approach. (c) with our strategy using the closed naïve lines, (d)the supercover linesWe want now to �nd for a given coe�cient ([p; q] ; b) of the Radon transform,which pixels have contributed [3]. For this, we apply the Radon backprojection.Our analytical reconstruction procedure works as follows:(1) Compute the 1-D FFT transform for each set R!s([p; q] ; :)(2) Substitue the sampled value of bs on the lattice where the points fall onlines L![p;q] with the sampled value of bs on the square lattice.(3) Apply the 2-D IFFT transform.The previous procedure allows us to obtain an exact reconstruction if the setof directions of lines provide a complete cover of the square lattice. To make acomparison, we use the IRadon procedure of Mathworks that uses the �lteredbackprojection algorithm (based on an interpolation in the Fourier domain)to perform the inverse Radon transform. Notice that the results obtained withthis backprojection are visually similar to Stanford's results. We use also thecode of Do and Vetterli. All these backprojections are presented in �gure 5.12



We can see that our strategy does not exhibit geometrical distortions and avery limited wrap-around artifacts (that could be removed by zero-paddingin the Fourier domain). The results are similar for the di�erent types discreteanalytical lines.
Fig. 5. The Radon backtransform of a point : (a) with a geometrical strategy (b)with the Do and Vetterli approach. (c) with our strategy using the closed naive lines,(d) and the supercover lines3.3 De�nition of the DARTNow, to obtain the Ridgelet transform, we must take a 1-D wavelet trans-form along the radial variable in Radon space. The choice of discrete one-dimensional wavelet transform is discussed by Starck et al. in [18]. They indi-cate that experience has shown that compactly-supported wavelets can leadto many visual artifacts when used with nonlinear processing. This is due tothe lack of localization of such compactly-supported wavelets in the frequencydomain. The �rst Stanford implementations have made the choice of bandlim-ited wavelets, whose support is compact in the Fourier domain. For this, theyuse the periodic discrete Meyer wavelet that consists of a system of divisionin the frequential domain. The discrete Meyer wavelet transform is studiedin Kolaczyk's thesis [14]. After that, Starck et al. chose a speci�c overcom-plete system: they de�ne the scaling function in the frequency domain as arenormalized B3�spline and the wavelet function as the di�erence betweentwo consecutive resolutions. With this choice, each subband is sampled abovethe Nyquist rate, hence avoiding aliasing (this phenomenon is present whena nonlinear processing is applied on orthogonal wavelet transforms). Do andVetterli use classical decimated Symlet Wavelet for the denoising problematic.In this article, we do not propose a �de�nitive� solution associated with thedi�erent discrete analytical lines. The choice of the type of 1-D wavelet trans-form depends of the goal of the transform. This wavelet transform can bedecimated or undecimated and the wavelet base can be adapted according tothe application, as for the classical wavelet decomposition. In the following sec-13



tion, we compare the use of Meyer wavelets (whose support is compact in theFourier domain) and the use of decimated/undecimated compactly-supportedwavelets for two applications : denoising and partial reconstruction.4 Illustration of the DART4.1 naive lines vs pythagorean lines vs supercover linesA. DenoisingThe denoising procedure by Ridgelet transform consists simply in threshold-ing the Ridgelet coe�cients and computing the inverse Ridgelet transform.The thresholding is performed with help of an undecimated method devel-oped for the wavelet decomposition [8,7]. The redundancy of the wavelet de-composition, associated with this method, reduces artifacts that appear afterthresholding. Let r!s be the noisy undecimated Ridgelet coe�cients, we usethe following hard-thresholding:r!s ([p; q] ; a; b) = 8><>: r!s ([p; q] ; a; b) if r!s ([p; q] ; a; b) � ��0 otherwise� can be de�ned as � = q2 log(N) [10]. We can use two strategies for theestimation of the variance of the noisy Ridgelet coe�cients �:� We consider that the DART is not norm-preserving and the variance de-pends thus on the projection index. In this case, the individual variance is es-timated using the absolute median of the wavelet decomposition's �rst scaleof each radial projection (if the wavelet decomposition is norm-preserving).� By evaluating the DART (de�ned with Daubechies D20 wavelets) of a fewstandard white noise images, we have observed that the variance of noisycoe�cients remains constant. The variance can then be estimated beforethe Ridgelet transform and used for all the Ridgelet transform.Our experiments have shown that the �rst strategy is better for denoising withthe DART (the SNR measure of reconstructed image is higher). We use thusthis �rst method.In order to illustrate precisely the result of the denoising algorithm with dif-ferent types of discrete analytical lines we have generated an arti�cial image14



(Figure 6a) and added important white noise (Figure 6b). The SNR 1 of thenoisy image is equal to 15 dB. Figures 6c, d and e are the results obtainedwith the three de�nitions of discrete analytical lines (naive, pythagorean andsupercover) and with the Daubechies D20 wavelets. For a more redundantdecomposition (based on supercover discrete lines, �gure 6e) the denoising re-sult is better than for a less redundant decomposition (�gure 6c): the edge isreconstructed more precisely and the uniform areas are smoother. As for thewavelet decomposition, overcompletness provides advantages for denoising.For comparison the result of a denoising carried out by classical decimatedwavelet coe�cient threshold (�gure 6f) is also given. The result is obtainedwith a decimated decomposition by Daubechies D20 wavelets and a �hard�thresholding. The threshold is based on the noise variance, as Donoho et al.introduced in [10]. Noise variance is estimated using the absolute median ofthe �rst decomposition scale. The wavelet method obtains the best SNR mea-sure, but it exhibits numerous blemishes, that are a result of the nonlinearprocessing with critical sampling. This experiment illustrates the limits of theSNR measure since it does not quantify well this type of artifacts.
Fig. 6. (a) original image (b) noisy image (to show more precisely the e�ect ofthe noise we plot a vertical line of each image). (c) denoising with naive lines (d)denoising with pythagoricean lines (e) denoising with supercover lines (f) denoisingwith decimated wavelet transformB. Partial reconstruction1 All the SNR measures are done with the Stanford Matlab function.15



Contrary to the denoising problematic, for a partial reconstruction, redun-dancy is of course not interesting. Figure 7 compares partial reconstructionof an arti�cial image by using the 30% largest naive-DART coe�cients withreconstruction by using the 30% largest supercover-DART coe�cients. Thisillustrates how the arithmetical thickness of the discrete lines employed in ourRidgelet transform in�uences the quality of the �compressed� image. The lowerredundancy representation (naive discrete lines) preserves all the features ofthe original image after a simple thresholding (Figure 7 b). On the other hand,with the higher redundancy representation (supercover lines) we loose featuresand the image is globally of lower quality.

Fig. 7. Partial reconstruction of an arti�cial image (a) naive-DART (b) super-cover-DART 16



4.2 In�uence of the 1-D wavelet transform choiceWe discuss now the choice of 1-D wavelet transform with the DART. For this,several 1-D wavelet transforms were tested along the radial variable in discreteanalytical Radon space (for these experiments, we use only the naive discreteline de�nition, the results are equivalent with the others types of lines):(1) The discrete Meyer wavelet (whose support is compact in the Fourierdomain) transform.(2) The Daubechies D20 wavelet (whose support is compact in the time do-main) transform.(3) The undecimated Daubechies D20 wavelet transform.(4) The overcomplete system based on the work of Starck et al. [18] (whosesupport is compact in the Fourier domain).A. DenoisingFigure 8 considers an object used by Do and Vetterli in their paper [9], andcompares the denoising of this image by thresholding of the DART with dif-ferent wavelet bases. We use the SNR and the visual analysis to measure theperformance. We observe that :� The undecimatedmethods o�er superior performances over orthogonal waveletdecompositions.� With decimated wavelet decomposition, the compactly-supported waveletsin the frequency domain obtain better SNR measures than compactly-supported wavelets in the time domain.� The Starck-DART reconstruction and undecimated Daubechies D20 DARTreconstruction are very similar.For denoising with the DART, we can not conclude that the undecimatedcompactly-supported wavelets in the frequency domain enjoys superior per-formance over the undecimated compactly-supported wavelets in the timedomain. However, in this study, we use time �lters (D20 �lters) that havevery large supports. In this case the �lter pro�le in Fourier domain convergesrapidly to 0 after the cut-o� frequency. If the same experiments are donewith too small �lters, the reconstructed image will contain some disturbingartifacts.More generally, we have generated a set of noisy images from both Do's Objectimage and Lenna image. We have then compared the four di�erent �lteringprocedures. These experimental results have con�rmed that the Starck-DARTreconstruction and undecimated Daubechies D20 DART reconstruction aresimilar and seem to be the better choice.17



Fig. 8. (a) Noisy image (b) denoising with the Meyer-DART transform (c) denoisingwith D20-DART transform (d) denoising with undecimated D20-DART transform(e) denoising with Starck-DART transformB. Partial reconstructionWe now consider the partial reconstruction of Do's object by the 30% largestDART coe�cients (�gure 9). Only the decimated wavelet transforms are testedsince the redundancy is irrelevant for partial reconstruction. We observe that,in the frequency domain, the more compact the wavelet support is, the betterthe SNR measure is. These results con�rm Stanford's experience. However,comparing the di�erent reconstructed images, one can hardly see the di�er-ence. We have generated a set of partial reconstructions from both Do's objectand Lenna. These experiments con�rm previous visual analyzes: partial recon-structions from D20-DART and Meyer-DART are equivalent.From these experiments (denoising and partial reconstruction), we proposeto use the D20 wavelets for the DART because the D20 basis can be simplyassociated to an orthogonal transform or an undecimated transform (with the�à trous� algorithm) and moreover this base is norm-preserving.18



Fig. 9. Partial reconstruction of Do's image (a) Meyer-DART (b) D20-DART (c)D8-DART4.3 DART vs litterature Ridgelet transformWe brie�y compare the DART with the other Ridgelet transform implementa-tions we know about. As we have said the Stanford's code is actually not opento the public (a comparison with Stanford's results in PSNR terms is donein the following section). In place, we use the Radon transform developpedby Mathworks that satis�es a geometrically faithful notion of Radon (with nowrap-around e�ect). This allows us to measure the importance of having ornot a wrap-around e�ect.A. Denoising with DART and Local DARTFigure 10 compares the denoising of the very noisy Do's image (SNR 18.73dB) by thresholding the Ridgelet transform:� The Ridgelet based on �geometrical� Radon transform (Mathworks code)and the Starck overcomplete wavelet system. In this case, the noise varianceis estimated by evaluating the �geometrical� Ridgelet transform of standardwhite noise images (as proposed in [18]).� The Do and Vetterli orthogonal Ridgelet.� The DART based on supercover lines and undecimated D20 wavelets.We illustrate also the results obtain with decimated and undecimated wavelettransform (implemented by Stanford in the toolbox Wavelab).We observe that :� The �geometrical� Ridgelet and the DART reconstruction does not containthe many blemishes that one sees in the wavelet reconstructions. The SNRmeasures of these two transforms are better.19



� The decimated wavelet transform displays disturbing artifacts. The use of aredundant wavelet transform considerably reduces the number of artifacts.� The Do's Ridgelet transform corresponds to a critical sampling. The recon-struction associated with a nonlinear processing contains thus many visualartifacts.� The DART enjoys superior performance over Geometrical Ridgelet trans-form 2 .

Fig. 10. (a) noisy image ; denoising with (b) the decimated wavelet transform (c)the undecimated wavelet transform (d) the undecimated geometrical Ridgelet (e)the Do and Vetterli approach (f) The supercover-DARTB. Extension to Local DART and Curvelet DARTThe DART can be easily extended to a local transform by a smooth partition-ing, or more generally to a Curvelet transform by the following steps:� Decompose the image into a set of wavelet bands.� Each subband is smoothly windowed into squares.� Analyse each square by the DART.Notice that the subbands used in the discrete Curvelet transform of continuum2 We can obtain better results with the �Mathworks� Radon transform by using another level of threshold. However, because the Radon and the Wavelet transformassociated with this strategy is not norm-preserving, it is di�cult to de�ne a generallevel of threshold. 20



functions have the non-standard form h22l; 22l+2i : Starck et al. propose to usea speci�c overcomplete subband �ltering: the wavelet function is de�ned as thespatial di�erence between two consecutive resolutions. We extend our digitalRidglelet transform with the same principle, but we substitute the Starck'sovercomplete subband �ltering with an undecimated quincunux wavelet de-composition in order to preserve the interscale orthogonality. Moreover thiswavelet transform preserves the variance of the noise. The comparison betweenRidgelet denoising results and Curvelet denoising results is however not thesubject of this paper. These experiments are done precisely by Starck et al.(http://www-stat.stanford.edu/~jstarck). We illustrate only how the DARTcan be extended to the Curvelet formalism.To illustrate the local DART and the new discrete Curvelet transform based ondiscrete analytical lines, we have developed an example of denoising algorithm.As for the Ridgelet transform, the denoising by Curvelet transform consistssimply in thresholding the Curvelet coe�cients and computing the inverseCurvelet transform. For the estimation of the variance � of the noisy Curvelet-DART coe�cients, we consider that the Curvelet-DART is �norm preserving�.The noise variance is then estimated before the Curvelet transform.In our example, a Gaussian noise with a standard deviation equal to 60 wasadded to the classical Lenna image (Figure 11a). Several methods were usedto �lter the noisy image: thresholding of the undecimated wavelet transform(Figure 11b), thresholding of �supercover� DART (Figure 11c), thresholding oflocal �supercover� DART (Figure 11d), thresholding of Curvelet DART basedon supercover discrete lines and undecimated quincunux scheme (Figure 11e).We observe that the Curvelet DART and Local DART enjoy superior per-formance over the other transforms. For these decompositions the analysis isbetter localized in the spatial domain. This property eliminates the parasiticlines present in the DART reconstruction and due to the selection of an im-portant contour in an area of the image. As for the Ridgelet transform, we canuse other de�nitions of discrete analytical lines for Local DART and CurveletDART.To study the dependency of these methods on the noise level, we generateda set of noisy images from both Do's Object and Lenna. We then comparedthe di�erent �ltering procedures. This series of experiments is summarized inFigure 12 for Lenna. These experimental results show that the Local DARTand Curvelet-DART correspond, in general, to the better results.In order to make a comparison with Stanford's results, we use one of the ex-ample of denoising proposed in [18]: a Gaussian noise with a standard de-viation equal to 20 is added to the Lenna image (size: 512 by 512). Thereconstruction by local DART and Curvelet-DART are presented �gure 13.The results of Stanford's algorithm are visible at the website http://www-21



Fig. 11. (a) noisy image (b) denoising with the undecimated wavelet transform (c)denoising with DART based on supercover lines (d) denoising with local DARTbased on supercover lines (e) denoising with DART-Curvelet based on undecimatedquinconx wavelet transform and supercover lines64 (1) 32 (1) 16 (1) CurveletDART 31.42 31.38 30.61 31.23Stanford 30.79 30.97 30.87 31.95Table 1PSNR measures of DART and Stanford reconstructions. (1) Size of the windowstat.stanford.edu/~jstarck. From the �gure 13 and the Stanford Web site,one can not see important di�erences between the Stanford strategy and theDART strategy.In order to make an quantitative measure we used the PSNR. We indicate inthe table 1,� The PSNR values 3 after �ltering with the local DART and Curvelet-DART.� The PSNR values after �ltering with the Stanford algorithm indicated in[18].3 The PSNR measures of DART are done with the Stanford Matlab function.22



Fig. 12. SNR of reconstructed image versus SNR of noisy image for di�erent repre-sentation. The panel corresponds to Lenna.
Fig. 13. (a) noisy image with the same level of noise than [18] (b) denoising withlocal DART based on supercover lines (c) denoising with DART-Curvelet based onundecimated quincunux wavelet transform and supercover lines.These measures con�rm the visualy analysis: the Stanford reconstruction andDART reconstruction are very similar. However, as we have said, the back-projection DART algorithm is simpler and the DART representation is more�exible (with the variable line thickness).Notice that Color denoising results obtained with the DART are presented in[6].C. Partial reconstructionWe now consider the partial reconstruction of Do's object by the 512 most23



important Ridgelet coe�cients (�gure 14). Only the decimated wavelet trans-forms associated with naive lines are tested. Since our decomposition is re-dundant, we observe that the DART is not adapted to this problematic con-trary to the orthogonal wavelet representation and Do's Ridgelet. However inorder to obtain a more sparse representation, we use the strategy called ortho-Ridgelet by Stanford and introduced very recently in [11]. This transform maybe viewed as a discrete Radon transform followed by an orthogonal 2-D wavelettransform (we obtain ortho-Ridgelets by taking the wavelet transform alongthe angular variable of the Ridgelet projection). The ortho-Ridgelet represen-tation is more sparse: the transform along the angular variable has compressedthe laterally features of the Ridgelet transform into point-like features. If weapply this ��wavelet transform to the DART representation, we obtain for thepartial reconstruction a result that is close to Do's result. However the ortho-DART reconstruction has a smaller SNR measure than the two orthogonaltransforms. This result is a �rst experimentation and needs to be developed(choice of the best basis along the angular variable, a local approach ...).
Fig. 14. Partial reconstruction of Do's image (512 coe�cients) (a) Wavelet (b) Do'sRidgelet (c) Naive DART. Bad result because of the redundancy (d) Naïve or-tho-DART4.4 DART 3-D ?As for the 2-D domain, the 3-D Radon transform of an object is related toits 3-D Fourier transform via the central slice theorem: the 3-D Radon trans-form can be obtained by applying the 1-D inverse Fourier transform to the3-D Fourier transform restricted to radial lines going through the origin. Onceagain, we propose to extract the Fourier coe�cients along a 3-D discrete an-alytical line going through the origin. Once a discrete 3-D line is de�ned, theprinciple of the method is the same as in the 2-D case with the same properties(exact reconstruction, rapidity, �exible de�nition). This idea works well for the24



supercover model as the 3-D supercover discrete analytical line is connected(see example in �gure 15). Thus the set of 3-D supercover lines covers the3-D Fourier cubic lattice if we de�ne the line directions according to pairs ofsymetric border points of the lattice. The de�nition of a 3-D supercover lineof direction [p; q; r] is given by [2]:jqx1 � px2j � jpj+ jqj2jrx1 � px3j � jpj+ jrj2jrx2 � qx3j � jqj+ jrj2In the same way, all the supercover of allm-�ats in dimension n are well de�ned[2]. This allows us to generalize this approach to 3-D planes (see example in�gure 15) and dimension n. For the other models (naive and pythagoreanfor example) however the de�nition and the extension to 3-D lines or higherdimensions is more problematic. For instance, the 3-D naive discrete analyticalline is not connected in general and does not ensure a complete cover of the3-D cubic Fourier lattice. We hope to report on this developpements in aforthcoming paper.
Fig. 15. Discrete analytical 3-D line and plane5 ConclusionIn this paper, we have proposed a new strategy for implementing the discreteRidgelet transform. So far, the developement of the discrete Ridgelet trans-form has been investigated by two teams (Stanford and EPFL) in previous25



works. Our innovative choice is to use the formalism of the discrete analyti-cal geometry theory in the Fourier domain, in order to de�ne a new discreteRidgelet transform: the Discrete Analytical Ridgelet Transform (DART).The DART algorithm is easy to implement. It provides an exact reconstruc-tion property: the DART followed by a reverse DART is a one-to-one trans-form. Our experiments have shown that our approach presents a limited wrap-around e�ect, that does not in�uence the denoising or partial reconstructionresults. Moreover, by using the analytical formalisation, we de�ne a �exibleRidgelet transform: we can de�ne di�erent DART decompositions accordingto the arithmetical thickness of the analytical discrete lines. As for Stanfordstransform, our representation is redundant but the transform redundancy fac-tor depends on the type of the discrete lines used and can be adapted for eachapplication.Our DART uses a 1-D wavelet transform based on Daubechies D20 wavelet.Our experiments have shown that this basis associated with the analyticalRadon transform obtains satisfactory results for the two studied problematics.Moreover, this basis can be simply associated to an orthogonal transformfor partial reconstruction or to an undecimated transform for denoising, andit is norm-preserving. We have seen that if, instead, we use a basis that iscompactly supported in the Fourier domain (orthogonal or redundant), it doesnot improve the results of the DART, but the decomposition is less �exible.We have illustrated the performances of the DART for denoising problemat-ics, even with very noisy images (with gaussian noise). This study indicatesthat the Local-DART and the Curvelet-DART thresholding rivals Stanford'sRidgelet denoising results, that are considered as the reference for Ridgelet'sdenoising applications, and more generally, classical denoising techniques thathave been developped over the last decade. Howerver, contrary to the Stan-ford strategy, the reverse DART does not require an iterative approximationalgorithm and the redundancy factor of the representation is not �xed.This work can be extended in several directions. One of the theoretical ques-tions in discrete geometry is the problem of de�ning an arithmetical thicknessfunction that provides a smaller redundancy and a cover of the Fourier lat-tice. This is still an open and di�cult arithmetical problem. One of the mostimportant interests of the discrete analytical approach is the possibility to ex-tend easily our work to 3-D. We are currently investigating the application ofa 3-D DART to the denoising process of animated video images. In this paperwe present some �rst thoughts abouth these questions.We are also considering extending our �partial reconstruction� algorithm withmore sophisticated representations. The ortho-Ridgelet proposed by Stanfordseems to obtain good results for partial reconstruction [12] and constitutes an26
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