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CONTACT DISORDER AND FORCE DISTRIBUTION IN GRANULAR
MATERIALS.

DESORDRE DE CONTACT ET DISTRIBUTION DES FORCES DANS LES
MATERIAUX GRANULAIRES.

Jean-Noél ROUX

Laboratoire Central des Ponts et Chaussées,
58 boulevard Lefébvre, 75732 Paris cedex 15, France

ABSTRACT: Thanks to extensive numerical simulations of a simple two-dimensional model
of a granular packing, we identify a characteristic length for stress homogeneity that is signif-
icantly larger than the grain size, and accurately compute the contact force distribution. The
effects of load orientation (biaxial test) are studied, and the influence of some basic simplifying
assumptions (small displacements, no friction...) is discussed, which allows us to shed some
light on the possible microscopic origins of some generic mechanical behaviours of granular
materials.

RESUME: Une étude systématique, par simulations numériques, d'un modéle simple
d’assemblage granulaire bidimensionnel, nous conduit a I'identification d’une longueur carac-
téristique de I’homogénéité des contraintes nettement plus grande que la taille du grain, et & un
calcul précis de la distribution des forces de contact. L’évaluation de I'influence de I'orientation
(test biaxial) du chargement, et la discussion des conséquences de quelques hypothéses simpli-
ficatrices (petits déplacements, absence de frottement...) fournissent un éclairage des possibles
origines microscopiques de certains comportements mécaniques génériques des granulats.

1 INTRODUCTION. tative Volume Element (RVE), a crucial step
(5) in the derivation of macroscopic consti-
tutive laws, is not straightforward.

The model we study here was designed
(8) to study the consequences of this basic

grain-level phenomenon, that might be called

One specific feature of dense granular me-
dia, as distinguished from other disordered
mechanical systems, is the unilaterality and
extremely short range of the particle interac-

tion. Two neighbouring grains, if they touch,
may strongly repell each other, but once the
contact opens, which requires but an arbi-
trarily small motion, no force is transmit-
ted any longer. In a seemingly homogeneous
well compacted medium, opening and clos-
ing of contacts leads to a characteristic het-
erogeneity (1-4) of stress transport: forces
appear to be localized on preferred paths (or
‘force chains’), while some grains carry no
load (‘arching effect’). Defining a Represen-

contact disorder, in a situation as simple as
one might conceive of. It lends itself to a
novel and powerful numerical method, that
enables us to repeat the calculations for many
different (random) initial geometries, various
boundary conditions and large enough sys-
tem sizes. This, after its introduction in sec-
tion 2, and a presentation of its mechanical
properties (sections 3 and 4), and of the nu-
merical method (section 5), allows us (as ex-
plained in part 6) to study the large system



limit with good accuracy. Section 7 presents
the results of a biaxial test (macroscopic con-
stitutive law, distribution of contact forces),
and the conclusive section (part 8) discusses
the general relevance of the model and the
role of its basic assumptions.

2 THE MODEL

Consider a close-packed 2D assembly of n
discs of diameter a, on a regular triangu-
lar lattice. To any disc 7, assign a num-
ber ¢;, that is randomly picked up with uni-
form probability in the interval [0, o, with
0 < a < 1, and reduce its diameter to a; =
a(1—4;). This (fig. 1) is the reference config-
uration of the system, from which displace-
ments are evaluated. Then, submitting it to
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Figure 1: A hexagonal sample. Intergranular gaps
are widened on the figure.

some given load, search for equilibrium dis-
placements and contact forces, under the fol-
lowing three assumptions.

1. discs are rigid
2. friction is ignored

3. one may use the approximation of small
displacements (ASD).

Assumption 2 means that the force F;; ex-
erted by any disc ¢ onto its neighbour j is
carried by the unit vector n;; pointing from
the centre of ¢ to the centre of j : one has
Fij = fijnija with fij > 0. ACCOI‘dng to as-
sumption 1, the contact law relating f;; to
the interstitial thickness h;; (initially equal

to hy; = (d; + d;)a/2) is the Signorini condi-

tion:

The ASD (assumption 3) amounts to evalu-
ate displacements and deformations to first
order in « (regarded as infinitesimal), while
positions and forces are evaluated on the ref-
erence configuration. In particular, any vec-
tor n;; stays parallel to one of the three vec-
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tors ny(1,0), n2(§, 7) and n3(—§,7 .

is linearly related to the displacements :

with (5uij = nij.(uz- — 11]').
In the following, any such pair 7, j of neigh-
bours on the lattice is called a contact. N
denoting the number of contacts, those are
labelled by index [, 1 < [ < N, and one may
write hy, duy, ng, etc... Contact [ is closed if
h; = 0. It is active if f; > 0.

3 STRESSES AND STRAINS

In order to impose a state of uniform stress,
several boundary conditions (BC) are used.
One may specify the motion of the walls of
a container, or exert some external forces on
the grains near the boundary. If the sam-
ple shape paves the plane, periodic bound-
ary conditions might also be implemented.
For whatever BC, an overall, generalized dis-
placement (or, respectively, force) is directly
defined, and the conjugate generalized force
(resp., displacement) identified on writing the
work of external efforts. Those global static
and kinematic parameters may respectively
be interpreted as stress, ¢, and strain, €, ten-

sors. We implement the different BC’s in
such a way that the classical relationship (15)
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holds exactly, A = JQV\?; being the sample sur-

face area. (Compressions are counted posi-
tively). It is convenient to part contacts in
three subsets Cy, 1 < k < 3 (with N/3 of
them, for large systems, in each) according



to which vector n; n, is parallel to. F} de-
noting then the average of the contact forces
in the set C}, eqn. 3 becomes :

011 — (2F1 (F2+F3))

af
O12 = —a (F2 F3) (4)
O22 = ﬁ (Fy + F3)

which, conversely, may be written as
F = a\/_ (011 - %022)
Fy= a (% +012)) (5)
Ri= o(3 o),

Such a linear relation giving the angular dis-
tribution of normal forces once o is known

was conjectured in the general case (15). Tt
is automatically satisfied here because there
are only three contact directions.

(0u;)1<1<n is an admissible set of normal
relative displacements if it is compatible with
some actual disc displacements and the BC.
It is then associated with a value of . Sim-

ilarly, (fi)i<i<n is an admissible set of con-
tact forces if discs are in equilibrium, with
some value of ¢. For any such pair of relative

displacements:(superscript (1)) and contact
forces (superscipt (2)), on has the following
form of Hill’s lemma (5):

N
Z fl(Q)(Sul(l) = Ao Y, (6)

Now, due to lattlce regularity, the replace-
ment of any fl by the average F( ) when-
ever [ € (Y yields another admissible set of
contact forces, with the same ¢ (this prop-

erty, in fact, guides the choice of a convenient
implementation of the BC’s). Defining then

Mg, for 1 < k < 3, as the average of ? over
all [ € C}, eqn. 6 entails

(W _ No s peyym

which, using eqn. 5, leads to the following
kinematic analogue of eqn. 4:

AO'(Q) :

€n= M\
€19 = % (A2 — A3) (7)

€99 — % (—)\1 + 2)\2 + 2)\3)

(Shrinking deformations are positive.)

4 EQUILIBRIUM STATE

The following properties stem from classical
results in linear programming (a particular
case of the Kuhn-Tucker theorem in convex
optimization). Let us submit the system to
a given external load. If m is the number of
degrees of freedom, m-dimensional (general-
1zed) dlsplacement and external force vectors
U and F may be defined. The value of F
is imposed. The impenetrability constraint
may be written (see eqn. 2) as (summation
over repeated indices implied in the sequel)

Gy < by, (8)

involving an N X m matrix G the transpose
of which appears in the equilibrium require-
ment

Giifi = F;. (9)

Let us consider problems P; (unknown U4f)
and P, (unknowns f;)

D Maximize fju]'
"1 with constraints: ( 8)

P Minimize f;h}
1 with constraints (9) and f; > 0
P1 and Py are dual linear optimization prob-
lems. To any solution U* to Py corresponds a

solution f* to P-, and reciprocally, such that
£ (h) = Gyut) =o. (10)

Conversely, displacements and contact forces
satisfying the constraints of P; and P, and
relation 10 are solutions to P; and P,. But,
once constraints are satisfied, eqn. 10 is ex-
actly equivalent to the Signorini condition,
eqn. 1. Thus, searching for an equilibrium
state amounts to looking for solutions to Py
and Po. Whenever P; or Py possess a solu-
tion, there exists a ‘basic’ solution, i.e., lo-
cated in a corner of the simplex of admissible
variables, where a maximum set a inequality
constraints are satisfed as equalities. The set
C* of active contacts corresponding to a ba-
sic solution to Py is minimal, so that reaction
values, f*, are found on solving an isostatic
problem : they are determined, once C* is
known, by the equilibrium requirement. The



existence of two distinct such solutions im-
plies equality of the criteria in Py, and hence
requires one of a finite number of linear com-
binations, with fixed coefficients (associated
with some particular subsets of the lattice),
of the random numbers J;, to be equal to
zero. Such an event has a zero probability.
Therefore, Almost surely, the set C* of ac-
tive contacts and the forces f; they carry,
are uniquely determined, under a given load,
by the initial choice of the random diame-
ters. As to displacements, lack of uniqueness
of the solution to P; is only due to motions
such that du; = 0 for any [ € C*.

5 NUMERICAL METHOD

When the number n of grains exceeds a few
hundreds, the simplex method proves imprac-
ticable, and the solutions to P; and P, i.e.,
the displacements and forces have to be de-
termined by different means. In practice, any
granular dynamics might be used, provided
convergence to the unique equilibrium state
is ensured. We found it efficient (7,8) to re-
sort to lubricating viscous forces, of the form

douy

fi= &) s

with a decreasing function & that possesses a
non-integrable divergence as h — 0. Neglect-
ing inertia, viscous forces balance external
forces, and velocities, at each time step, are
the solution to a system of linear equations.
Ast — +o0, if the load can be supported, ve-
locities vanish, f; — f/ and by — 0if [ € C*,
fi — 0 and h; tends to a finite limit oth-
erwise (this might be proved). Equilibrium
is thus asymptotically approached. Even for
the largest samples (n = 12600) that were
studied, the set C* we obtain always exactly
satisfies the isostaticity requirement (8).

6 LARGE SYSTEM LIMIT

Studying many samples of different sizes with
various BC’s, we check the existence of an
RVE, and evaluate its size. The practical
procedures are illustrated here in the case

of isotropic compaction, o = P1, studied in
(8,9).

Intensive quantities describing the inter-
nal state of the system should approach a
BC-independent limit as n — oo. When
a systematic dependence on the system di-
ameter L is apparent, one might attribute
it to a boundary effect. Near a rigid wall,
for instance, fewer contacts are active than
in the bulk. Near a free boundary where
some stress is imposed, many contacts are ac-
tive, since all perimeter grains must carry a
load. Such boundary influences yield system-
atic linear variations with 1/L (the relative
weight of some peripheral zone). Fig. 2 is an
illustration of this point, with the proportion
of active contacts, N*/N.

<N*/N>

0.5

0.4

0.3

0.2 1 ‘ 1 1 1 ‘ 1 1
0 0.02 0.04 0.06

Figure 2: Proportion N*/N of active bonds, aver-
aged over hexagonal samples with p discs per edge,
versus 1/p, for 3 BC’s : rigid rough wall (crosses),
periodic BC (open squares), and uniform pressure
(black squares). Error bars extend to one sample to
sample standard deviation. For periodic BC’s, the
system has no wall and the limit is reached much
sooner. Other BC’s are affected by wall effects, hence
the linear fits. All data extrapolate to the limit
0.393 £ 0.003. 32 systems with p = 60 (n > 10000)
were studied.

Fig. 3 is a plot of the probability density
of contact forces, p(f). A boundary layer
had to be discarded for the data from differ-
ent BC’s to agree. Such wide distributions
(see also the ‘force chain’ pictures in the next
section) are commonly observed in granular
media (11,13). Some first attempts to pre-
dict their shape have been proposed (13,14).



In view of these results, one should obviously
avoid thinking in terms of ¢ typical contact

forces’.
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Figure 3: log,,(p(f)) versus f in units of aP. p(f)
decreases from a finite value for f — 0. For f > 2, it
might be fitted (dotted line) as 0.92f15 exp[—1.28f]

For the isotropic strain, of the form e =

Al, we find i—>0344i0003 as L — oo.

Equ1va1ently, the maximum packing fraction
®* of slightly polydisperse discs, when the
diameter distribution is uniform, is, to first
order in «

o = 2\/_(1 — ka),

with k£ = 0.312 £ 0.006. ®* is well defined
here, within the ASD, because of the unique-
ness property.

A linear size [ might be attributed to the
RVE as correlation length for spatial distri-
bution of stress, length scale for local distur-
bances to attenuate, or depth of a wall effect.
All these procedures give [ ~ 10a.

7 BIAXIAL TEST

If some admissible set of non-negative con-
tact forces exist, then (from section 4) P; and
P, both possess a solution, and (as remarked
in section 3) another admissible set is then
obtained on equating each f; with the aver-
age F}, of all forces carried by the contacts
that share the same orientation ng. From

eqn. b, it follows that the system will sus-
tain the load o if, and only if, the following

conditions holﬁ:

0 < o9 <3on
~2 <oy <2 (1)
V3 V3

Keeping 015 = 0 and oy + 099 constant,
we have submitted square systems of various
sizes (up to 12600 grains, 4 samples) to loads
of different directions, with the following val-
ues of the ratio r = oy1/09: 0.361, 1/2,
2/3, and, 1 being already studied, v/3, 3, 10.
As fig. 4 shows, the anisotropy of the force
chains reflects that of the load: as r grows,
the contribution of the set C; to the trans-
mission of stress increases from negligible to
dominant. As the system is anisotropic, only
a part of the mechanical behaviour is ex-
plored, corresponding, by symmetry, to €5 =
0. Due to uniqueness, we obtain strains that
functionnally depend on load direction, and,
thanks to the optimization properties, results
can be understood in the following way, illus-
trated on fig. 5. In the €1, €55 plane, the sim-

\ \
1= _
s | 1
el i
o i
I N
0 s
—-0.5
‘ | | ‘ | | ‘ | | |
-1 -0.5 0 0.5
E11/0‘

Figure 5: Strain states corresponding to the 7 differ-

ent load directions that were simulated. Error bars

indicate uncertainties in the L — oo extrapolation.

The curve ¢(€11,€22) = 0 is the enveloppe under the

tangents that are drawn for each point. The asymp-
totes are the thick straight lines.

plex of possible displacements (from eqns. 7,
strains are linear combinations thereof) pro-
jects onto a simplex. As the system size L
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Figure 4: Aspect of the sets of force-carrying contac
from 1/3 to oo, taking the values given in the text .
with a thickness proport

increases, the number of linear sections limit-
ing this plane simplex tends to infinity, while
their lengths tend to zero. Consequently, in
the limit L — oo of macroscopic systems,
the set of strains €, €95 that are permitted
by grain impenetrability is limited by some
smooth curve ¢(er1,€2) = 0. For any sus-
tainable load (with 019 = 0), oy1€11 + 092699,
the criterion of problem Py, is maximized on
that curve, where its tangent is orthogonal
to the vector of coordinates (011, 097). The
existence of this point is equivalent to load
sustainability, and the curve has therefore
two asymptotes that are orthogonal to the

ts. From left to right and from top to bottom r grows
Active contacts are drawn as lines joining disc centres,
ional to the force intensity.

marginally supported loads given by eqn. 11
(r =1/3 and r = +00). The BC’s require
all contacts of C; to close for r — 400,
hence €17 = Ay = «/2, and all contacts of
Cy and Cj to close for r = 1/3, hence Ay =
A3 = /2, and €39 = (2/3)a — (1/3)e11. Note
that, as sample surface area is only mini-
mized for an isotropic pressure, the system
naturally exhibits dilatancy. Our numerical
results strongly suggest that an RVE always
exists, except right on the limit of the do-
main of supported loads, for g99 = 0 or for
011 = 092/3 (the statistical properties of the
sets of active contacts depending then, and



only then, on the specific type of BC). For a
given value of a;, the ASD should eventually
break down as the curve approaches any one
of its asymptotes (the later the smaller «).
Fig. 6 is a plot, versus 1/r, of the pro-
portion of active contacts in the different di-

rections. The typical aspect of force prob-
1 [
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Figure 6: Proportion of contacts in direction 1

(crosses) and 2 and 3 (squares) that are active, versus
1/r. The dotted lines are guides to the eye.

ability densities py, depending on the direc-
tion k£ = 1,2, 3 of the contact, in the case of
an anisotropic load, is displayed on fig. 7, in
the case r = 1/2. 1In this case, F3 = F,,
ps = py and F; = Fy/4. The anisotropy
influence on the force distribution decreases
with the force intensity. Most force chains
carrying large efforts are oriented along the
principal axis of stress with the higher eigen-
value (p1(f) < p2(f) at large f) while the
smallest contact forces remain isotropically
distributed (p1(f) =~ po(f) for small f). A
similar tendency was noted by other authors
(12).

8 DISCUSSION

Thanks to the simplicity of the model and
the efficiency of the numerical method, we
derive, from grain-level simulations, a macro-
scopic constitutive law for biaxial compres-
sion. The existence of an RVE (of typical
size | ~ 10a) is unambiguously established,

Figure 7: log,q(p1(f)) (crosses) and log,q(p2(f))
(squares) when r = 1/2, versus f, the unit of force

being 0(0'11 + 022)/2.

and the force distribution is accurately com-
puted. Load anisotropy mainly affects the
orientation of the largest contact forces.

Force chains, wide force distributions, re-
distribution of contacts on altering the load
direction, are now recognized as characteris-
tic features of granular materials. The simple
model we study should provide a convenient
test for theories attempting a quantitative
prediction of such phenomena.

Because of the 3 basic assumptions, the
model also exhibits some special properties,
the general relevance of which deserves to be
discussed. One is the unigueness of the equi-
librium state. However conceptually appeal-
ing (we are dealing with a well-posed prob-
lem, the use of one or another algorithm does
not bias the choice of a particular type of so-
lution, etc...), it is certainly unrealistic, for it
leads to a one to one correspondance between
(sustainable) stress direction and strain. This
excludes plasticity and dissipation. Submit-
ted to a quasi-static cyclic load, the model
material goes, back and forth, through the
same states, without any irreversible evolu-
tion and any energy dissipation. Moreover,
the marginally supportable stresses are as-
sociated with very peculiar, ordered, spatial
distribution of forces. Although the system
exhibits such “realistic" behaviours as dila-



tancy and contact reorientation, its relevance
as a model for usual biaxial experiments is
likely to be limited to the reversible part of
the stress-strain curve. It shows that, if the
geometry of the packing is such that the set
of active contacts might change significantly
with small grain displacements, the “elastic”
part of the elastic-plastic behaviour is not nec-
essarily due to the elasticity of the grains.

Another remarkable property is the iso-
staticity in the equilibrium state. In (9) it is
shown that, if one dispenses with the ASD,
though the uniqueness is lost, one still finds
an isostatic force-carrying structure at equi-
librium. As special lattice alignments disap-
pear on taking real, finite displacements into
account, it is isostaticity in a generic sense,
with a coordination number, counting only
load-carrying discs (n*) and active contacts
(N*), of 4. This seems to hold quite gener-
ally, and adding some Coulomb friction, the
inequality N* < 2n* should persist. There-
fore, the coordinance of a generic packing of
rigid discs in 2 dimensions (or rigid spheres
in 8 dimensions) should never exceed j (re-
spectively: 6).

The isotropic compaction of the same sys-
tem made of elastic discs is studied in (10).
The increase, as pressure grows, of the den-
sity of active contacts, results in a gradual
loss of the characteristic stress heterogeneity
of granular materials.

In future work, with more sophisticated
models, we intend to introduce (separately,
at first) three features that are possible mi-
croscopic sources of plasticity and dissipa-
tion: solid friction, large displacements of the
grains, non-convex attractive potential be-
tween the grains (cohesion). Any one of those
ingredients destroys the uniqueness property,

and is thus likely to yield an incremental macro-

scopic behaviour (as opposed to a functional
relationship between stress and strain). In
particular, it is expected that, provided sig-

nificant granular rearrangements occur on small

scale, the“plastic" part of the elastic-plastic
behaviour is not necessarily due to intergran-
ular friction.
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