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Performance limits of alphabet diversities for FIR
SISO channel identification

Jean Pierre Delmasenior Member, IEEEYann Meurisse and Pierre Comdrellow Member, IEEE

Abstract—Finite Impulse Responses (FIR) of Single-Input second order statistics afansformed datathese transfor-
Single-Output (SISO) channels can be blindly identified fran  mations include complex conjugation, but also monomial

second order statistics of transformed data, for instance Wwen : i ; :
the channel is excited by Binary Phase Shift Keying (BPSK). functions. This is one of the differences between our aiglys

Minimum Shift Keying (MSK) or Quadrature Phase Shift and that of |ﬂ5], where the performance analysis only takes

Keying (QPSK) inputs. Identifiability conditions are derived by  into account second-order statistics of the inputs. Idienti
considering that noncircularity induces diversity. Theoretical ~ability conditions are derived for BPSK, MSK and QPSK

performance issues are addressed to evaluate the robustsesf  jnputs. Theoretical performance issues are addressealo ev
standard subspace-based estimators with respect to thesien- 416 the robustness of standard subspace-based estimators
tifiability conditions. Then benchmarks such as asymptotially . . o
minimum variance (AMV) bounds based on various statistics when the 'mPU'Se re.qunse_a.pproaches an unidentifiable
are presented. Some illustrative examples are eventuallyhgn ~channel. In this contribution, it is demonstrated that HOS-
where Monte Carlo experiments are compared to theoretical based blind identification algorithms exhibit a much better
performances. These comp_ariso_n_s allow to q_uanti_fy Iir_nitsd robustness than alphabet-based.
the use of the alphabet diversities for the identification of For this purpose, benchmarks such as AMV bounds based
FIR SISO channels, and to demonstrate the robustness of S
algorithms based on High-Order Statistics. on second order or exte_znded second order statistics, or
based on orthogonal projectors, are presented. In compar-
ison to previous works dedicated to performance analysis
of identification of impulse responses, which suppose the
stacked samples of the received signal to be independent and
|. INTRODUCTION Gaussian distributed][9][ TLO], the theoretical perforeean
ISO blind identification has been long considered tanalysis we propose is based on the actual distribution of
need High-Order Statistics (HOSﬂ [1]] [2]. Actually, itthe observed signals, including the possibilitycofrelated
is now well known that the use of an additional diversitgignals.
at the receiver permits to build a SIMO channel that can This paper is organized as follows. Sect{dn Il introduces
be identified with the sole help of second order statistick]R SISO data models. Identifiability results are given in
e.g., via subspace techniquk [3]; if spatial diversityds nsection[Tl), and performance issues are addressed in sectio
available at the receiver, oversampling allows to increa}d Some illustrative examples are reported in secfign V.
diversity only in the presence of sufficient excess bandwidtFinally, conclusions are drawn in Sectipr V1.
which is however rarely encountered. This is one of the
reasons why HOS-based techniques are still often preferred Il. DATA MODEL
Other more recent techniques incorporate the knowledge ofLimiting our discussion to linear modulations, the com-
the symbol constellation, which eventually amounts to @isirplex envelope of a transmitted signdt) takes the baseband
noncircularity of the symbol sequendg [4]] (5] [6] [7][l[8 expressions(t) = Y, g(t — kT) ), where z;, denotes
It is thus legitimate to ask oneself the question whether thige discrete sequence of transmitted symb®ighe sym-
latter are more attractive than HOS-based approaches. W& period, andg(-) the transmit filter. After propagation
address this question in rather favorable conditions, but ahrough a time-invariant channel, the signal received @n th
answer is still negative, as will be subsequently shown. antenna is of the forns(t) = >, h(t — kT') x, for some
Second or higher order noncircularity can be utilized ispomplex linear filterh(-) representing the global channel,
order to restore identifiability of FIR SISO channels in theombining transmit and receive filters with the channel. It
absence of space or bandwidth diversities. This results g subsequently assumed that the global channel can be
simple SIMO-type blind identification algorithms based omapproximated by a FIR filter. Thus, if sampled exactly at the

] ] ) ) ratel/T, the received discrete-time signal may be modelled
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(i.e. E{n?} = 0), white, zero-mean and with finite variancepolynomial h(z) = Z,ﬁio hixz* has neither real zeros nor
o2 = E{|n¢?}. The information symbol sequence, is a conjugated zeros.
stationary process; in addition; and noiser; are assumed Using the notion ofocal identifiability for which it has been
to be statistically independent. It is convenient to use shown in ] that a SIMO channel is identifiable if and only
multivariate representation by stackidg + 1 sampIeE of if the different channels do not share common conjugate
the received signal: reciprocal zeros, or equivalently heké¢z), h*(z), h(1/z%)

Vi = (e Yets s enr) T = H(h)x, + 1) ;ned%”(;v/v,izn; do not share common zeros, we have proved

with x;, = (w4, 1,..,xe_ o)’ and n;, = Result 2: Under the conditions of Resqﬂ 1, the impulse
(ng,ne—1,...,ne—nr)T, and whereH(h) is the following responsé of a SISO channel is locally identifiable from the
(M +1) x (2M + 1) Toeplitz matrix: circular and noncircular second-order statistics of itgpat
he e h if and only if h(£1) # 0.
0 M Remark: If this condition is satisfied, there is no other
H(h) = channel in the neighborhood of a chanriel but pos-
ho -+ -+ hy sibly other channels outside this neighborhood satisfying

_ dof _ the constraints imposed by the second-order statistics of
with h = (ho, ha, ..., har)™. In the following, the cases of jts output. Consequently in practice, one must know the
BPSK, MSK and QPSK modulations will be considered, aghereabouts of the true channel in order to identify it under
working examples. this condition only. Such knowledge may come from some
prior information. A locally consistent estimator that s
accurate estimate of a channel satisfyiligt1) # 0 but
with real zeros or conjugated zeros will be exhibited in
A. BPSK modulation Sectiorm’. This is in contrast to the global identifiabilitgr

In this section,z, is a stationary process, possibly ColWhich we know that if a channel is identifiable, there is no
wbt ’ - H M+1 H H H
ored, taking its values in the sdt—1,+1} with equal other channéh in the spac&” satisfying the constraints

probabilities. It is assumed that the so-calledincircular imposed by the second-order statistics of its output.

covarianceR, E{x;x!'} is nonsingular. The set of
nonzero circular and noncircular second-order statigifcs B. MSK modulation
y; can be gathered in the covariance matrix of the extende
vectory, = (y7,y)7, so that from [f1):

IIl. | DENTIFIABILITY

dNow, we suppose; is a MSK modulated signal defined
by x:11 def ixyc; Where ¢, is a sequence of indepen-

R, ¥ E{y57} dent BPSK symbols{—1,+1} with equal probabilities
‘ H(h) where the original valuery remains unspecified in the
= [ H(h*) ]Rz[ HMh)H  HMW*)H |+ 07T (2set {+1,+i,—1,—i}. This process may be equivalently

_ _ ~ modelled asr; = itbyro wWhereb; is another sequence of
Consequently, we obtain this way a structured covarianggiependent BPSK symbols-1,+1} with equal probabil-

matrix similar to that obtained in the SIMO case; here thges.

two channels have impulse respongeand h*. Therefore  \we note thatr; (and thusy,) is not stationary. But by

the results (see e.g[, [11]) concerning giebal identifiabil- demodulatin§j eachy,, we get
ity of SIMO channels can be applied. Beca@$a/ + 1) >

. . M
2M + 1 and R, is nonsingular, the range space of the def ._
e e BT ) ] e o v i =3 Wb+, ©)
filtering matrix H(h) = H(h*) is identifiable from =0

Ry, and this range space determines the channel coefficigfg, B, At ohwi™* k= 0,.... M and wheren/, def ity

up to a multiplicative constant if channdisandh” do not g || 'second order stationary. Gathering again the set of

share any common zeros. This ambiguity can be fixed by, ar6 circular and noncircular second-order statistfcs
using the knowledge of the alphabet; we have proved tgte in the covariance matrix of the extended vec§dr —

following. T v'™T we obtain becausB,;, = Iy, in contrast to

o : iy - (y
Result 1: With a BPSK modulation and additive noiseR " of ) which is not necessarily equal Teas1 from the

satisfying the above assumptions, the impulse reSphnseassumptions
of a SISO channel is globally identifiable from the circular ' Ty
and noncircular second-order statistics of its output & thR dof E{y,y": }

H h/ / 1% 2
1 The lengthM + 1 of the observed output samplgs has been selected = { H((h/*)) ] [ H(h )H H(h )H ] + UnI2M44)
for two reasons. First, it is the minimal length to assure3SHdO channel
identifiability with the so-called zero condition. Secortiis length allows
one to simplify the subspace algorithm because in this ¢heejimension 2In [E], this demodulation is performed on vectgf and consequently
of the noise subspace reduces to one. v, = y+i~t becomes stationary at the second order butyjot
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Consequently, we can use the same approach the second-order statistics of the squared output if the
for the BPSK modulation. Becaus@,iw:0 hi.zk = polynomialh'(z) = Z,ﬁio h2z* has neither real zeros nor
20 oty hi(i712), we obtain the result below. conjugated zeros [resp. M (+1) # 0].

Result 3: With a MSK modulation and additive noise
satisfying the above assumptions, the impulse resphrafe IV. ASYMPTOTIC PERFORMANCE
a SISO channel is globally [resp. locally] identifiable from The above identifiability results naturally raise the im-
the circular and noncircular second-order statisticsotlé- portant issue of performance analysis of algorithms based
modulated output if the polynomidl(z) has neither purely on the second-order covarian®®;, and on the modified
imaginary zeros nor paired zeros of the foffixo,iz5), second-order statisticR; . In particular, it is essential to

zo € C [resp. if h(£i) # 0]. evaluate the performance of algorithms identifying chasne
whose impulse response approaches the conditions of non-
C. QPSK modulation identifiability previously given.

. . ] Usually, the deterministic Cramer-Rao bound (CRB)

Now, we suppose; is a QPSK modulated signal definedserves as a useful benchmark for unbiased estimators glielde
as a sequence of i.i.d. rv. taking their values in the sgy identification algorithms. Because this CRB is neither
{+1,+i,—1,—i} with equal probabilities and now is  gattainable for increasing SNR, nor for increasing the numbe
Gaussian distributed and circular. Consequepilys now  of symbols, this CRB is only a loose lower bound for the
second-order circular. However, noting that is @ BPSK  yariance of unbiased estimator, in contrast to the stoichast
modulation, a similar approach can still be used by squariggRp, which is attainable in the previous conditions. In the
the outputsy,. Indeed definey; = 47 and hj, © h2, k = present context, the distribution 6§:):—1,.. r is a mixture
0,..., M. Then, by using (i) the multi-linearity of momentsof a large number of Gaussian distributions and conse-
and cumulantq[32[}3], (ii) relations between moments angliently the stochastic CRB appears to be computationally
cumulants, (i) properties specific to the QPSK alphabggrohibitive. In these conditions, the notion of asymptatlic
namelyz} = 1, E{z7} = 0 andE{|z{|} = 1, and (iv) the (in the number of measurements) minimum variance (AMV)
whiteness ofc; at order 4, we obtain the following secondbound introduced by Porat and Friedlandef [14], and Sto-
order statistics of the modified inpuj;: ica et al with their asymptotically best consistent (ABC)

. . ..o estimator [15], are considered.
—ry (£) + 2y (0) ~B{y o} + 2 [B{ywi_}]

i W A. AMV bounds based on extended covariance matrices
= k' k—e
k=t

We first note thath is identifiable fromR; or Ry
M except an intrinsic ambiguity, viz: a sign ambiguity for
L (0) def E{yy,_,} = Zh;@ - BPSK, or a rotation ofr/2 ambiguity for MSK and QPSP_(
) modulations. Furthermore, the subspace-based algorithms

def

at are proposed estimdteup to a multiplicative constant.
0 compare the asymptotic performance of these algorithms
0 given AMV bounds based on various statistissnust be
trictly identifiable from these statistics. Consequertlye
parameter ot is fixed to a predefined value, say; = 1

_ | H(h) NH P H throughout Sectionf |V anfd] V.
Ry = { H(h'™) ] [ ()" HWDT ] 6) Letg a = (0", p")7 E(Ijenote the real-valued un-

As a consequence, a structured covariance matrix has bEBRWN parameters  (containing the real and imagi-
obtained, which is similar to that obtained in the SIMCTY parts of the complex parameters) of thfcf ex-
case, with two channels of impulse responkésandh’*. tended covariance matriceR; or Ry, where 8 =
Therefore the results (see e.q-][11]) concerning the itent[R(71), ..., R(har), Im(ha), ..., Im(har)]", and where p
ability of SIMO channels can be applied as well. The rang@llects the nuisanfleparameters for the BPSK and MSK
space ofR; determines the channel coefficientsigfand Modulations. Depending on the a priori knowledge of the
h'* up to a multiplicative constant if these channels do nétPuts, p = o, if the BPSK sequence:; or the driv-
share any common zeros. This ambiguity can be reduc8d sequence, for the MSK modulation are white, and
by using the knowledge of the symbol alphabet. Returning= [rx(1).., 7, (2M), 02|17 with r, (k) < E{z.z, )} for
to h, each coefficient ofh is determined up to a sign correlated BPSK symbols. We note that if the conditions of
ambiguity, which may be cleared up using the successigection[ll] are satisfied is identifiable fromR; or R
second-order statistids{y,y; ;},1 = M, M—1,...,|M/2]. These block Toeplitz matriceR; and Ry are tradi-
Consequently, we obtain the following result: tionally consistently estimated froffi successive received

Result 4:With a QPSK modulation and additive noise SNote that all the previous performance analyses (e@,) [¢Omsider

SatiSfying the _above assumptions, the impUIS.e_' r(:"SF)hnSQhat the nuisance parameters are known, and consequengyogiimistic
of a channel is globally [resp. locally] identifiable fromAMV bounds.

for ¢ = 0,...,M. Gathering the extended second-ordt

statisticsr), (1) def —ry(€) + 2r;(¢) andr,, (1) in an Her-

mitian 2 x 2 block Toeplitz matrix, we obtain the extende
covariance matrix
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signalsy; by replacing the various expectations by thés structured ass(a) = ¥(0)p + (), which implies

associated sample correlations;r(¢) <= L 27 1ytyt o S =[S, %] with 8; & 2 ang the matrix inversion

def def I i i .
r;T(g) ef 1 Zt 1ytyt o ryr(l) S of 1 Zt 13/t3/t , and lemma gives this time:

vl dCf LSy, .. In order to apply the AMV CoviE > CAMV(Ry)( g ®)
bound I] i] to an arbitrary consistent extended seeond 0

order algorithm based on the sample estimdigs, or with

R 1 of R; or Ry respectively, the involved statistiss: CAMV(RQ)(2) def [SH(Q)Cfl(Q)S( )}—1
must coIIect real- vaIued sample correlations and complex- ° s (1:2M,1:2M)
valued sample correlations and their conruge@ [16]. For — (SHC 1/2HL oy
example for BPSK modulations, we have:

c; 1/281)

We note that when the BPSK symbols are uncorrelated,

v

ST = (Ty-,T(O)vry-,T(l)v"'7Ty=T(M)aTZ,T(1)a-'-aT;;,T(M)a

7 (0)s eyl (M), 1" 1(0), oy’ (M) (6) Cy
AMV(R)®

AMV(R )™M AMV(Ry)®

<Cy ,

Under these conditions, the asymptotic covaria@esv'®  where hereC,, is derived under the assumption
of an estimator ofa given by an arbitrary consistentof uncorrelated symbols.

second-order algorithm based on these statisigsis

bounded below by the real symmetric positive definite Lastly for the QPSK modulation, where there is no
matrix [SH (a)C ! (a)S(a)] ™t Whereﬂ S(a) def % nuisance parameter Ry, we obtain the lower bound

with s(a) = limy_, o, s7 and whereCg(«) is the circular

covariancE of the asymptotic distribution ofkr whose

expression is given in Appendix A. Furthermore, thergith
exists a nonlinear least square algorithm (dubbed the AMV C,
algorithm |14 .]) for which the covariance of the asymptotic
distribution of the estimate af attains this lower bound. Where Cs is here associated with the statisties —

For white BPSK sequences and white driving sequenc@s, )sees Ty (M), 7y (1) s 7y T(M)v 7y (0)s s
of MSK modulations, 02 is the unlque2 nuisance param-, ,T(M),T;;;T(O),...,’I”;},T(M)]T WheQre 7y (k) def
eter and = hihi_, + 6 and = * N def

M ru(k) Z iy Ko ry (k) T F Y Y ok 2 {% it ytyt—k} andry, (k) =
> iep hihi—j for BPSK sequences. Consequenttw) is 7 ] o )
structured ass(a) = ®(0) + o2e;, wheree, is the first T 2i=1 %¥i—r (S€€ Sectior]_III-), which is a consistant

Covy'e > )MV Ry, (9)

AMV(Ry/) = [ST(8)C;1(0)S(0)] 7,

unit vector inR*M+3_ This impliesS = [S;,e], and the estimate ofs(6) = [TZ(O)a/---TZ(M)aTy*(l)a---Ty*(M)a
matrix inversion lemma yields: 7y (0), oy (M), 7,7(0), ..., ry*,‘(M)]T, whose expression
Al AMYV(RAD is derived in Appendix B.
Cov g > C (Ry) , (7)
with B. AMV bounds based on orthogonal projectors

(*112M12M) In order to assess the performance of subspace-based

. 1 algorithms built fromRy; r or Ry 7, it is relevant to re-
_ Sy c-! S place the previous statistisg: by the orthogonal projectors
o | Cs (@)[S1,el] .
1 (1:2m, 1200y Il p or ILy o onto the noise subspace B+ or Ry r

AMV(Rgz)®  def

Co (8" (a)C (a)S(ev)]

respectlvely In this casey;r = vec(Il 1) or vec(ILy 1),
consistent estimates @1; andIl; respectlvely which here
epends only o and are therefore denoted b{0).

The circular covariances of the asymptotic distribution of
vec(II; 1) andvec(ILy 1) are singular, but it is proved in
S[E] that the AMV bound definition can be extended and is

-1
- (s{fcgl/QHé;me] C;l/Qsl) :

where II; denotes the projector onto the orthogonaﬂ
complement of the columns k.

For the BPSK modulatlon with correlated symbol

) = TE S b+ = i) + oo given by N

ar;]d r;(k)( | = Zz o Ly hih; rz(kl + j - ) Cov,'® > Cy = [sf(@)Cl(6)S(6)]"!  (10)

where 7r,(0 = 1. Consequently s( = . .
N ret di ¢ the Moore-Penrose inverse of the covari-

(ry (0),my (1); o0y 7y (M), 75 (1), ey 75, (M), 7, (0), M),r %@f %?éz asymptotic distribution ofrec(IL; ) or

) ) ) vec(IT” T) which are derived in Appendix C and where
“Note that the local |dent|f|ab|||tyed in Resﬂt 2 is eqleva to that v

def
the Jacobiar$ is full column rank [1p]. Whemho = 1, the number of S(0) = dfg).

columns of S is reduced by 2 w.rt. the case of an arbitrdiyandh  Remark 1 Noting that the block Toeplitz matriR; - and
becomes locally identifiable for arbitrary channels. v

. T ~ ~H . .
5Note that the_circular and the noncircular covariance mesricontain the S‘?mple Cova”ancé Zt:l YtYi (Wh'Ch IS not block )
the same termq [[L6]. Toeplitz structured) have the same asymptotic Gaussian
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distribution ], the circular covariance mati@®g, of the Using the standard perturbation theo [22, p. 162]
asymptotic distribution oR; r can be derived from that of I SR i
+ Zthl y.yH. Based on the linear structuté(h)z, + i, 06 = ~S'MI;6(R5)0 + o(0R;)

of the correlated data,, the robustness [[L9, Result 3]ith g df H(h)H(h)", we obtain by the chain rule and

property that states that the circular covariance of thge standard theorem of continuity (see efg] [28, p. 122]):
asymptotic distribution of the associated projection ixatr

does not depend on the distributiongfbut on the temporal  Cn = Cv, = DS’ (0" ® IT;)Cr, (1" @ IT;)STD, (11)
correlation of (x; ).~y applies. Usingy; = H(h')z; + i}, where D _ L[] o I

R L = Tap; FM+1s M+1][ 2(M+1) —
th.IS property exter_1ds to t.he MSK case. This is in contraﬁlf’ Ouarsnyonrs]] is the ! Jacobian matrix associated
with C4(0), associated with the statisti®; » andRy/ 7, with the méppingﬁ o s v
which depend on the second and fourth-order terms, of T r LT

For the MSK and QPSK modulations, this analysis ex-
Naturally for QPSK symbolg’s(6) depends on the second g ) / )
fourth, sixth and eighth-order terms. tends by replacingt;,r andhy by Ry ;- andhs, respec

tively, and ding th i hr.
Remark 2 Note that lower bound§](8)](7) and (9) associated Y’ o0 appending the mappitg, — hy

with arbitrary consistent algorithms based By or Ry

) e V. |LLUSTRATIVE EXAMPLES
satisfy, for the same a priori knowledge:

Four experiments are considered to illustrate the perfor-
")mance of the impulse response estimates and particularly

the robustness of estimators when the impulse response is
AMV(I1; AMV (1) . o
whereC, (It3) andC, 7" denote lower bound (L0) close to unidentifiable.

associated witlI; - andII; 1 respectively, because these |n Figs. 1 and 2, the channel is given byz) = (1 —
statistics are functions dky » andRy 1 respectively. Zflz)(1 — Zglz) with z; = 0.8¢/ and z, = 1.25¢17/4

wherea varies from 0 t@x for 7" = 1000, SNR = ”z_‘—le =
15dB and 100 Monte Carlo runs. These figures exhibit for
independent BPSK and MSK inputs driven by independent
Because the structure of the covariance matrRgsand  symbols:
Ry of () @) and [p) are similar to those obtained in the , the theoretical AMV  bound MSEh) _
SIMO_ case, all the algorithms devised in this case can be %Tr(CSMV(Rg)) with the prior information of
used in the present context. In the sequel by lack of place_, independent symbols (denoted AMV1 bound) and
only the so-called least square (LS) and subspace (SS) will

without any a priori information (denoted AMV2
be considered [20]. We note that (i) the LS and SS estimates bound): ya b (

gﬁit?scpi)c;ieiri]stgl?dti\%cgﬁzizangrl\:asgzm, and (i) the noise | 1o theoretical AMV  bound MSHh) =
e . Lrr(CcoMV M9y (denoted AMV3 bound);
For the BPSK modulation, any eigenvectorassociated 7 T(Cy ) (denote ound);

ith the smallest eigenvalue of the block structured matrix * the theoretical ~asymptotic = MSE (h)
wi igenvalu uctu X %Tr(CovI,;S/SS) given by the LS/SS algorithm;

C?MV(R@) SC?MV(H@) and CgMV(Rg/) SCBAMV(H

C. Subspace-based algorithms

Ry = | o } satisfiesv = (vi,vi'e’)" and from 0 ot (Monte Carlo) MSE given by the LS/SS
(B b algorithm.
[ h* ] =c { _;:}ew ] . The following relation is satisfied for arbitrary as noted
! in Section[TY
From now, v, is constrained to have its first component g )® AMV(R;)®
to be unity:h = vy (¢ = 1, ¢ = w). Consequently, “~o < Gy " le=(0,0.02)7
the LS and SS estimates are given lyy = v, r where < CGAMV(Hﬂ) < COVgS/SS.

vy = (vi p, vilpe)T denotes the eigenvector associated .
with the smallest eigenvalue of the block structured masicWe note that the theoretical AMV bounﬁlgAMV(Rf’)

o : ; ; is bounded when the zerg, approaches the real [resp.
x* } whose first compo_nent IS gnlty. imaginary] axis for the BPSIJO[resp. MSK] modugatic_)n
The asymptotic performance of this algorithm can br which h becomes globally nonidentifiable but remains

deduced from the asymptotic distribution &fr whose |ocally identifiable. This is in contrast WitE?MV(R@)m

circular covarianceCy; is derived from the mappllﬂg CAMVL) ond COVES/SS which increase dramatically in

Rjr — ar — vr whereur denotes the eigenvectorihs case. The behavior of the two boundSIV(R.)
associated with the smallest eigenvalueRof - satisfying is explained byS = [Si,e] in@( ) which remains full

X
Ryr=| g

the constrainifa = 1 where is an arbitrary unit norm rank contrary toS = [S;, ¥] in (§), which becomes rank

eigenvector ofR; associated with its smallest eigenvaluedeficient. The behavior ngAMV 15) and CovI;S/SS is

explained by the pseudoinverseg (6) andS# in (fLd) and
8In practice, the unique eigenvectdrr is obtained fromR.; - through (L) respectively, for which{(h) becomes rank deficient.
an eigenvectoriir satisfying other constraints. For example, the SVDINIS behavior of the LS/SS algorithm is interpreted by the

function of MATLAB forces all eigenvectors to have a real fislement "noise eigenvector” that is mistaken for a "signal eigen-
and a unit norm. vector” when the channel is close to the non identifiability
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conditions. If the lengthl, > M +1 of the stacked observed1 — p. In this casex; is a zero mean correlated se-
output sampleg, increases, the dimensi@L — (2M +1)  quence for whichr, (k) = BE{zz_r} = (2p — 1)* and
of the noise subspace increases and it is well known t% o — Ytmlfor0 < k<1<

the performance improves (see e.g., [23] where Fig. : It“’?t*kxt*l"’”t*m} =(@2p-1 == —T’kl
shows the two channel case with order two), but at amplying Cum(zs, ¢ g, T1—1, T¢—m) = —2(2p — 1) +m—
expense of additive complexity. Furthermore, we note thgyr 0 < & < | < m. Incorporating these values ifi [14)

for arbitrary processing window lengtis > M + 1, only ;
the correlationsr,(0), ...,r, (M) and r,(0), ...,r;, (M) are (E)' Appendix A allows you to study the performance.

involved in the LS/SS algorithm for independent input§id- 3 exhibits for the channel used in the previous figure
x¢. Consequently, the AMV2 bound given if Fig. 1 keepwith o« = 4 radians, as functions of the probabilityfor

on being a lower bound for the MSE of the impulse — 1000 and SNR = 5dB:

response estimated by arbltrar?/ second order algorithms .

derived for L > M + 1 samples of stacked observed e the theoretical AMV bound MSfh) =
outputs. And we see from this figure that this AMV2 bound %Tr(CAMV(Rﬂ)) with the prior information of

. -y . e -y 0
is also very sensitive to the non identifiable conditions. differential coding (denoted AMV4 bound) and

without any a priori information (denoted AMV2
bound);

the theoretical asymptotic MSE (h)
%Tr(CovI,;S/SS) given by the LS/SS algorithm;

10 1

i
A ] 1 ;
\ & i /’/ i o the actual (Monte Carlo) MSE given by the LS/SS
) \ A WA algorithm.
e . i M We see from this figuffthat the different MSE are sensitive
c - i - to the probabilityp except forp ~ 0.5 and degrade
g K il 4/4/ rapidly for a strong correlation i.ep ~ 0, p ~ 1.
N / P
‘\‘\‘l\;; ' //," /
10 ; o : W X : : -
= A /ﬂﬁl,y/"/ % actual MSE(h) | *  actual MSE(h) * :A
NN~ asympt. th. MSE(h) 7| 7 asymet. th. MSE() ]
. —— AMV3 bound A AMV3 bound |
rrrrr AMV2 bound —— AMV2bound ¥
—-— AMV1 bound / /
T T T / B
0 9 1 2 3 4 5 6 7 o ot
alpha(radians) ‘
g %
Fig.1 For white BPSK inputs three AMV bounds, asymptotic theosti ¢ - &
MSE() and &) actual MSEh), given by the LS/SS algorithm as a function X
of the phasex of a zero ofh. - HTE
10 e =
1 * actual MSE(h)
——- asympt. th. MSE(h)
—— AMV3 bound
rrrrr AMV2 bound T T T T T T T T T T

005 055 060 065 070 075 08 08 09 095 100
p

—-— AMV1 bound

10

Fig. 3  For correlated BPSK symbols asymptotic, 2 AMV bounds,
asymptotic theoretical MSH( and ) actual MSER), given by the LS/SS
algorithm as a function of the probability.

MSE(h)
N

e A To test the occurrence of an unidentifiable channel, we
. . . Ay i consider now a random second-order FIR channel where
N R(h1), S(h1), R(he) and N(hy) are i.i.d. uniformly dis-
= tributed in[—1, +1]. For each realization of such a channel,
ol ; ; ; ; i ; ! the asymptotic theoretical MSEh) = %Tr(CovI(;S/SS) is

computed with the associated matched SNR. Fig.4 exhibits
the empirical distribution function of the random variable
Fig. 2 For MSK inputs driven by white symbols 3 AMV bounds, MSE(h) from 1000 realizations faf' = 1000. From this fig-
asym_ptotic theoreticgl MSH( and ) actual MSEh), given by the LS/SS ure, we see for example thﬁ’t{MSE(h) <3 10—2} = 0.5,
algorithm as & function of the phaseof a zero ofh. for SN R = 15dB. Comparing this median with the different
0l}/ISE given by the LS/SS algorithm for the specific channel
(ﬂf Fig. 1 for this same SNR, we see that this specific channel
ds representative enough. Consequently, channels close to
unidentifiable are not uncommon.

alpha(radians)

We now consider the influence of the correlation
BPSK symbols on the performance of the identification
h by using a differential coding for which the symbol
x, are generated fromx; = xz;, 1b, with b, is an i.i.d.
sequence wherd’(b; = 1) = p and P(by = —1) = "We note that the different MSE are symmetric with respegi te 0.5.
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Unfortunately for more realistic random channels, the enof Giannakig. Next, we note that these algorithms require

e istributi - i very large data samples for an effective estimation (here
pirical distribution function of the random variable MSE( Z "100000). Furthermore wherh becomes nonidenti-

is much worse. For example, for Clarke filters in the typicggple “i.e. o approaches 0 of, the performance of the
urban mode, where each generated channel is specular BB(SS algorithms degrades in contrast to those of the

contains six paths, where the transmit filter is a raisecheosiC (% ¢) formula of Giannakis. Finally, we note that the

; ._theoretical and actual MSE’s of the LS/SS present some
with a rolloff of 0.1, and where delays and attenuat'oﬂ}lscontinuities in the neighborhood of — ??Tﬂ for which

standard deviations are given _i'D[24] according 10 thee real part ofh, is zero, implying some artifacts in
ETSI norm, the probability of a high asymptotic theoreticahe derivation of ‘the theoretical” asymptotic MSE given

MSE(h) is much larger than for the channels of Fig. 4. by the LS/SS algorithm and large errors in the estimates.

: ! % LSISS algo. (actual MSE(h))
0 . : +  Cqk algo.(actual MSE(h))
BT s s N I e LS/SS algo. (as. th. MSE(h)
— Cgkalgo. (as. th. MSE(h))
——=- AMV bound

*x

*

Probability

R % — SNR=204B
ISRV / —— SNR=1508
01 B A A S A A A B SNR=10dB 10

A ,/ —-— SNR=5dB
0.0 - 3 T alpha(radians)
L - -1 0 1 2
10 10 10 10 10 10 10
MSE(n)

Fig. 5 For white QPSK symbols, AMV bound, asymptotic theoretical

Fig. 4 For white BPSK symbols, empirical distribution function thie MSE(h) and actual MSE) given by the LS/SS and th@(k, ¢) algorithms
random variable MSH{) for four values of the SNR. as a function of the phase of a zero ofh’.

In the last experiment, we consider the channel given by
h(z) =1 —2y/27 P+ 25t + 22y /27 P25t (where the real
part of the square roots are positive) associated ifith) — In this paper, the problem of blindly estimating FIR
(1 —21_12)(1_— z5 'z) with z; = 0.8¢’ andz; = 1.25¢'/* SISO channels has been considered, when the channel is
where a varies from 0 to2r for 7" = 100000, SNR = excited by discrete inputs. Identifiability has been stated
20dB and 100 Monte Carlo runs. This figure exhibits fofrom second order statistics of transformed data. One may

VI. CONCLUSION

independent QPSK symbols: say that the knowledge of the alphabet has induced a form
) of diversity. Identifiability conditions have been derived
. the tgi%r(ery.(??' AMV  bound  MSfh) = and limitations have been pointed out: some particular
+Tr(Cy ”’) based on the statistics used irthannels are not identifiable. Theoretical performanaeeiss
the LS/SS algorithm; have been addressed in order to evaluate the robustness of
o the theoretical asymptotic MSE (h) = standard subspace-based estimators with respect to these
%Tf(cOv{;S/SS) given by the LS/SS algorithm; identifiability conditions, as well as the performance of

« the theoretical asymptotic MSkh) = %Tr(Cngkq) the so-calledC'(k, g)-algorithm [27], [2]. More precisely,
given by the so-called’(k, q) formula of Giannakis it has been shown that the performance of alphabet-based
B4, B (kT) = cy7(0,k, 2)/c,r(0,0,2) algorithms seriously degrades in the neighborhood of non-
where ¢, r(t1,t2,t3) denotes the estimatedidentifiable channels, implying that these approaches are
cumulant associated with the sample momennapplicable in practice. On the other hand, the HOS-

%Zle YUttty YittsYitts: based aIgori'Fhms no_t based on sub_s_pace approaches, as the
« the actual (Monte Carlo) MSE given by the LS/SS(k, ¢)-algorithm which does not utilize noncircularity, do
algorithm; not present difficult identifiability conditions and conse-

« the actual (Monte Carlo) MSE given by th&(k,q) quently are much more robust.

formula of Giannakis[[37],[]2].
. ) 8 Of course, this algorithm may be outperformed by other HOS-
We see from this figure that the AMV bound outperalgorithms that use these statistics more efficiently. This, ¢) algorithm
forms by far the LS/SS algorithm, and the latter is OuUtas nevertheless been selected simply to reveal the lackbokiness of
performed in a large domain ef by the C'(k, ¢) formula the standard subspace alphabet-based estimators.
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APPENDIX ;T(l) (M), 7 (0), ety (M), 75 (0),
Appendix A: derivation of Cg(«) associated with the ...,r ,T(M)] Consequently, using the standard theorem
BPSK and MSK modulation of contmulty (see e.g. mt8]) on regular functions of asymp

To derive the expression of the circular covariance of thetically Gaussian statistic€s(«) is derived fromC, («)
asymptotic distribution okr, we number the channels by
and h* by h(¥ and h® respectively and the associated C.(0) = Os (Q)E
output byy" andy!? . Consequently the terms 6fs(cr) = S o TN orT
limy .o TE{(s7 —s(e))(sr —s(a))"} are constituted by Then the different terms o€, (a) = limy_,o TE{(ry —

the terms r(a))%p — r(a))¥} similar to terms [(AR2) are given (see
e.g., |26, rel.10.5.2]) by the following finite limits:
T TE{(rr(B) o () (ro e ) —rie ()} (12) &9 2 Dby g
> (il) 12) (13) (14) (15) (i6), (i7), (is)
for k = 0,.,M,i < j, 1 = 0,..,M, i < j and ;(E{yo Yo" Wiy Yesi )
k=1,.,M,i>j 1l=1..,M714>j, iji,j = )
S eees yeens v It - (i1) (12) (’L'; (ia) (i5) (16) (17) (8)
1,2 to eliminate redundancies, in whichi7j,T(/~c) f — By "y v 1B })’
i def (@ j i 7 i i i i6
7 Sy, andri (k) < By Uy} for the BPSK S (i) 190y (1)) yfte)
modulation. Limit .) deduced from the Bartlett formula t
(see e.g. @5]) is given by E{y(“) (i2) (m }E{y(“ e (is) (16)}) 7
M
Z ’]”7;71'/ (’I’L)’f‘j,j/ (’I’L +l — k) —|— Ti,j’ (’I’L —|— l)rj,i’ (’I’L — k) Z (E{y(ll 12)y§1’3) g:ﬁll)}
n=—M t
+Cum(y$), 57 08",99)) (13) — B{ys 'y 1 E{ys “)})
with "
o ()1 (5) 2¢ ¢ o where the exponents, take values 1 or 2. The last sum
rig (k) = Z Py, + 00k 0i-10-2 reduces to[(33) using the Bartlett formula but the first two
sums are much more intricate. We could use the extended
and Bartlett formulas derived in[[25] in the case of infinite sums
@ .G @) D LG @) (J (ARMA models), but here because all the sums are finite,
Cum(y,” ypZpvo 5y=y) = ka( th+nht+n kP —we use a specific symbolic calculus akin to a high-level
language to automatically generate the ((expressmns((géthes
]\f )
wherery(z) < E{z?} — 3E{z?} = —2 in the white case SUMS. This calculus uses” 2 —ohy” Te—k + 0y
and with the circularity of n; with E{|nt |} = plo? and the

VY, following specific properties of the QPSK alphabet, namely

; I,Zh DR+ 1 =1 + 020481055 B{(w)(37)7) ={ ) conare |
(14) Appendix C: derivation of the covariance of the asymp-
totic distribution of vec(ILy ) or vec(ILy r)
Cum(yff),yfl k,yé DUy = First, noting that the Hermitian block Toeplitz matrix
R 7 is built from its first column and row constituted by
Z Z Z Z CUM (Tt s Tty s Tt T i—t,) the statisticsr given by [$), the circular covarian€@g, of

and

t1=0t2=0 t3=0 t4=0 the asymptotic distribution dRj 7 is deduced fronCs(0)
h(z)h(a)h( )h ") (15) given in Appendix A by
VA
in the general correlated case. Cr. = dvec(Ry) Cs(g)d"ec(Ry)
K dsT dsT

The expression of the circular covariance of the
asymptotic distribution ofs; associated with the MSK Using the standard perturbation result for orthogonal pro-
modulation driven by white symbols follows the same ||ne@ctors [3D] (see also[[39]) applied @; associated with
as the white BPSK case replacing and i, by y, = and the noise subspace &t;

h; respectively according td](3). §(I;) = —T;6(Ry)ST — ST6(RH)II; + 0 (5(Ry)) (16)
Appendix B: derivation of Cs(@) associated with the with S < #(h)R,H(h)", the asymptotic behaviors of
QPSK modulation vec(Ily r) and Ry are directly related. The standard
First, we note that the statistcssy is theorem (see e.g.[ [28, p. 122]) on regular functions of
. . .. def . . . . .
a simple function of the statistics rp = asymptotically Gaussian statistics applies and the arcul

[ry,7(0), ..ty (M), 75 7(1), ..ry 2 (M), 7y, 7(0), ...t 7 (M), covariance matrix of the asymptotically Gaussian distribu
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tion of vec(IL; r) can be written as

Cm,

[21]

(M @ 8" + (8" @1y)) C,

(a1 @ 8 + (8" @ 1y)) .

[22]
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