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Performance limits of alphabet diversities for FIR
SISO channel identification

Jean Pierre Delmas,Senior Member, IEEE, Yann Meurisse and Pierre Comon,Fellow Member, IEEE

Abstract—Finite Impulse Responses (FIR) of Single-Input
Single-Output (SISO) channels can be blindly identified from
second order statistics of transformed data, for instance when
the channel is excited by Binary Phase Shift Keying (BPSK),
Minimum Shift Keying (MSK) or Quadrature Phase Shift
Keying (QPSK) inputs. Identifiability conditions are derived by
considering that noncircularity induces diversity. Theoretical
performance issues are addressed to evaluate the robustness of
standard subspace-based estimators with respect to these iden-
tifiability conditions. Then benchmarks such as asymptotically
minimum variance (AMV) bounds based on various statistics
are presented. Some illustrative examples are eventually given
where Monte Carlo experiments are compared to theoretical
performances. These comparisons allow to quantify limits to
the use of the alphabet diversities for the identification of
FIR SISO channels, and to demonstrate the robustness of
algorithms based on High-Order Statistics.

Index Terms—Blind estimation, SISO channel, Noncircular-
ity, Performance analysis

I. I NTRODUCTION

SISO blind identification has been long considered to
need High-Order Statistics (HOS) [1], [2]. Actually, it

is now well known that the use of an additional diversity
at the receiver permits to build a SIMO channel that can
be identified with the sole help of second order statistics,
e.g., via subspace techniques [3]; if spatial diversity is not
available at the receiver, oversampling allows to increase
diversity only in the presence of sufficient excess bandwidth,
which is however rarely encountered. This is one of the
reasons why HOS-based techniques are still often preferred.
Other more recent techniques incorporate the knowledge of
the symbol constellation, which eventually amounts to using
noncircularity of the symbol sequence [4], [5], [6], [7], [8].
It is thus legitimate to ask oneself the question whether the
latter are more attractive than HOS-based approaches. We
address this question in rather favorable conditions, but our
answer is still negative, as will be subsequently shown.

Second or higher order noncircularity can be utilized in
order to restore identifiability of FIR SISO channels in the
absence of space or bandwidth diversities. This results in
simple SIMO-type blind identification algorithms based on
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second order statistics oftransformed data; these transfor-
mations include complex conjugation, but also monomial
functions. This is one of the differences between our analysis
and that of [5], where the performance analysis only takes
into account second-order statistics of the inputs. Identifi-
ability conditions are derived for BPSK, MSK and QPSK
inputs. Theoretical performance issues are addressed to eval-
uate the robustness of standard subspace-based estimators
when the impulse response approaches an unidentifiable
channel. In this contribution, it is demonstrated that HOS-
based blind identification algorithms exhibit a much better
robustness than alphabet-based.

For this purpose, benchmarks such as AMV bounds based
on second order or extended second order statistics, or
based on orthogonal projectors, are presented. In compar-
ison to previous works dedicated to performance analysis
of identification of impulse responses, which suppose the
stacked samples of the received signal to be independent and
Gaussian distributed [9], [10], the theoretical performance
analysis we propose is based on the actual distribution of
the observed signals, including the possibility ofcorrelated
signals.

This paper is organized as follows. Section II introduces
FIR SISO data models. Identifiability results are given in
section III, and performance issues are addressed in section
IV. Some illustrative examples are reported in section V.
Finally, conclusions are drawn in Section VI.

II. DATA MODEL

Limiting our discussion to linear modulations, the com-
plex envelope of a transmitted signals(t) takes the baseband
expressions(t) =

∑

k g(t − kT )xk, where xk denotes
the discrete sequence of transmitted symbols,T the sym-
bol period, andg(·) the transmit filter. After propagation
through a time-invariant channel, the signal received on the
antenna is of the forms(t) =

∑

k h(t − kT )xk, for some
complex linear filterh(·) representing the global channel,
combining transmit and receive filters with the channel. It
is subsequently assumed that the global channel can be
approximated by a FIR filter. Thus, if sampled exactly at the
rate1/T , the received discrete-time signal may be modelled
as

yt =

M
∑

k=0

hk xt−k + nt

where hk = h(kT ), 0 ≤ k ≤ M , and nt denotes an
additive noise, which is assumed to be second-order circular
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(i.e. E{n2
t} = 0), white, zero-mean and with finite variance

σ2
n = E{|nt|

2}. The information symbol sequence,xt is a
stationary process; in addition,xt and noisent are assumed
to be statistically independent. It is convenient to use a
multivariate representation by stackingM + 1 samples1 of
the received signal:

yt = (yt, yt−1, ..., yt−M )T = H(h)xt + nt (1)

with xt = (xt, xt−1, ..., xt−2M )T and nt =
(nt, nt−1, ..., nt−M )T , and whereH(h) is the following
(M + 1) × (2M + 1) Toeplitz matrix:

H(h) =







h0 · · · · · · hM

. . .
. . .

h0 · · · · · · hM







with h
def
= (h0, h1, ..., hM )T . In the following, the cases of

BPSK, MSK and QPSK modulations will be considered, as
working examples.

III. I DENTIFIABILITY

A. BPSK modulation

In this section,xt is a stationary process, possibly col-
ored, taking its values in the set{−1, +1} with equal
probabilities. It is assumed that the so-callednoncircular
covarianceRx

def
= E{xtx

T
t } is nonsingular. The set of

nonzero circular and noncircular second-order statisticsof
yt can be gathered in the covariance matrix of the extended
vector ỹt = (yT

t ,yH
t )T , so that from (1):

Rỹ
def
= E{ỹtỹ

H
t }

=

[

H(h)
H(h∗)

]

Rx

[

H(h)H H(h∗)H
]

+ σ2
nI2M+2.(2)

Consequently, we obtain this way a structured covariance
matrix similar to that obtained in the SIMO case; here the
two channels have impulse responsesh andh∗. Therefore
the results (see e.g., [11]) concerning theglobal identifiabil-
ity of SIMO channels can be applied. Because2(M +1) >
2M + 1 and Rx is nonsingular, the range space of the

filtering matrix H̃(h)
def
=

[

H(h)
H(h∗)

]

is identifiable from

Rỹ, and this range space determines the channel coefficients
up to a multiplicative constant if channelsh andh∗ do not
share any common zeros. This ambiguity can be fixed by
using the knowledge of the alphabet; we have proved the
following.

Result 1: With a BPSK modulation and additive noise
satisfying the above assumptions, the impulse responseh

of a SISO channel is globally identifiable from the circular
and noncircular second-order statistics of its output if the

1 The lengthM +1 of the observed output samplesyt has been selected
for two reasons. First, it is the minimal length to assure theSIMO channel
identifiability with the so-called zero condition. Second,this length allows
one to simplify the subspace algorithm because in this case,the dimension
of the noise subspace reduces to one.

polynomialh(z) =
∑M

k=0 hkzk has neither real zeros nor
conjugated zeros.
Using the notion oflocal identifiability for which it has been
shown in [10] that a SIMO channel is identifiable if and only
if the different channels do not share common conjugate
reciprocal zeros, or equivalently hereh(z), h∗(z), h(1/z∗)
andh∗(1/z∗) do not share common zeros, we have proved
the following

Result 2: Under the conditions of Result 1, the impulse
responseh of a SISO channel is locally identifiable from the
circular and noncircular second-order statistics of its output
if and only if h(±1) 6= 0.
Remark: If this condition is satisfied, there is no other
channel in the neighborhood of a channelh, but pos-
sibly other channels outside this neighborhood satisfying
the constraints imposed by the second-order statistics of
its output. Consequently in practice, one must know the
whereabouts of the true channel in order to identify it under
this condition only. Such knowledge may come from some
prior information. A locally consistent estimator that gives
accurate estimate of a channel satisfyingh(±1) 6= 0 but
with real zeros or conjugated zeros will be exhibited in
Section IV. This is in contrast to the global identifiability, for
which we know that if a channel is identifiable, there is no
other channelh in the spaceCM+1 satisfying the constraints
imposed by the second-order statistics of its output.

B. MSK modulation

Now, we supposext is a MSK modulated signal defined
by xt+1

def
= ixtct where ct is a sequence of indepen-

dent BPSK symbols{−1, +1} with equal probabilities
where the original valuex0 remains unspecified in the
set {+1, +i,−1,−i}. This process may be equivalently
modelled asxt = itbtx0 wherebt is another sequence of
independent BPSK symbols{−1, +1} with equal probabil-
ities.

We note thatxt (and thusyt) is not stationary. But by
demodulating2 eachyt, we get

y′
t

def
= yti

−t =

M
∑

k=0

h′
kbt−k + n′

t, (3)

with h′
k

def
= x0hki−k, k = 0, ..., M and wheren′

t
def
= i−tnt

is still second order stationary. Gathering again the set of
nonzero circular and noncircular second-order statisticsof
y′

t in the covariance matrix of the extended vectorỹ′
t =

(y′T
t ,y′H

t )T we obtain becauseRb = I2M+1 in contrast to
Rx of (2) which is not necessarily equal toI2M+1 from the
assumptions

Rỹ′

def
= E{ỹ′

tỹ
′
H

t }

=

[

H(h′)
H(h′∗)

]

[

H(h′)H H(h′∗)H
]

+ σ2
nI2M+2.(4)

2In [4], this demodulation is performed on vectoryt and consequently
y′

t = yti
−t becomes stationary at the second order but noty′

t.
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Consequently, we can use the same approach as
for the BPSK modulation. Because

∑M
k=0 h′

kzk =

x0

∑M
k=0 hk(i−1z)k, we obtain the result below.

Result 3: With a MSK modulation and additive noise
satisfying the above assumptions, the impulse responseh of
a SISO channel is globally [resp. locally] identifiable from
the circular and noncircular second-order statistics of its de-
modulated output if the polynomialh(z) has neither purely
imaginary zeros nor paired zeros of the form(iz0, iz

∗
0),

z0 ∈ C [resp. if h(±i) 6= 0].

C. QPSK modulation

Now, we supposext is a QPSK modulated signal defined
as a sequence of i.i.d. r.v. taking their values in the set
{+1, +i,−1,−i} with equal probabilities and nownt is
Gaussian distributed and circular. Consequentlyyt is now
second-order circular. However, noting thatx2

t is a BPSK
modulation, a similar approach can still be used by squaring
the outputsyt. Indeed definey′

t
def
= y2

t and h′
k

def
= h2

k, k =
0, ..., M . Then, by using (i) the multi-linearity of moments
and cumulants [12] [13], (ii) relations between moments and
cumulants, (iii) properties specific to the QPSK alphabet,
namelyx4

t = 1, E{x2
t} = 0 andE{|x2

t |} = 1, and (iv) the
whiteness ofxt at order 4, we obtain the following second-
order statistics of the modified input,y′

t:

−ry′(ℓ) + 2r2
y(ℓ)

def
= −E{y′

ty
′∗
t−ℓ} + 2

[

E{yty
∗
t−ℓ}

]2

=

M
∑

k=ℓ

h′
kh′∗

k−ℓ

r′y′(ℓ)
def
= E{y′

ty
′
t−ℓ} =

M
∑

k=ℓ

h′
kh′

k−ℓ

for ℓ = 0, ..., M . Gathering the extended second-order
statisticsr′′y (l)

def
= −ry′(ℓ) + 2r2

y(ℓ) and r′y′(l) in an Her-
mitian 2× 2 block Toeplitz matrix, we obtain the extended
covariance matrix

Rỹ′ =

[

H(h′)
H(h′∗)

]

[

H(h′)H H(h′∗)H
]

. (5)

As a consequence, a structured covariance matrix has been
obtained, which is similar to that obtained in the SIMO
case, with two channels of impulse responsesh′ and h′∗.
Therefore the results (see e.g., [11]) concerning the identifi-
ability of SIMO channels can be applied as well. The range
space ofRỹ′ determines the channel coefficients ofh′ and
h′∗ up to a multiplicative constant if these channels do not
share any common zeros. This ambiguity can be reduced
by using the knowledge of the symbol alphabet. Returning
to h, each coefficient ofh is determined up to a sign
ambiguity, which may be cleared up using the successive
second-order statisticsE{yty

∗
t−l}, l = M, M−1, ..., ⌊M/2⌋.

Consequently, we obtain the following result:
Result 4: With a QPSK modulation and additive noise

satisfying the above assumptions, the impulse responseh

of a channel is globally [resp. locally] identifiable from

the second-order statistics of the squared output if the
polynomialh′(z) =

∑M
k=0 h2

kzk has neither real zeros nor
conjugated zeros [resp. ifh′(±1) 6= 0].

IV. A SYMPTOTIC PERFORMANCE

The above identifiability results naturally raise the im-
portant issue of performance analysis of algorithms based
on the second-order covarianceRỹ, and on the modified
second-order statisticsRỹ′ . In particular, it is essential to
evaluate the performance of algorithms identifying channels
whose impulse response approaches the conditions of non-
identifiability previously given.

Usually, the deterministic Cramer-Rao bound (CRB)
serves as a useful benchmark for unbiased estimators yielded
by identification algorithms. Because this CRB is neither
attainable for increasing SNR, nor for increasing the number
of symbols, this CRB is only a loose lower bound for the
variance of unbiased estimator, in contrast to the stochastic
CRB, which is attainable in the previous conditions. In the
present context, the distribution of(yt)t=1,..,T is a mixture
of a large number of Gaussian distributions and conse-
quently the stochastic CRB appears to be computationally
prohibitive. In these conditions, the notion of asymptotically
(in the number of measurements) minimum variance (AMV)
bound introduced by Porat and Friedlander [14], and Sto-
ica et al with their asymptotically best consistent (ABC)
estimator [15], are considered.

A. AMV bounds based on extended covariance matrices

We first note thath is identifiable fromRỹ or Rỹ′

except an intrinsic ambiguity, viz: a sign ambiguity for
BPSK, or a rotation ofπ/2 ambiguity for MSK and QPSK
modulations. Furthermore, the subspace-based algorithms
that are proposed estimateh up to a multiplicative constant.
To compare the asymptotic performance of these algorithms
to given AMV bounds based on various statistics,h must be
strictly identifiable from these statistics. Consequently, one
parameter ofh is fixed to a predefined value, say,h0 = 1
throughout Sections IV and V.

Let α = (θT ,ρT )T denote the real-valued un-
known parameters (containing the real and imagi-
nary parts of the complex parameters) of the ex-
tended covariance matricesRỹ or Rỹ′ , where θ

def
=

[ℜ(h1), ...,ℜ(hM ), Im(h1), ..., Im(hM )]T , and whereρ
collects the nuisance3 parameters for the BPSK and MSK
modulations. Depending on the a priori knowledge of the
inputs, ρ = σ2

n if the BPSK sequencext or the driv-
ing sequencebt for the MSK modulation are white, and
ρ = [rx(1).., rx(2M), σ2

n]T with rx(k)
def
= E{xtxt−k} for

correlated BPSK symbols. We note that if the conditions of
Section III are satisfiedα is identifiable fromRỹ or Rỹ′ .

These block Toeplitz matricesRỹ and Rỹ′ are tradi-
tionally consistently estimated fromT successive received

3Note that all the previous performance analyses (e.g., [10]) consider
that the nuisance parameters are known, and consequently give optimistic
AMV bounds.
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signals yt by replacing the various expectations by the
associated sample correlations:ry,T (ℓ)

def
= 1

T

∑T
t=1 yty

∗
t−ℓ,

r′y,T (ℓ)
def
= 1

T

∑T
t=1 ytyt−ℓ, ry′,T (ℓ)

def
= 1

T

∑T
t=1 y′

ty
′∗
t−ℓ and

r′y′,T (ℓ)
def
= 1

T

∑T
t=1 y′

ty
′
t−ℓ. In order to apply the AMV

bound [14], [15] to an arbitrary consistent extended second-
order algorithm based on the sample estimatesRỹ,T or
Rỹ′,T of Rỹ or Rỹ′ respectively, the involved statisticssT

must collect real-valued sample correlations and complex-
valued sample correlations and their conjugate [16]. For
example for BPSK modulations, we have:

sT = (ry,T (0), ry,T (1), ..., ry,T (M), r∗y,T (1), ..., r∗y,T (M),

r′y,T (0), ..., r′y,T (M), r′
∗
y,T (0), ..., r′

∗
y,T (M))T . (6)

Under these conditions, the asymptotic covarianceCovAlg
α

of an estimator ofα given by an arbitrary consistent
second-order algorithm based on these statisticssT is
bounded below by the real symmetric positive definite
matrix [SH(α)C−1

s
(α)S(α)]−1 where4 S(α)

def
= ds(α)

dα

with s(α) = limT→∞ sT and whereCs(α) is the circular
covariance5 of the asymptotic distribution ofsT whose
expression is given in Appendix A. Furthermore, there
exists a nonlinear least square algorithm (dubbed the AMV
algorithm [14]), for which the covariance of the asymptotic
distribution of the estimate ofα attains this lower bound.

For white BPSK sequences and white driving sequences
of MSK modulations,σ2

n is the unique nuisance param-
eter and ry(k) =

∑M
i=k hih

∗
i−k + δkσ2

n and r′y(k) =
∑M

i=k hihi−k for BPSK sequences. Consequentlys(α) is
structured ass(α) = Φ(θ) + σ2

ne1, wheree1 is the first
unit vector inR4M+3. This impliesS = [S1, e1], and the
matrix inversion lemma yields:

Cov
Alg
θ ≥ C

AMV(Rỹ)(1)

θ , (7)

with

C
AMV(Rỹ)(1)

θ

def
=

[

SH(α)C−1
s

(α)S(α)
]−1

(1:2M,1:2M)

=

[[

SH
1

eH
1

]

C−1
s

(α)[S1, e1]

]−1

(1:2M,1:2M)

=
(

SH
1 C−1/2

s
Π⊥

C
−1/2
s

e1
C−1/2

s
S1

)−1

,

where Π⊥
A

denotes the projector onto the orthogonal
complement of the columns ofA.

For the BPSK modulation with correlated symbols,
ry(k) =

∑M
i=0

∑M
j=0 hih

∗
jrx(k + j − i) + δkσ2

n

and r′y(k) =
∑M

i=0

∑M
j=0 hihjrx(k + j − i)

where rx(0) = 1. Consequently s(α) =
(ry(0), ry(1), ..., ry(M), r∗y(1), ..., r∗y(M), r′y(0), ..., r′y(M), r′

∗
y(0), ..., r′

∗
y(M))T

4Note that the local identifiability used in Result 2 is equivalent to that
the JacobianS is full column rank [10]. Whenh0 = 1, the number of
columns ofS is reduced by 2 w.r.t. the case of an arbitraryh and h

becomes locally identifiable for arbitrary channels.
5Note that the circular and the noncircular covariance matrices contain

the same terms [16].

is structured ass(α) = Ψ(θ)ρ + ψ(θ), which implies

S = [S1,Ψ] with S1
def
= ∂s(α)

∂θ
and the matrix inversion

lemma gives this time:

Cov
Alg
θ ≥ C

AMV(Rỹ)(1)

θ , (8)

with

C
AMV(Rỹ)(2)

θ

def
=

[

SH(α)C−1
s

(α)S(α)
]−1

(1:2M,1:2M)

=
(

SH
1 C−1/2

s
Π⊥

C
−1/2
s

Ψ
C−1/2

s
S1

)−1

.

We note that when the BPSK symbols are uncorrelated,

C
AMV(Rỹ)(1)

θ ≤ C
AMV(Rỹ)(2)

θ ,

where hereCAMV(Rỹ)(2)

θ is derived under the assumption
of uncorrelated symbols.

Lastly for the QPSK modulation, where there is no
nuisance parameter inRỹ′ , we obtain the lower bound

Cov
Alg
θ ≥ C

AMV(Rỹ′ )

θ , (9)

with
C

AMV(Rỹ′ )

θ = [SH(θ)C−1
s (θ)S(θ)]−1,

where Cs is here associated with the statisticssT =
[r′′y,T (0), ..., r′′y,T (M), r

′′∗
y,T (1), ..., r

′′∗
y,T (M), r′y′,T (0), ...,

r′y′,T (M), r
′∗
y′,T (0), ..., r

′∗
y′,T (M)]T where r′′y,T (k)

def
=

− 1
T

∑T
t=1 y′

ty
′∗
t−k + 2

[

1
T

∑T
t=1 yty

∗
t−k

]2

and r′y′,T (k)
def
=

1
T

∑T
t=1 y′

ty
′
t−k (see Section III-C), which is a consistant

estimate of s(θ) = [r′′y (0), ...r′′y (M), r
′′∗
y (1), ...r

′′∗
y (M),

r′y′(0), ..., r′y′(M), r
′∗
y′ (0), ..., r

′∗
y′(M)]T , whose expression

is derived in Appendix B.

B. AMV bounds based on orthogonal projectors

In order to assess the performance of subspace-based
algorithms built fromRỹ,T or Rỹ′,T , it is relevant to re-
place the previous statisticssT by the orthogonal projectors
Πỹ,T or Πỹ′,T onto the noise subspace ofRỹ,T or Rỹ′,T

respectively. In this case,sT = vec(Πỹ,T ) or vec(Πỹ′,T ),
consistent estimates ofΠỹ andΠỹ′ respectively which here
depends only onθ and are therefore denoted bys(θ).

The circular covariances of the asymptotic distribution of
vec(Πỹ,T ) andvec(Πỹ′,T ) are singular, but it is proved in
[17] that the AMV bound definition can be extended and is
given by

Cov
Alg
θ ≥ C

AMV(s)
θ = [SH(θ)C†

s
(θ)S(θ)]−1 (10)

where† denotes the Moore-Penrose inverse of the covari-
ance Cs of the asymptotic distribution ofvec(Πỹ,T ) or
vec(Π′

ỹ,T ) which are derived in Appendix C and where

S(θ)
def
= ds(θ)

dθ
.

Remark 1 Noting that the block Toeplitz matrixRỹ,T and
the sample covariance1T

∑T
t=1 ỹtỹ

H
t (which is not block

Toeplitz structured) have the same asymptotic Gaussian
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distribution [18], the circular covariance matrixCRỹ of the
asymptotic distribution ofRỹ,T can be derived from that of
1
T

∑T
t=1 ỹtỹ

H
t . Based on the linear structurẽH(h)xt + ñt

of the correlated datãyt, the robustness [19, Result 3]
property that states that the circular covariance of the
asymptotic distribution of the associated projection matrix
does not depend on the distribution ofxt but on the temporal
correlation of(xt)t=N applies. Usingỹ′

t = H̃(h′)xt + ñ′
t,

this property extends to the MSK case. This is in contrast
with Cs(θ), associated with the statisticsRỹ,T andRỹ′,T ,
which depend on the second and fourth-order terms ofxt.
Naturally for QPSK symbols,Cs(θ) depends on the second,
fourth, sixth and eighth-order terms.
Remark 2 Note that lower bounds (8), (7) and (9) associated
with arbitrary consistent algorithms based onRỹ or Rỹ′

satisfy, for the same a priori knowledge:

C
AMV(Rỹ)
θ ≤ C

AMV(Πỹ)
θ and C

AMV(Rỹ′ )

θ ≤ C
AMV(Πỹ′ )

θ

whereCAMV(Πỹ)
θ andC

AMV(Πỹ′ )

θ denote lower bound (10)
associated withΠỹ,T andΠỹ′,T respectively, because these
statistics are functions ofRỹ,T andRỹ′,T respectively.

C. Subspace-based algorithms

Because the structure of the covariance matricesRỹ and
Rỹ′ of (2) (4) and (5) are similar to those obtained in the
SIMO case, all the algorithms devised in this case can be
used in the present context. In the sequel by lack of place,
only the so-called least square (LS) and subspace (SS) will
be considered [20]. We note that (i) the LS and SS estimates
coincide in the two-channel case [20], and (ii) the noise
subspace is of dimension one.

For the BPSK modulation, any eigenvectorṽ associated
with the smallest eigenvalue of the block structured matrix
Rỹ =

[

× �

�
∗ ×∗

]

satisfiesṽ = (vT
1 ,vH

1 eiφ)T and from
[21]:

[

h

h∗

]

= c

[

v1

−v∗
1e

iφ

]

.

From now,v1 is constrained to have its first component
to be unity: h = v1 (c = 1, φ = π). Consequently,
the LS and SS estimates are given byhT = v1,T where
ṽT = (vT

1,T ,vH
1,T eiφT )T denotes the eigenvector associated

with the smallest eigenvalue of the block structured matrices
Rỹ,T =

[

× �

�
∗ ×∗

]

whose first component is unity.
The asymptotic performance of this algorithm can be

deduced from the asymptotic distribution of̃vT whose
circular covarianceCṽ is derived from the mapping6

Rỹ,T 7−→ ũT 7−→ ṽT where ũT denotes the eigenvector
associated with the smallest eigenvalue ofRỹ,T satisfying
the constraint̃uH

T ũ = 1 whereũ is an arbitrary unit norm
eigenvector ofRỹ associated with its smallest eigenvalue.

6In practice, the unique eigenvectorṽT is obtained fromRỹ,T through
an eigenvectorũT satisfying other constraints. For example, the SVD
function of MATLAB forces all eigenvectors to have a real first element
and a unit norm.

Using the standard perturbation theory [22, p. 162]

δũ = −S†Πỹδ(Rỹ)ũ + o(δRỹ)

with S
def
= H̃(h)H̃(h)H , we obtain by the chain rule and

the standard theorem of continuity (see e.g., [28, p. 122]):

Ch = Cv1 = DS†(ũT ⊗Πỹ)CRỹ(ũ∗ ⊗Πỹ)S
†DH , (11)

where D = 1
[ũ]1

[IM+1,OM+1][I2(M+1) −

[ṽ,O2(M+1),2M+1]] is the Jacobian matrix associated
with the mapping̃uT 7−→ ṽT 7−→ v1,T .

For the MSK and QPSK modulations, this analysis ex-
tends by replacingRỹ,T andhT by Rỹ′,T andh′

T respec-
tively, and appending the mappingh′

T 7−→ hT .

V. I LLUSTRATIVE EXAMPLES

Four experiments are considered to illustrate the perfor-
mance of the impulse response estimates and particularly
the robustness of estimators when the impulse response is
close to unidentifiable.

In Figs. 1 and 2, the channel is given byh(z) = (1 −
z−1
1 z)(1 − z−1

2 z) with z1 = 0.8eiα and z2 = 1.25eiπ/4

whereα varies from 0 to2π for T = 1000, SNR = ‖h‖2

σ2
n

=
15dB and 100 Monte Carlo runs. These figures exhibit for
independent BPSK and MSK inputs driven by independent
symbols:

• the theoretical AMV bound MSE(h) =
1
T Tr(C

AMV(Rỹ)
θ ) with the prior information of

independent symbols (denoted AMV1 bound) and
without any a priori information (denoted AMV2
bound);

• the theoretical AMV bound MSE(h) =
1
T Tr(C

AMV(Πỹ)
θ ) (denoted AMV3 bound);

• the theoretical asymptotic MSE (h) =
1
T Tr(Cov

LS/SS
θ ) given by the LS/SS algorithm;

• the actual (Monte Carlo) MSE given by the LS/SS
algorithm.

The following relation is satisfied for arbitraryα as noted
in Section IV

C
AMV(Rỹ)(1)

θ ≤ C
AMV(Rỹ)(2)

θ |ρ=(0,...,0,σ2
n)T

≤ C
AMV(Πỹ)
θ ≤ Cov

LS/SS
θ .

We note that the theoretical AMV boundCAMV(Rỹ)(2)

θ
is bounded when the zeroz1 approaches the real [resp.
imaginary] axis for the BPSK [resp. MSK] modulation
for which h becomes globally nonidentifiable but remains

locally identifiable. This is in contrast withCAMV(Rỹ)(1)

θ ,
C

AMV(Πỹ)
θ and Cov

LS/SS
θ which increase dramatically in

this case. The behavior of the two boundsAMV(Rỹ)
is explained byS = [S1, e1] in (7) which remains full
rank contrary toS = [S1,Ψ] in (8), which becomes rank
deficient. The behavior ofCAMV(Πỹ)

θ and Cov
LS/SS
θ is

explained by the pseudoinversesC#
s (θ) andS# in (10) and

(11) respectively, for whichH̃(h) becomes rank deficient.
This behavior of the LS/SS algorithm is interpreted by the
”noise eigenvector” that is mistaken for a ”signal eigen-
vector” when the channel is close to the non identifiability
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conditions. If the lengthL ≥ M +1 of the stacked observed
output samplesyt increases, the dimension2L− (2M + 1)
of the noise subspace increases and it is well known that
the performance improves (see e.g., [23] where Fig. 1
shows the two channel case with order two), but at an
expense of additive complexity. Furthermore, we note that
for arbitrary processing window lengthsL ≥ M + 1, only
the correlationsry(0), ..., ry(M) and r′y(0), ..., r′y(M) are
involved in the LS/SS algorithm for independent inputs
xt. Consequently, the AMV2 bound given if Fig. 1 keeps
on being a lower bound for the MSE of the impulse
response estimated by arbitrary second order algorithms
derived for L ≥ M + 1 samples of stacked observed
outputs. And we see from this figure that this AMV2 bound
is also very sensitive to the non identifiable conditions.
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Fig.1 For white BPSK inputs three AMV bounds, asymptotic theoretical
MSE(h) and (⋆) actual MSE(h), given by the LS/SS algorithm as a function
of the phaseα of a zero ofh.
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Fig. 2 For MSK inputs driven by white symbols 3 AMV bounds,
asymptotic theoretical MSE(h) and (⋆) actual MSE(h), given by the LS/SS
algorithm as a function of the phaseα of a zero ofh.

We now consider the influence of the correlation of
BPSK symbols on the performance of the identification of
h by using a differential coding for which the symbols
xt are generated fromxt = xt−1bt with bt is an i.i.d.
sequence whereP (bt = 1) = p and P (bt = −1) =

1 − p. In this casext is a zero mean correlated se-
quence for whichrx(k) = E{xtxt−k} = (2p − 1)k and
E{xtxt−kxt−lxt−m} = (2p − 1)k+m−l for 0 ≤ k ≤ l ≤ m
implying Cum(xt, xt−k, xt−l, xt−m) = −2(2p − 1)l+m−k

for 0 ≤ k ≤ l ≤ m. Incorporating these values in (14)
(15), Appendix A allows you to study the performance.
Fig. 3 exhibits for the channel used in the previous figure
with α = 4 radians, as functions of the probabilityp for
T = 1000 andSNR = 5dB:

• the theoretical AMV bound MSE(h) =
1
T Tr(C

AMV(Rỹ)
θ ) with the prior information of

differential coding (denoted AMV4 bound) and
without any a priori information (denoted AMV2
bound);

• the theoretical asymptotic MSE (h) =
1
T Tr(Cov

LS/SS
θ ) given by the LS/SS algorithm;

• the actual (Monte Carlo) MSE given by the LS/SS
algorithm.

We see from this figure7 that the different MSE are sensitive
to the probability p except for p ≈ 0.5 and degrade
rapidly for a strong correlation i.e.p ≈ 0, p ≈ 1.
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Fig. 3 For correlated BPSK symbols asymptotic, 2 AMV bounds,
asymptotic theoretical MSE(h) and (⋆) actual MSE(h), given by the LS/SS
algorithm as a function of the probabilityp.

To test the occurrence of an unidentifiable channel, we
consider now a random second-order FIR channel where
ℜ(h1), ℑ(h1), ℜ(h2) and ℜ(h2) are i.i.d. uniformly dis-
tributed in[−1, +1]. For each realization of such a channel,
the asymptotic theoretical MSE(h) = 1

T Tr(Cov
LS/SS
θ ) is

computed with the associated matched SNR. Fig.4 exhibits
the empirical distribution function of the random variable
MSE(h) from 1000 realizations forT = 1000. From this fig-
ure, we see for example thatP{MSE(h) < 3 10−2} = 0.5,
for SNR = 15dB. Comparing this median with the different
MSE given by the LS/SS algorithm for the specific channel
of Fig. 1 for this same SNR, we see that this specific channel
is representative enough. Consequently, channels close to
unidentifiable are not uncommon.

7We note that the different MSE are symmetric with respect top = 0.5.



TO APPEAR IN: VOL. 57, NO. 1, JANUARY 2009 79

Unfortunately for more realistic random channels, the em-
pirical distribution function of the random variable MSE(h)
is much worse. For example, for Clarke filters in the typical
urban mode, where each generated channel is specular and
contains six paths, where the transmit filter is a raised cosine
with a rolloff of 0.1, and where delays and attenuation
standard deviations are given in [24] according to the
ETSI norm, the probability of a high asymptotic theoretical
MSE(h) is much larger than for the channels of Fig. 4.
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Fig. 4 For white BPSK symbols, empirical distribution function ofthe
random variable MSE(h) for four values of the SNR.

In the last experiment, we consider the channel given by

h(z) = 1 − z
√

z−1
1 + z−1

2 + z2
√

z−1
1 z−1

2 (where the real
part of the square roots are positive) associated withh′(z) =
(1− z−1

1 z)(1− z−1
2 z) with z1 = 0.8eiα andz2 = 1.25eiπ/4

where α varies from 0 to2π for T = 100000, SNR =
20dB and 100 Monte Carlo runs. This figure exhibits for
independent QPSK symbols:

• the theoretical AMV bound MSE(h) =
1
T Tr(C

AMV(Rỹ′ )

θ ) based on the statistics used in
the LS/SS algorithm;

• the theoretical asymptotic MSE (h) =
1
T Tr(Cov

LS/SS
θ ) given by the LS/SS algorithm;

• the theoretical asymptotic MSE(h) = 1
T Tr(Cov

Ckq
θ )

given by the so-calledC(k, q) formula of Giannakis
[27], [2] (h(k, T ) = cy,T (0, k, 2)/cy,T (0, 0, 2)
where cy,T (t1, t2, t3) denotes the estimated
cumulant associated with the sample moment
1
T

∑T
t=1 ytyt+t1yt+t2yt+t3 ;

• the actual (Monte Carlo) MSE given by the LS/SS
algorithm;

• the actual (Monte Carlo) MSE given by theC(k, q)
formula of Giannakis [27], [2].

We see from this figure that the AMV bound outper-
forms by far the LS/SS algorithm, and the latter is out-
performed in a large domain ofα by the C(k, q) formula

of Giannakis8. Next, we note that these algorithms require
very large data samples for an effective estimation (here
T = 100000). Furthermore whenh becomes nonidenti-
fiable, i.e. α approaches 0 orπ, the performance of the
LS/SS algorithms degrades in contrast to those of the
C(k, q) formula of Giannakis. Finally, we note that the
theoretical and actual MSE’s of the LS/SS present some
discontinuities in the neighborhood ofα = 3π

4 for which
the real part ofh2 is zero, implying some artifacts in
the derivation of the theoretical asymptotic MSE given
by the LS/SS algorithm and large errors in the estimates.
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Fig. 5 For white QPSK symbols, AMV bound, asymptotic theoretical
MSE(h) and actual MSE(h) given by the LS/SS and theC(k, q) algorithms
as a function of the phaseα of a zero ofh′.

VI. CONCLUSION

In this paper, the problem of blindly estimating FIR
SISO channels has been considered, when the channel is
excited by discrete inputs. Identifiability has been stated
from second order statistics of transformed data. One may
say that the knowledge of the alphabet has induced a form
of diversity. Identifiability conditions have been derived
and limitations have been pointed out: some particular
channels are not identifiable. Theoretical performance issues
have been addressed in order to evaluate the robustness of
standard subspace-based estimators with respect to these
identifiability conditions, as well as the performance of
the so-calledC(k, q)-algorithm [27], [2]. More precisely,
it has been shown that the performance of alphabet-based
algorithms seriously degrades in the neighborhood of non-
identifiable channels, implying that these approaches are
unapplicable in practice. On the other hand, the HOS-
based algorithms not based on subspace approaches, as the
C(k, q)-algorithm which does not utilize noncircularity, do
not present difficult identifiability conditions and conse-
quently are much more robust.

8 Of course, this algorithm may be outperformed by other HOS-
algorithms that use these statistics more efficiently. ThisC(k, q) algorithm
has nevertheless been selected simply to reveal the lack of robustness of
the standard subspace alphabet-based estimators.
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APPENDIX

Appendix A: derivation of Cs(α) associated with the
BPSK and MSK modulation

To derive the expression of the circular covariance of the
asymptotic distribution ofsT , we number the channelsh
and h∗ by h(1) and h(2) respectively and the associated
output byy(1)

t andy
(2)
t . Consequently the terms ofCs(α) =

limT→∞ TE{(sT − s(α))(sT − s(α))H} are constituted by
the terms

lim
T→∞

TE{(ri,j,T (k)−ri,j(k))((ri′,j′,T (l)−ri′,j′ (l))} (12)

for k = 0, ..., M , i ≤ j, l = 0, ..., M , i′ ≤ j′ and
k = 1, ..., M , i > j, l = 1, ..., M , i′ > j′, i, j, i′, j′ =

1, 2 to eliminate redundancies, in whichri,j,T (k)
def
=

1
T

∑T
t=1 y

(i)
t y

(j)
t−k andri,j(k)

def
= E{y

(i)
t y

(j)
t−k} for the BPSK

modulation. Limit (12) deduced from the Bartlett formula
(see e.g., [25]) is given by

M
∑

n=−M

ri,i′ (n)rj,j′ (n + l − k) + ri,j′ (n + l)rj,i′(n − k)

+Cum(y(i)
n , y

(j)
n−k, y

(i′)
0 , y

(j′)
−l ) (13)

with

ri,j(k) =

M
∑

l=k

h
(i)
l h

(j)
l−k + σ2

nδkδi−1δj−2

and

Cum(y(i)
n , y

(j)
n−k, y

(i′)
0 , y

(j′)
−l ) = κ4(x)

M
∑

t=0

h
(i)
t+nh

(j)
t+n−kh

(i′)
t h

(j′)
t−l

whereκ4(x)
def
= E{x4

t} − 3E{x2
t} = −2 in the white case

and with

ri,j(k) =

M
∑

l=0

M
∑

l′=0

h
(i)
l h

(j)
l′ rx(k + l′ − l) + σ2

nδkδi−1δj−2

(14)
and

Cum(y(i)
n , y

(j)
n−k, y

(i′)
0 , y

(j′)
−l ) =

M
∑

t1=0

M
∑

t2=0

M
∑

t3=0

M
∑

t4=0

Cum(xn−t1 , xn−k−t2 , x−t3 , x−l−t4)

h
(i)
t1 h

(j)
t2 h

(i′)
t3 h

(j′)
t4 (15)

in the general correlated case.
The expression of the circular covariance of the

asymptotic distribution ofsT associated with the MSK
modulation driven by white symbols follows the same lines
as the white BPSK case replacingyt and ht by y′

t = and
h′

t respectively according to (3).

Appendix B: derivation of Cs(θ) associated with the
QPSK modulation

First, we note that the statistics sT is
a simple function of the statistics rT

def
=

[ry,T (0), ...ry,T (M), r∗y,T (1), ...r∗y,T (M), ry,T (0), ...ry,T (M),

r∗y,T (1), ...r∗y,T (M), r′y′,T (0), ..., r′y′,T (M), r
′∗
y′,T (0),

..., r
′∗
y′,T (M)]T . Consequently, using the standard theorem

of continuity (see e.g., [28]) on regular functions of asymp-
totically Gaussian statistics,Cs(α) is derived fromCr(α)
by

Cs(θ) =
∂s

∂rT
Cr(α)

∂sH

∂rT
.

Then the different terms ofCr(α) = limT→∞ TE{(rT −
r(α))(rT − r(α))H} similar to terms (12) are given (see
e.g., [26, rel.10.5.2]) by the following finite limits:

∑

t

(

E{y
(i1)
0 y

(i2)
0 y

(i3)
k y

(i4)
k y

(i5)
t y

(i6)
t y

(i7)
t+l y

(i8)
t+l }

− E{y
(i1)
0 y

(i2)
0 y

(i3)
k y

(i4)
k }E{y

(i5)
0 y

(i6)
0 y

(i7)
l y

(i8)
l }

)

,
∑

t

(

E{y
(i1)
0 y

(i2)
k y

(i3)
l y

(i4)
t y

(i5)
t+my

(i6)
t+n}

− E{y
(i1)
0 y

(i2)
k y

(i3)
l }E{y

(i4)
0 y(i5)

m y(i6)
n }

)

,
∑

t

(

E{y
(i1)
0 y

(i2)
k y

(i3)
t y

(i4)
t+l }

− E{y
(i1)
0 y

(i2)
k }E{y

(i3)
0 y

(i4)
l }

)

where the exponentsik take values 1 or 2. The last sum
reduces to (13) using the Bartlett formula but the first two
sums are much more intricate. We could use the extended
Bartlett formulas derived in [25] in the case of infinite sums
(ARMA models), but here because all the sums are finite,
we use a specific symbolic calculus akin to a high-level
language to automatically generate the expressions of these
sums. This calculus usesy(i)

t =
∑M

k=0 h
(i)
k xt−k + n

(i)
t ,

the circularity of nt with E{|n2p
t |} = p ! σ2

n and the
following specific properties of the QPSK alphabet, namely

E{(xt)
p(x∗

t )
q} =

{

1 for|p − q| = 0 ≡ 4
0 elsewhere

.

Appendix C: derivation of the covariance of the asymp-
totic distribution of vec(Πỹ,T ) or vec(Πỹ′,T )

First, noting that the Hermitian block Toeplitz matrix
Rỹ,T is built from its first column and row constituted by
the statisticssT given by (6), the circular covarianceCRỹ of
the asymptotic distribution ofRỹ,T is deduced fromCs(θ)
given in Appendix A by

CRỹ =
dvec(Rỹ)

dsT
Cs(θ)

dvec(Rỹ)T

dsT
.

Using the standard perturbation result for orthogonal pro-
jectors [30] (see also [29]) applied toΠỹ associated with
the noise subspace ofRỹ

δ(Πỹ) = −Πỹδ(Rỹ)S† − S†δ(Rỹ)Πỹ + o (δ(Rỹ)) (16)

with S
def
= H̃(h)RxH̃(h)H , the asymptotic behaviors of

vec(Πỹ,T ) and Rỹ,T are directly related. The standard
theorem (see e.g., [28, p. 122]) on regular functions of
asymptotically Gaussian statistics applies and the circular
covariance matrix of the asymptotically Gaussian distribu-
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tion of vec(Πỹ,T ) can be written as

CΠỹ =
(

(Π∗
ỹ ⊗ S†) + (S†∗ ⊗ Πỹ)

)

CRỹ

(

(Π∗
ỹ ⊗ S†) + (S†∗ ⊗ Πỹ)

)

.

For the case of MSK and QPSK symbols,CΠỹ′
is deduced

in the same way from the circular covariance matrixCs(θ)
of the asymptotic distribution of the associated second-order
statistics of transformed data whereS = H̃(h′)H̃(h′)H .

REFERENCES

[1] J. K. Tugnait, L. Tong, and Z. Ding, “Single-user channelestimation
and equalization,”IEEE Signal Processing Magazine, vol. 17, no. 3,
pp. 17–28, May 2000.

[2] G. Giannakis, Y. Inouye, and J. Mendel, “Cumulant-basedidentifica-
tion of multichannel moving-average models,”IEEE Trans. Automatic
Control, vol. 34, no. 7, pp. 783–787, Jul. 1989.

[3] E. Moulines et al., “Subspace methods for the blind identification of
multichannel FIR filters,”IEEE Trans. Sig. Proc., vol. 43, no. 2, pp.
516–525, Feb. 1995.

[4] M. Kristensson, B. Ottersten, and D. Slock, “Blind subspace iden-
tification of a BPSK communication channel,” inAsilomar, Pacific
Grove, CA, , pp. 828–832, Nov. 1997.

[5] D. Darsena, G. Gelli, L. Paura, F. Verde, “Subspace-based blind
channel identification of SISO-FIR systems with improper random
inputs,” Signal Processing, vol. 84, pp. 2021-2039, 2004.

[6] Z. Ding, G. Li, “Single-channel blind equalization for GSM cellular
systems,”IEEE J. on Sel. A. in Comm., vol. 16, no. 8, Oct. 1998.

[7] P. Comon, “Contrasts, Independent Component Analysis,and Blind
Deconvolution,” Int. Journal Adapt. Control Sig. Proc., Wiley, vol.
18, no. 3, pp. 225–243, April 2004.

[8] P. Chevalier and F. Pipon, “New Insights into optimal widely linear
array receivers for the demodulation of BPSK, MSK and GMSK
signals corrupted by noncircular interferences - Application to SAIC,”
IEEE Trans. Sig. Proc., Vol 54, no. 3, pp. 870-883, March 2006.

[9] G.B. Giannakis and S.D. Halford, “Performance analysisof blind
equalizers based on cyclostationarity statistics,”in Proc. 26th Conf.
Inform. Sci. Syst., Princeton, pp. 711–716, March 1994.

[10] H.H. Zeng and L. Tong, “Blind channel estimation using the second
order statistics: asymptotic performance and limitations,” IEEE Trans.
Sig. Proc., vol. 45, no. 8, pp. 2060–20701, Aug. 1997.

[11] K. Abed-Meraim et al., “On subspace methods for blind identification
of SIMO FIR systems,”IEEE Trans. Sig. Proc., vol. 45, no. 1, pp.
42–55, Jan. 1997, Special issue on communications.

[12] M. Kendall and A. Stuart, The Advanced Theory of Statistics,
Distribution Theory, vol. 1, C. Griffin, 1977.

[13] P. McCullagh,Tensor Methods in Statistics, Monographs on Statistics
and Applied Probability. Chapman and Hall, 1987.

[14] B. Porat and B. Friedlander, “Asymptotic accuracy of ARMA
parameter estimation methods based on sample covariances,” Proc.7th
IFAC/IFORS Symposium on Identification and System Parameter
Estimation, York, 1985.

[15] P. Stoica, B. Friedlander and T. Söderström, “An approximate
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