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A generalized preimage for the digital analytialhyperplane reognitionM. Dexet a,∗

aLIRMM - CNRS, 161 rue Ada, 34392 Montpellier Cedex 5, FraneE. Andres b

bSIC, Bât. SP2MI, bvd Marie et Pierre Curie, BP 30179, 86962 FuturosopeChasseneuil Cedex, FraneAbstratA new digital hyperplane reognition method is presented. This algorithm allows thereognition of digital analytial hyperplanes, suh as Naive, Standard and Superoverones. The priniple is to inrementally ompute in a dual spae the generalizedpreimage of the ball set orresponding to a given hypervoxel set aording to thehosen digitization model. Eah point in this preimage orresponds to a Eulideanhyperplane the digitization of whih ontains all given hypervoxels. An advantageof the generalized preimage is that it does not depend on the hypervoxel loations.Moreover, the proposed reognition algorithm does not require the hypervoxels tobe onneted or ordered in any way.Key words: Digital geometry, hyperplane reognition, generalized preimage
1 IntrodutionIn digital geometry, objets are usually onsidered as digital point or hyper-voxel (pixels in 2D and voxels in 3D) sets. Indeed, this is the strutural de-omposition mostly used to store digital information. A drawbak of this kindof representation is that it does not provide any information on the shapeor topology of digital objets. Another way of obtaining the desription of
∗ Corresponding author.Email addresses: Martine.Dexet�lirmm.fr (M. Dexet),andres�si.univ-poitiers.fr (E. Andres).Preprint submitted to Elsevier Siene 30 April 2007



digital objets is the hyperplane deomposition. This proess, alled digitalhyperplane reognition, onsists of determining if a digital point set forms ahyperplane segment, that is a hyperplane bounded region.The reognition problem has so far mainly been studied in dimensions 2 and 3(see [1℄ for an overview on 2D reognition algorithms), with various approahessuh as linear programming tehniques [2,3℄, omputational geometry meth-ods [4�6℄ or preimage omputation based algorithms [7,8℄. Very few papershandle the problem in arbitrary dimensions [9,10℄. Computational and ef-�ieny aspets of digital hyperplane reognition problems are investigatedin [11℄.The present paper is an extension of [8℄ in whih we propose a generalizedapproah for the reognition of digital analytial hyperplanes suh as Naive,Standard and Superover hyperplanes using generalized preimages. Informally,the preimage [12℄ of a hypervoxel set onsists of all Eulidean hyperplanesthe digitization of whih ontains the given hypervoxels. More preisely, thepreimage of a hypervoxel set is omputed in a dual spae where eah pointis mapped onto a Eulidean hyperplane. Preimage omputation algorithmsdepending on the hypervoxel loations have been proposed in dimensions 2and 3 [7,13℄.In this work, we perform the reognition of digital analytial hyperplanesby omputing the set of Eulidean hyperplanes whih interset the ball setassoiated to a given hypervoxel set aording to the hosen digitizationmodel.In order to do that, we inrementally ompute the generalized preimage ofthe balls orresponding to the hypervoxels. This preimage is de�ned in anydimension and is independent of the hypervoxel onnetivity and loation.More preisely, it is omputed from the dual of the ball orresponding to eahhypervoxel. Indeed, eah point in this dual objet orresponds to a Eulideanhyperplane whih uts the ball orresponding to the hypervoxel. Hene, amajor part of this paper is devoted to determining the formulas desribingthe dual of a polytope in order to ompute the one orresponding to theballs assoiated to an analytial digitization model. First, a positive and anegative extrusion are de�ned. Then, we show that the dual of a polytopean be omputed from the extrusions of the dual of its verties. Finally, theintersetion of all ball duals forms the generalized preimage. The reognitionproess onsists therefore simply in omputing the generalized preimage ofa ball set orresponding to a hypervoxel set (i.e. omputing the dual of aball set orresponding to a hypervoxel set). More preisely, we start with thedual of a ball orresponding to a hypervoxel and add the duals of the ballsorresponding to the other hypervoxels as long as the generalized preimage isnot empty.In Setion 2, we introdue some notations and de�nitions as well as the Naive,2



Standard and Superover analytial hyperplane desriptions. In Setion 3,we determine the dual of a polytope and introdue the notion of generalizedpreimage of a polytope set. Then, we explain in Setion 4 how our digitalanalytial hyperplane reognition algorithm works. We espeially fous onthe Naive, Standard and Superover hyperplane ases. Conlusion and futureworks are proposed in Setion 5.2 PreliminariesIn this setion, we �rst propose some notations and give the de�nitions of ahypervoxel and a ball. Then, we present four digitization analytial modelsonsidered in this work: the Naive and losed Naive models, the Standardmodel and the Superover model.2.1 Notations and de�nitionsLet n ∈ Z, n > 0. In the following, we will denote by En the lassial
n-dimensional Eulidean spae, and by J1, kK the subset of integer values
{1, . . . , k} ⊂ Z. Moreover, a point with integer-valued oordinates p ∈ Z

nwill be alled a digital point.We de�ne an α-hyperube, α ∈ R, as follows:De�nition 1 (Hypervoxel) The hypervoxel (or n-dimensional ube) en-tered on the digital point (c1, . . . , cn) ∈ Zn, is the set of points (x1, . . . , xn) ∈
Rn verifying

∀i ∈ J1, nK, ci −
1

2
≤ xi ≤ ci +

1

2Hypervoxels in dimensions 2 and 3 are respetively alled pixels and voxels.De�nition 2 (Ball) Let d be a distane in R
n. Then, the ball Bd(c, r) withenter c ∈ Rn and radius r ∈ R is de�ned by

Bd(c, r) = {x ∈ R
n|d(c, x) ≤ r}2.2 Disrete analytial modelsIn this work, we study four digital analytial models: the Naive model [14,15℄,the losed Naive model [16℄, the Standard model [17℄ and the Superover3



model [18,19℄. These models are de�ned in any dimension and provide a digi-tization of Eulidean objets. Moreover, a distane and a ball is assoiated toeah model.In this setion, we give for eah model the de�nition of the digital hyperplane(or n-dimensional planes) and desribe preisely the digitization of a Eulideanhyperplane aording to the distane and the ball assoiated to the model.2.2.1 The Naive models [14,16℄Naive and losed Naive hyperplanes are de�ned analytially as follows (see Fig-ure 1):De�nition 3 (Naive Hyperplane [14℄) The Naive hyperplane with param-eters (c0, . . . , cn) ∈ Rn+1 is the set of points (x1, . . . , xn) ∈ Zn verifying
−

max1≤i≤n |ci|

2
≤ c0 +

n
∑

i=1

cixi <
max1≤i≤n |ci|

2where c1 ≥ 0, or c1 = 0 and c2 ≥ 0, or . . . , or c1 = c2 = . . . = cn−1 = 0and cn ≥ 0.De�nition 4 (Closed Naive Hyperplane [16℄) The losed Naive hyper-plane with parameters (c0, . . . , cn) ∈ Rn+1 is the set of points (x1, . . . , xn) ∈ Znverifying
−

max1≤i≤n |ci|

2
≤ c0 +

n
∑

i=1

cixi ≤
max1≤i≤n |ci|

2

(a) (b)Fig. 1. Examples of Naive and losed Naive hyperplanes in dimension 2: (a) Naiveline, (b) Closed Naive line.Remark 5 Let p = (x1, . . . , xn) ∈ Rn and p′ = (x′
1, . . . , x

′
n) ∈ Rn. The dis-tane assoiated to the Naive models is the distane d1 de�ned by

d1(p, p
′) =

n
∑

i=1

|xi − x′
i|and the orresponding ball is Bd1

(c, 1
2
), c ∈ Zn. For instane in dimension 2,the ball Bd1

(c, 1
2
) is a regular rhombus.4



Hene, the losed Naive digitization of a Eulidean hyperplane also onsists ofthe enters of all balls whih are interseted by the hyperplane (see Figure 2b),whereas the Naive one onsists of the enters of all balls ut by the hyperplaneexept when a ball vertex is interseted (see Figure 2a). In this ase, severalhypervoxels adjaent to the orresponding hypervoxel do not belong to theNaive digitization. This is due to the fat that one inequality in De�nition 4is strit.
(a) (b)Fig. 2. Illustration of the balls assoiated to the Naive models: (a) Balls assoiatedto a Naive line, (b) Balls assoiated to a losed Naive line.Proposition 6 Let B be a ball Bd1

(c′, 1
2
), c′ ∈ Zn, and let H be a Eulideanhyperplane with equation c0 +

∑n
i=1 cixi = 0 that passes through a vertex v =

(v1, . . . , vn) of B. Moreover, we assume that the �rst ci 6= 0 veri�es ci > 0.Let j ∈ J1, nK suh that |cj| = maxn
i=1 |ci|. Then, if cj > 0 (resp. cj < 0),the digital point (v1, . . . , vj−1, vj −
1
2
, vj+1, . . . , vn) (resp. (v1, . . . , vj−1, vj +

1
2
, vj+1, . . . , vn)) belongs to the Naive digitization of H.PROOF. By de�nition, a digital point p = (x1, . . . , xn) belonging to a Naivehyperplane veri�es the following inequalities:

−
max1≤i≤n |ci|

2
≤ c0 +

n
∑

i=1

cixi <
max1≤i≤n |ci|

2Sine |cj| = maxn
i=1 |ci|, we want to determine k ∈ {−1, 1} suh that
−
|cj|

2
= c0 +

n
∑

i=1,i6=j

civi + cj(vj +
1

2
k)Then, sine c0 +

∑n
i=1 civi = 0, we have

−
|cj |

2
=

1

2
kcj , k ∈ {−1, 1}Hene, if cj > 0, we have 5



−
cj

2
=

1

2
kcj, k ∈ {−1, 1}and so we dedue that k = −1. Else, if cj > 0, we have

cj

2
=

1

2
kcj, k ∈ {−1, 1}and then we dedue that k = 1. �

Proposition 6 is illustrated in Figure 3.

Fig. 3. Digital points belonging to the Naive digitization of a Eulidean line aordingto the slope of the line (in dark grey).2.2.2 The Standard [17℄ and Superover [18,19℄ modelsStandard and Superover hyperplanes are de�ned analytially as follows(see Figure 4):De�nition 7 (Standard Hyperplane [17℄) The Standard hyperplane withparameters (c0, . . . , cn) ∈ Rn+1 is the set of points (x1, . . . , xn) ∈ Zn verifying
−

∑n
i=1 |ci|

2
≤ c0 +

n
∑

i=1

cixi <

∑n
i=1 |ci|

2where c1 ≥ 0, or c1 = 0 and c2 ≥ 0, or . . . , or c1 = c2 = . . . = cn−1 = 0and cn ≥ 0.De�nition 8 (Superover Hyperplane [19℄) The Superover hyperplanewith parameters (c0, . . . , cn) ∈ Rn+1 is the set of points (x1, . . . , xn) ∈ Zn6



verifying
−

∑n
i=1 |ci|

2
≤ c0 +

n
∑

i=1

cixi ≤

∑n
i=1 |ci|

2

(a) (b)Fig. 4. Examples of Standard and Superover hyperplanes in dimension 2: (a) Stan-dard line, (b) Superover line.Remark 9 Let p = (x1, . . . , xn) ∈ Rn and p′ = (x′
1, . . . , x

′
n) ∈ Rn. The dis-tane assoiated to the Standard and Superover models is the distane d∞de�ned by

d∞(p, p′) = sup
i∈J1,nK

|xi − x′
i|and the orresponding ball is Bd∞(c, 1), c ∈ Zn. For instane in dimension 2,the ball Bd∞(c, 1) is a pixel.Hene, the Superover digitization of a Eulidean hyperplane also onsistsof the enters of all hypervoxels whih are interseted by the hyperplane (seeFigure 4b), whereas the Standard one onsists of the enters of all hypervoxelsut by the hyperplane exept when a hypervoxel vertex is interseted (seeFigure 4a). In this ase, several hypervoxels adjaent to this vertex do notbelong to the Standard digitization. This is due to the fat that one inequalityin De�nition 7 is strit.Proposition 10 Let B be a ball Bd∞(c′, 1), c′ ∈ Zn, and let H be a Eulideanhyperplan with equation c0 +

∑n
i=1 cixi = 0 that passes through a vertex v =

(v1, . . . , vn) of B. Moreover, we assume that the �rst ci 6= 0 veri�es ci > 0.Then, eah digital point (x1, . . . , xn) belonging to the standard digitization of
H veri�es for all i ∈ J1, nK:
• xi = vi + 1

2
if ci < 0,

• xi = vi −
1
2
if ci > 0,

• xi = vi + 1
2
or xi = vi −

1
2
if ci = 0.7



PROOF. By de�nition, a digital point p = (x1, . . . , xn) belonging to a Stan-dard hyperplane veri�es the following inequalities:
−

∑n
i=1 |ci|

2
≤ c0 +

n
∑

i=1

cixi <

∑n
i=1 |ci|

2We want to determine ki ∈ {−1, 1}, i ∈ J1, nK, suh that
−

∑n
i=1 |ci|

2
= c0 +

n
∑

i=1

ci(vi +
1

2
ki)that is, sine c0 +

∑n
i=1 civi = 0,

−

∑n
i=1 |ci|

2
=

n
∑

i=1

1

2
kiciHene, we have

n
∑

i=1

(|ci| − kici) = 0and then
n

∑

i=1

(k′
ici − kici) =

n
∑

i=1

(k′
i − ki)ci = 0with k′

i ∈ −1, 1 and k′
ici ≥ 0However, sine ∀i ∈ J1, nK, (k′

i − ki)ci ≥ 0 we dedue that
i ∈ J1, nK, ki = k′

ithat is
• if ci > 0 then ki = −1,
• if ci < 0 then ki = 1,
• if ci = 0 then ki = −1 or ki = 1.

�

Proposition 10 is illustrated in Figure 11.8



Fig. 5. Digital points belonging to the Naive digitization of a Eulidean line aordingto the slope of the line (in dark grey).3 Dual of a polytopeIn order to de�ne the dual of a polytope, we use a dual transformation similarto the well known Hough transform whih is an e�ient tool usually used inimage proessing to reognize parametri shapes in an image. A review onexisting variations of this method is presented in [20℄.In the two following setions, we �rst de�ne the parameter spae in whihour dual transformation is performed as well as the positive and negativeextrusions of a point. Then, we desribe the dual of a polytope and de�ne thenotion of generalized preimage, whih is the basis of the reognition algorithmpresented in Setion 4.3.1 De�nitions and propertiesIn this work, we use the n-dimensional parameter spae Pn ⊂ Rn, and de�nethe two funtions DE : En → Pn and DP : Pn → En by:
DE(x1, . . . , xn) =

{

(y1, . . . , yn) ∈ Pn|yn = −
n−1
∑

i=1

xiyi + xn

}

DP(y1, . . . , yn) =

{

(x1, . . . , xn) ∈ En|xn =
n−1
∑

i=1

yixi + yn

}Informally, eah point in En (resp. Pn) is transformed by DE (resp. DP) into ahyperplane in Pn (resp. En). In the rest of this paper, we will generially write
Dual for DE or DP .De�nition 11 (Dual objet) Let O be a subset of Rn. Then,

Dual(O) =
⋃

p∈O

Dual(p)is alled the dual of O. 9



Proposition 12 Let O1 and O2 be two subsets of Rn suh that O1 ⊆ O2.Then
Dual(O1) ⊆ Dual(O2)PROOF. Sine O1 ⊆ O2, we dedue that Dual(O2) =

⋃

p∈O2
Dual(p) =

[

⋃

p∈O1
Dual(p)

]

∪
[

⋃

p∈O2\O1
Dual(p)

]. Then, Dual(O1) ⊆ Dual(O2). �Moreover, the following properties an be dedued from our de�nition of theduality.Proposition 13 Let O1 and O2 be two subsets of Rn. Then,
Dual(O1 ∪ O2) = Dual(O1) ∪Dual(O2)PROOF. Dual(O1 ∪ O2) =

⋃

p∈O1∪O2
Dual(p) =

[

⋃

p∈O1
Dual(p)

]

∪
[

⋃

p∈O2
Dual(p)

]

= Dual(O1) ∪Dual(O2). �Proposition 14 Let O1 and O2 be two subsets of Rn. Then,
Dual(O1 ∩ O2) ⊆ Dual(O1) ∩Dual(O2)

PROOF. Sine O1 ∩ O2 ⊆ O1 and O1 ∩ O2 ⊆ O2, we deduethat Dual(O1 ∩ O2) ⊆ Dual(O1) and Dual(O1 ∩ O2) ⊆ Dual(O2). Thus,
Dual(O1 ∩O2) ⊆ Dual(O1) ∩Dual(O2). �Remark 15 Let p ∈ Rn be a point. The dual of eah point whih lies in
Dual(p) is a hyperplane whih passes through p.Moreover, in order to desribe the dual of a polytope, we need to de�ne thepositive and negative extrusions of a point as follows:De�nition 16 (Positive and Negative Extrusions) Let
p = (x1, . . . , xn) ∈ Rn be a point. The positive extrusion of p is de�nedby:

p+ = {p′ = (x′
1, . . . , x

′
n) ∈ Rn|∀i ∈ J1, n− 1K, xi = x′

i and xn ≤ x′
n}In the same way, the negative extrusion of p is de�ned by:10



p− = {p′ = (x′
1, . . . , x

′
n) ∈ Rn|∀i ∈ J1, n− 1K, xi = x′

i and xn ≥ x′
n}Let O1 and O2 be two subsets of Rn suh that O1 ⊆ O2. Then, O+

1 ⊆ O+
2and O−

1 ⊆ O−
2 . Moreover, the following properties an be dedued from De�-nition 16.Proposition 17 Let O1 and O2 be two subsets of Rn. Then,

(O1 ∪O2)
+ = O+

1 ∪ O+
2In the same way, (O1 ∪O2)

− = O−
1 ∪O−

2 .PROOF. (O1 ∪ O2)
+ =

⋃

p∈O1∪O2
p+ =

[

⋃

p∈O1
p+

]

∪
[

⋃

p∈O2
p+

]

= O+
1 ∪ O+

2 .The proof of (O1 ∪ O2)
− = O−

1 ∪ O−
2 is obtained in the same way. �Proposition 18 Let p ∈ Rn be a point. Then,

Dual(p)+ = Dual(p+)In the same way, Dual(p)− = Dual(p−).PROOF. Let us onsider p = (x1, . . . , xn) ∈ En. Then, Dual(p+) = DE(p
+) =

⋃

p′∈p+

Dual(p′) =
⋃

p′=(x′
1
,...,x′

n)∈p+

{(y1, . . . , yn) ∈ Pn|yn = −
n−1
∑

i=1

x′
iyi + x′

n} =

{(y1, . . . , yn) ∈ Pn|yn ≥ −
n−1
∑

i=1

xiyi + xn} =
⋃

p′∈DE (p)

p′+ = DE(p)+ = Dual(p)+.The proof of Dual(p)− = Dual(p−) an be obtained in the same way. �

Proposition 18 is illustrated in Figure 6.3.2 Polytope dual representationIn this work, we need to de�ne the dual of a polytope. An n-polytope, n ∈ Z,is de�ned as follows: 11



p
Dual(p)

(a) p
Dual(p)(b)Fig. 6. Positive and negative extrusions of a point p (half-lines) and their dual objet:a half-spae, (a) Positive extrusion of p, (b) Negative extrusion.De�nition 19 (n-polytope) Let P be a polytope in dimension n, or n-polytope. Then, there exists a �nite set of k half-spaes H = {H1, . . . , Hk}suh that P =

⋂k
i=1 H i, and suh that if Hi is the hyperplane formingthe boundary of the half-spae H i (or boundary hyperplan of H i), then

∀i ∈ J1, kK, Hi ∩ P 6= ∅.Notations: Let P be an n-polytope, and let H be the orresponding half-spae set. We de�ne three subsets of H, denoted H0, H+ and H−, as follows:
• H0 is the half-spae set in H de�ned by an equation similar to

cn +
∑n−1

i=1 ciXi ≥ 0 or similar to cn +
∑n−1

i=1 ciXi ≤ 0, with (c1, . . . , cn) ∈ E
n.

• H+ is the half-spae set in H de�ned by an equation similar to
Xn ≥ cn +

∑n−1
i=1 ciXi, (c1, . . . , cn) ∈ En.

• H− is the half-spae set in H de�ned by an equation similar to
Xn ≤ cn +

∑n−1
i=1 ciXi, (c1, . . . , cn) ∈ En.Moreover, we denote H0, H+ and H− the three boundary hyperplane setsorresponding respetively to the half-spae sets H0, H+ and H−.Proposition 20 Let P be an n-polytope. Then,

P = P+ ∩ P−with
P+ =

⋂

H∈(H0∪H+)

Hand
P− =

⋂

H∈(H0∪H−)

H12



PROOF. Let us prove P+
c =

⋂

H∈(H0∪H+) H. The proof of P−
c =

⋂

H∈(H0∪H−) H an be obtained in the same way.Let p = (p1, . . . , pn) ∈ P+
c . Then, there exists p′ = (p′1, . . . , p

′
n) ∈ P suh thatfor all i ∈ J1, n− 1K,

ci = c′i and cn = c′nHene, for all H ∈ H0 and for all H ∈ H+, p ∈ H . We dedue that p ∈
⋂

H∈(H0∪H−) H .Now, let p = (p1, . . . , pn) ∈
⋂

H∈(H0∪H−) H . Let us proeed by ontraditionand assume that p /∈ P+
c . Then, for all p′ = (p′1, . . . , p

′
n) ∈ Pc, there exists

i ∈ J1, n − 1K suh that ci 6= c′i or cn 6= c′n. Then, there exists H ∈ H0 or
H ∈ H+ suh that p /∈ H . We dedue that p /∈

⋂

H∈H0∪H−
H . �

Proposition 20 is illustrated in Figure 7 in the ase of dimension 2.
1

2 3

5

6 4

P(a) 1

2 3

4P+

(b) −

5

6
4

P()Fig. 7. Positive and negative extrusions of a polytope in dimension 2: (a) A 2-poly-tope P , (b) Positive extrusion of P , () Negative extrusion of P .Let us now desribe the dual of an n-polytope P from its verties.Let V be the set of verties of P . We de�ne two subsets of V, denoted V+ and
V−, as follows:

V+ = {v ∈ V|∃H ∈ H+, v ∈ H ∩ P}

V− = {v ∈ V|∃H ∈ H−, v ∈ H ∩ P}We an see in Figure 7 that the verties numbered 1, 2, 3 and 4 belong to thevertex set V+ of P . In the same way, verties numbered 4, 5 and 6 belong tothe vertex set V−.The dual of an n-polytope an then be de�ned by:13



Theorem 21 (Dual of a Polytope) Let P be an n-polytope, V+ and V− thetwo vertex sets de�ned previously. Then:
Dual(P ) =





⋃

v∈V+

Dual(v)+



 ∩





⋃

v∈V−

Dual(v)−





PROOF. Let us �rst prove the following lemma:Lemma 22 Let P be an n-polytope. Then,
Dual(P ) = Dual(P )+ ∩Dual(P )−PROOF. In the following, we assume that H ∈ En.Sine Dual(P ) ⊆ Dual(P )+ and Dual(P ) ⊆ Dual(P )−, we dedue that

Dual(P ) ⊆ Dual(P )+ ∩Dual(P )−.We now prove that Dual(P )+ ∩Dual(P )− ⊆ Dual(P ). Consider a point
p = (x1, . . . , xn) ∈ Dual(P )+ ∩Dual(P )−. Then,

∃p′ = (x′
1, . . . , x

′
n) ∈ Dual(P ) | p ∈ p′+and

∃p′′ = (x′′
1, . . . , x

′′
n) ∈ Dual(P ) | p ∈ p′′−We dedue that ∀i ∈ J1, n− 1K, x′

i = xi = x′′
i and x′

n ≤ xn ≤ x′′
n.Next we prove that Dual(p)∩H 6= ∅, whih would imply p ∈ Dual(P ). Sine

p′ ∈ Dual(P ) and p′′ ∈ Dual(P ), we have Dual(p′)∩P 6= ∅ and Dual(p′′)∩P 6=
∅. Let q′ = (q′1, . . . , q

′
n) ∈ Dual(p′) ∩ P and q′′ = (q′′1 , . . . , q

′′
n) ∈ Dual(p′′) ∩ P .Then, we have

q′n =
n−1
∑

i=1

xiq
′
i + x′

n and q′′n =
n−1
∑

i=1

xiq
′′
i + x′′

nSine x′
n ≤ xn ≤ x′′

n, we dedue that
q′n ≤

n−1
∑

i=1

xiq
′
i + xn and q′′n ≥

n−1
∑

i=1

xiq
′′
i + xnThus, Dual(p)∩ [q′, q′′] 6= ∅. Finally, sine P is onvex we know that [q′, q′′] ⊂

P . We then dedue that Dual(p) ∩ P 6= ∅. �14



Let us now de�ne two objet sets F+ and F− by
F+ = {H ∩ P, H ∈ H+}and
F− = {H ∩ P, H ∈ H−}Let S be a set. In the following, we will denote by |S| the ardinal of the set

S. Espeially, we remark that |F+| (resp. |F−|) is equal to |H+| (resp. |H−|).For instane, in dimension 2, the set F+ (resp. F−) orresponds to the segmentswhih belong to Thu boundary of P suh that there two endpoints are vertiesin V+ (resp. V−). In Figure 7, F+ is omposed of the segments [1, 2], [2, 3] and
[3, 4]. In the same way, F− is omposed of the segments [4, 5] and [5, 6]. Indimension 3, these two sets are omposed of faes of P .The following relation is then veri�ed:Lemma 23 Let P be an n-polytope. Then,

P+ =
⋃

F∈F+

F+In the same way, P− =
⋃

F∈F−
F−.PROOF. Let us prove that

P+ =
⋃

F∈F+

F+ =
⋃

i∈J1,|F+|K,Hi∈H+

(Hi ∩ P )+ =





⋃

i∈J1,|C+|K,Hi∈H+

Hi ∩ P





+First, we have
⋃

i∈J1,|C+|K,Hi∈H+

Hi ∩ P ⊆ PHene,




⋃

i∈J1,|C+|K,Hi∈H+

Hi ∩ P





+

⊆ P+Let now p ∈ P+. We know that P+ =
⋂

H∈H0∪H+
H , whih is equiv-alent to P+ =

⋂

H∈H0∪H+
H+. Hene, we dedue that for all Hi ∈ H+,

i ∈ J1, |C+|K, there exists pi = (pi1, . . . , pin) ∈ Hi suh that p ∈ p+
i . Let

p′ = (pi1 , . . . , pin−1
, p′n) be the point whih veri�es ∀i ∈ J1, |C+|K, p

′
n ≥ pin .Then, sine P is a polytope, we have p′ ∈ P .The seond equality an be obtained in the same way. �15



Lemma 24 Let P be an n-polytope. Then,
Dual(P+) =

⋃

v∈V+

Dual(v)+In the same way, Dual(P−) =
⋃

v∈V−
Dual(v)−.PROOF. Let us prove that Dual(P+) =

⋃

v∈V+
Dual(v)+.By de�nition, for eah vertex v in V+, there exists F ∈ F+ suh that

v ∈ F . Hene, ⋃

v∈V+
v ⊆

⋃

F∈F+
F . Moreover, (

⋃

v∈V+
v)+ ⊆ (

⋃

F∈F+
F )+.Then, ⋃

v∈V+
v+ ⊆

⋃

F∈F+
F+. However, aording to Lemma 23, we have

⋃

F∈F+
F+ = P+. We dedue that Dual(

⋃

v∈V+
v+) ⊆ Dual(P+), and then

⋃

v∈V+
Dual(v+) ⊆ Dual(P+).Let us prove the seond inlusion. Let p ∈ Dual(P+) = Dual(

⋃

F∈F+
F+).Then, there exists F ∈ F+ suh that Dual(p) ∩ F+ 6= ∅. Let us prove thatthere exists one vertex v in V suh that Dual(p) ∩ v+ 6= ∅.Let us proeed by ontradition and assume that for all v ∈ F , Dual(p)∩v+ =

∅. We know that there exists H ∈ H+ suh that F = H∩P = H∩
[

⋂k
i=1 Hi

]

=
⋂k

i=1(H ∩Hi). Hene, if we onsidered the hyperplane H as spae, we deduethat F is an n − 1-polytope, sine for all i, Hi ∩ H is a half-spae in H ,and then F is equal to the intersetion of several half-spaes. Sine F is theonvex hull of its verties, we dedue that if ∀v ∈ F, Dual(p) ∩ v+ = ∅, then,
∀p′ ∈ F, Dual(p) ∩ p′ = ∅. Moreover, F+ =

⋃

p∈F p+ =
⋃

p∈F,k∈R+
p + k

−−→
OXn =

⋃

k∈R+
C+k

−−→
OXn. Hene, sine F is a polytope, F+k

−−→
OXn is also a polytope andthe same method an be applied to prove that ∀p′ ∈ F +k

−−→
OXn, Dual(p)∩p′ =

∅.A similar proof an be used to show that Dual(P−) =
⋃

v∈V+
Dual(v)−. �The proof of Theorem 21 is obtained from Lemma 24. �

Theorem 21 allows us to desribe the dual of a polytope from the dual of itsverties. More preisely, the dual of a polytope is de�ned by the intersetionof two objets, eah one being a union of several half-spaes (see Figure 8).Eah half-spae is the positive or negative extrusion of the hyperplane dual ofone vertex of the polytope. In Figure 8, we an see the representation of thedual of the polytope in Figure 7a. 16
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()Fig. 8. Dual of a 2-polytope P : (a) Dual of the positive extrusion of P , (b) Dual ofthe negative extrusion of P , () Dual of P .3.3 The notion of generalized preimageIn this setion, we de�ne the generalized preimage of a set of polytopes. Thispreimage is a geometrial objet omputed in the parameter spae from theduals of the polytopes. Eah point in the preimage is assoiated to a hyper-plane whih uts all polytopes. The generalized preimage of a polytope set isthen de�ned as follows:De�nition 25 (Generalized Preimage) Let P = (P1, . . . , Pk) be a set of
k polytopes, and let Dual(Pi), i ∈ J1, kK, be the dual of Pi in the parameterspae. The generalized preimage GP of P is de�ned by:

GP (P) =
k
⋂

i=1

Dual(Pi)

4 Digital hyperplane reognitionIn this setion, we present our digital hyperplane reognition algorithm. More-over, we assume this hyperplane is analytially de�ned with a distane anda ball suh as the digital hyperplanes de�ned in Setion 2.2. The aim of ouralgorithm is to determine if a hypervoxel set belongs to a digital hyperplane.More preisely, we want to determine all Eulidean hyperplanes the digitiza-tion of whih ontains given hypervoxel set. We all these hyperplanes thesolution hyperplanes.In order to do that, the idea is to ompute the set of Eulidean hyperplanes(if it exists) whih ross all balls orresponding to the given hypervoxels byomputing the generalized preimage of the balls. Then, based on the shape17



(empty or not) of this preimage, we an dedue if the hypervoxel set belongsor not to a digital hyperplane.However, aording to the digitization model used, some points loated onthe border of the dual of the ball are not assoiated to solution hyperplanes(beause these hyperplanes ross ball verties), and thus some points on theborder of the generalized preimage are not assoiated to solution hyperplanes.It is for instane the ase for the Standard and Naive models sine one in-equality in the digital hyperplane de�nitions (see De�nitions 3 and 7) arestrit.In the following, we �rst detail our reognition algorithm. Then, we apply ouralgorithm to the Naive and Standard digitization models.
4.1 Reognition algorithmLet H = {H1, . . . , Hk} be a set of k hypervoxels. The digital hyperplanereognition (see Algorithm 1) is simply performed by omputing the general-ized preimage GP of the balls {B1, . . . , Bk} assoiated to H. First, GP (B1),i.e. the dual of B1, is omputed aording to the polytope dual de�nitiongiven by Theorem 21. Then, GP ({B1, B2}) is omputed from the intersetionof GP (B1) and Dual(B2). And so on until GP ({B1, . . . , Bk}) is omputed or
GP beomes empty. Note that the balls an be onsidered in any order, andthe orresponding hypervoxels do not need to be onneted.Algorithm 1: Standard and Superover hyperplane reognition algorithmData: A set H of k hypervoxels H1, . . . , Hk and their assoiated balls B1,. . . , Bk.begin

GP ←− Dual(B1);
i←− 2;while GP 6= ∅ and i ≤ n do

GP ←− GP ∩Dual(Bi);
i←− i + 1;if GP 6= ∅ then
H belongs to a digital hyperplane.else
H does not belong to a digital hyperplane.end 18



4.2 Example: appliation to Naive and Standard hyperplane reognitionFor a given ball assoiated to a given digitization model, some parts in thegeneralized preimage do not orrespond to solution hyperplanes. It is the asewhen one or several inequalities in the hyperplane digitization de�nition arestrit, for instane for the Standard and Naive models. In the ase of theSuperover and losed Naive digitization models, all points in the generalizedpreimage are solutions.In the following, we study the ase of the Naive and Standard models and de-sribe whih part of the dual of the balls orresponds to solution hyperplanes.4.2.1 Naive hyperplanesWe want to determine whih points on the boundary of the dual of a ball
Bd1

(c, 1
2
) are assoiated to solutions hyperplanes. We know that eah point

(c0, . . . , cn−1) is assoiated to a hyperplane with equation c0−xn +
∑n−1

i=1 cixi =
0. Moreover, we know that this hyperplane ontains a vertex of the ball.We dedue from Proposition 6 the following property:Proposition 26 Let B be a ball Bd1

(c′, 1
2
), c′ ∈ Zn, and let H be a Eulideanhyperplane with equation c0 +

∑n
i=1 cixi = 0 that passes through a vertex v =

(v1, . . . , vn) of B. Moreover, we assume that the �rst ci 6= 0 veri�es ci > 0.Hene, there exists j ∈ J1, nK suh that v = (c′1, . . . , c
′
j−1, c

′
j + 1

2
, c′j+1, . . . , c

′
n)(resp. v = (c′1, . . . , c

′
j−1, c

′
j −

1
2
, c′j+1, . . . , c

′
n)). Then, if cj > 0 (resp. cj < 0), c′belongs to the Naive digitization of H.Hene, from Proposition 26, we an easily determine whih points in the dual ofa ball Bd1

(c′, 1
2
) are assoiated to solution hyperplanes. We an see in Figure 9an example of dual ball in dimension 2.Figure 10 illustrates the reognition proess in dimension 2 in the ase of theNaive hyperplane reognition.4.2.2 Standard hyperplanesWe want to determine whih points on the boundary of the dual of a ball

Bd∞(c, 1) are assoiated to solutions hyperplanes. We know that eah point
(c0, . . . , cn−1) is assoiated to a hyperplane with equation c0−xn +

∑n−1
i=1 cixi =

0. Moreover, we know that this hyperplane ontains a vertex of the ball.We dedue from Proposition 10 the following property:19
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Fig. 10. Example of 2D generalized preimage omputation: Naive hyperplane reog-nition.Proposition 27 Let B be a ball Bd∞(c′, 1), c′ ∈ Zn, and let H be a Eulideanhyperplane with equation c0 +
∑n

i=1 cixi = 0 that passes through a vertex v =
(v1, . . . , vn) of B. Moreover, we assume that the �rst ci 6= 0 veri�es ci > 0.Hene, if vn > c′n (resp. vn < c′n) and cn > 0 (resp. cn < 0), then c′ belongs tothe Standard digitization of H.Hene, from Proposition 27, we an easily determine whih points in the dualof a ball Bd∞(c′, 1) are assoiated to solution hyperplanes. We an see inFigure 11 an example of dual ball in dimension 2.20
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(b)Fig. 11. Dual of a ball Bd∞(c′, 1): (a) Points on dashed lines are not assoiated tosolution hyperplanes, (b) Correspondene between the ball and its dual.Figure 12 illustrates the reognition proess in dimension 2 in the ase of theStandard hyperplane reognition.
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Fig. 12. Example of 2D generalized preimage omputation: Standard hyperplanereognition.5 Conlusion and future worksIn this artile, a new digital hyperplane reognition algorithm in arbitrarydimension has been presented. This algorithm determines if a given hyper-voxel set belongs to a digital hyperplane by providing the set of Eulideanhyperplanes whih ut all balls assoiated to the given hypervoxels. This setis dedued from the omputation in a dual spae of the generalized preim-age of the balls. This preimage is de�ned as the intersetion of the duals of21
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