
HAL Id: hal-00354586
https://hal.science/hal-00354586v1

Submitted on 20 Jan 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Analytical Calculation of the Magnetic Field Created by
Permanent-Magnet Rings

Romain Ravaud, Guy Lemarquand, Valérie Lemarquand, Claude L. Depollier

To cite this version:
Romain Ravaud, Guy Lemarquand, Valérie Lemarquand, Claude L. Depollier. Analytical Calculation
of the Magnetic Field Created by Permanent-Magnet Rings. IEEE Transactions on Magnetics, 2008,
44 (8), pp.1982-1989. �10.1109/TMAG.2008.923096�. �hal-00354586�

https://hal.science/hal-00354586v1
https://hal.archives-ouvertes.fr


1982 IEEE TRANSACTIONS ON MAGNETICS, VOL. 44, NO. 8, AUGUST 2008

Analytical Calculation of the Magnetic Field Created
by Permanent-Magnet Rings

R. Ravaud, G. Lemarquand, V. Lemarquand, and C. Depollier

Laboratoire d’Acoustique de l’Universite du Maine UMR CNRS 6613, 72085 Le Mans Cedex 9, France

We present analytical formulations, based on a coulombian approach, of the magnetic field created by permanent-magnet rings. For
axially magnetized magnets, we establish the expressions for the three components. We also give the analytical 3-D formulation of the
created magnetic field for radially magnetized rings. We compare the results determined by a 2-D analytical approximation to those for
the 3-D analytical formulation, in order to determine the range of validity of the 2-D approximation.

Index Terms—Analytical calculation, axial magnetization, magnetic field, permanent-magnet rings, radial magnetization.

I. INTRODUCTION

PERMANENT magnets are used nowadays in many appli-
cations, and the general need for dimensioning and opti-

mizing leads to the development of calculation methods, whose
first step is often to calculate the magnetic field created by the
magnets. Two major kinds of applications can be identified: the
ones which use parallelepipedic magnets and the ones which use
cylindrical magnets. Parallelepipedic magnets are easy to pro-
duce and to magnetize, and the magnetic field they create is also
more easily calculated. Geometrical methods have been pro-
posed by Leupold [1] to calculate high uniform magnetic field
sources [2] using wedge-shaped magnets—with sections pre-
senting wedges, or angles lower than 90 —and extended from
the Halbach “magical structure” [3]. Analytical approaches are
of primary importance for the design of many devices, and the
need for analytical methodologies is emphasized in all applica-
tions, from the generation of remote fields for MRI [4] or field
gradients [5], to the microactuators [6] and diamagnetic levita-
tion devices [7], not forgetting all the electrical motors topolo-
gies [8] and the sensors for mechanical data such as position or
torque [9], [10].

Analytical approaches were proposed by Marinescu [11] and
analytical 2-D and 3-D solutions were given by Yonnet [12] and
by Bancel [13] for the field created by parallelepipedic magnets.
These calculations were applied to the study of devices such as
loudspeaker motors with no leakage [14], [15], guitar pickups
[16], magnetic couplings, and bearings [17]. It is noticeable that
in some applications, such as permanent-magnet motors [18] or
magnetic couplings [19], tiles or ring magnets were replaced
by parallelepipedic magnets in order to be able to calculate and
optimize the structures as the required cylindrical formulations
were not established yet.

But in devices of small size [20], radially magnetized ring
magnets have to be used and hence such structures have to be
studied. The case of a magnet ring axially magnetized was an-
alytically studied by Durand [21]. More recently, Furlani [22]
presented a semianalytical calculation and an analytical calcu-
lation of the field in the air gap of tubular permanent-magnet
machines was presented by Zhilichev [23].
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The case of radially magnetized sectors or rings, which cor-
responds to many permanent-magnet motor topologies, has al-
ready been considered. Furlani [24] proposed a semianalytical
formulation based on the amperian model of the magnets which
needs two numerical integrations. Rakotoarison [25] proposes
a semianalytical solution to calculate the whole magnetic field
created by radially magnetized sectors by a Coulombian ap-
proach which reduces the numerical integration number to a
single one. Selvaggi [26], [27] uses a multipole representation
of the source to calculate analytically the external 3-D magnetic
field with Green’s functions. Azzerboni [28]–[33] uses the Le-
gendre’s functions to determine the magnetic field created by
magnet rings and Babic [34]–[36] uses both Legendre’s poly-
noms and Heumann functions to calculate the magnetic field
components at any point in space (either singular or regular).
This paper proposes a fully exact analytical 3-D formulation of
the magnetic field created by magnet rings without using serial
functions. First, this paper presents the analytical calculation of
the magnetic field created by an axially magnetized ring. The
approach uses a coulombian model of the magnet. Then, the
paper proposes a 3-D analytical formulation of the field created
by a radially magnetized ring. The magnet is modeled by a sur-
face density of fictitious charges on the inner face of the ring.
The effect of the outer face does not appear to simplify the ex-
pressions, but can be taken into account because the principle of
linear superposition applies.

We consider the magnetic field created by only one face, and
do not take the volumic charge density into account, contrary
to Rakotoarison [25] who proposes a fast 3-D semianalytical
expression of the field produced by an arc-shaped magnet. An
exact 3-D analytical formulation of the solution is a priori attrac-
tive for optimization purposes. But as 3-D formulations are also
far more complicated than 2-D formulations, the comparison of
the results given by both formulations is interesting, in order
to determine, for example, the range of validity of the 2-D ana-
lytical approximation and to establish when the 2-D approxima-
tion is sufficient and when the exact 3-D formulation is required.
This paper shows that the 2-D approach cannot give acceptable
results for the calculation of the far field of the magnet, whatever
the curvature of the magnet is, and especially for the field at the
center of the magnet ring, contrary to the 3-D approach. This re-
sult is particularly significant for some applications, where the
field in the center of the ring is the important result.

0018-9464/$25.00 © 2008 IEEE



RAVAUD et al.: ANALYTICAL CALCULATION OF THE MAGNETIC FIELD CREATED BY PERMANENT-MAGNET RINGS 1983

Fig. 1. Used geometry: it is a ring whose � is an axis of symmetry, its inner
radius is � , its outer radius is � , its height is �; its magnetic polarization is
axial.

II. ANALYTICAL CALCULATION OF THE MAGNETIC

FIELD CREATED BY AXIALLY MAGNETIZED

PERMANENT-MAGNET RINGS

This section presents the analytical calculation of the mag-
netic field created by a permanent-magnet ring whose magnetic
polarization is axial. The extensive calculation is presented only
for one annular charged plane.

A. Notation and Geometry

The geometry considered and the related parameters appear
in Fig. 1. The ring inner radius is , the ring outer radius is

, and its height is . The axis is an axis of symmetry.
Calculations are obtained by the use of the Coulombian model.
Consequently, the permanent-magnet ring is represented by two
annular planes which correspond to the upper and lower

faces of the ring. The upper one is charged with a
surface magnetic pole density ; the lower one is charged
with the opposite surface magnetic pole density . All the
illustrative calculations are done with .

We only consider the upper face of the permanent-magnet
ring to simplify the expression of the magnetic field. The total
magnetic field created by the permanent-magnet ring is calcu-
lated by the application of the linear superposition principle. Let
us consider a point on the ring upper face. The magnetic
field created by the ring upper face at any observation point

of the space is given by (1):

(1)

(2)

B. Components Along the Three Directions

The integration of (1) leads to the magnetic field compo-
nents along the three defined axes:

Fig. 2. The radial component � ��� �� is a function of the radial dis-
tance �; the observation height is � � � mm; � � �� mm, � � �� mm.

and (expressed in A/m) which are given by the ex-
pressions (3), (4), and (9).

C. Azimuthal Component

The azimuthal component equals 0 on account
of the cylindrical symmetry

(3)

D. Radial Component

We present here the expression of the radial component es-
tablished by Durand [21] and consider it as , in so
far as it is by now the simplest expression. According to Durand,
the radial component is expressed as follows:

(4)

with

(5)

(6)

and

(7)

(8)

Fig. 2 represents the radial component versus
the radial distance.
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TABLE I
DEFINITION OF THE PARAMETERS USED IN (9)

E. Axial Component

The axial component is expressed as follows:

(9)

with

(10)

where is given in terms of the incomplete elliptic
integral of the third kind by (11). Equation (10) contains the
imaginary number . However, the result
is a real number; we have not succeeded in obtaining a real
expression for the axial component . The value
equals 3.14, and the value equals 3.14. If we take

, (10) is not definite. The closer the absolute value
or is to , the more precise the analytical expression is. The
parameters used in (10) are defined in Table I. Moreover, when
we input the expression (10) in Mathematica, we have to take
the real part of . Indeed, the imaginary part is the
consequence of numerical noise and nearly equals zero

(11)

Fig. 3. The axial component � ��� �� is a function of the radial length, the
observation height is � � � mm, � � �� mm, � � �� mm, � � � T.

(12)

(13)

(14)

(15)

(16)

(17)

Fig. 3 shows the axial field component as a func-
tion of the radial distance of the observation point of the
space. The ring inner radius equals 25 mm, the ring outer
one equals 28 mm, and the ring height equals 3 mm.
The magnetic polarization is 1 T. The axial field component

is plotted from mm to . From a ra-
dial observation point higher than , the axial field component

is more difficult to plot with Mathematica.
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Fig. 4. Used geometries; A is a ring whose symmetry axis is �, its inner radius
is � , its outer radius is � , its height is �, its magnetic polarization is radial:
B is an infinitely long parallepiped, its height is �� � equals � .

III. ANALYTICAL CALCULATION OF THE MAGNETIC

FIELD CREATED BY RADIALLY MAGNETIZED

PERMANENT-MAGNET RINGS

A. Notation and Geometry

The geometry and the related parameters are shown in
Fig. 4(A). The axis is an axis of symmetry. Calculations
are obtained by the use of the coulombian model. The per-
manent-magnet ring is thus represented by two curved planes
which correspond here to the inner and outer faces of the
ring. The inner one is charged with a surface magnetic pole
density ; the outer one is charged with the opposite surface
magnetic pole density .

We only consider the ring inner face to simplify the analytical
calculation.

Let us consider a point on the ring inner face. The mag-
netic field created by the ring inner face at any point
of the space is given by

(18)

(19)

Fig. 5. Field axial component � ��� �� versus the radial distance � of the
observation point. The observation height � is 3 mm, � � �� mm, � �
�� mm, � � � T.

B. Components Along the Three Directions

The integration of (18) leads to the magnetic field compo-
nents along the three de-
fined axes (20), (21), (24).

C. Azimuthal Component

The azimuthal component equals zero on ac-
count of the cylindrical symmetry:

(20)

D. Axial Component

The axial component is expressed as follows:

(21)

where is given in terms of the incomplete elliptic integral
of the first kind by

(22)

and is given in terms of the elliptic integral of the first
kind by

(23)

Fig. 5 shows the axial component as a function of
the radial distance of the observation point for a given
altitude mm. We observe a radial component peak which
corresponds to the ring inner radius.
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TABLE II
DEFINITION OF THE PARAMETERS USED IN (24)

E. Radial Component

The radial component of the field is expressed as
follows:

(24)

with (25), shown at the bottom of the page, where is
defined by (23) and is given by (11). Equation (25)
contains the imaginary number . However, the result

is a real number; we have not succeeded in ob-
taining a real expression for the radial component .
The value equals 0.999999999 and the value equals

0.999999999. If we take , the expression
(25) is not definite. The closer the absolute value or
is to one, the more precise the analytical expression is. The
parameters used in (25) are defined in Table II. Moreover, when
we input the expression (25) in Mathematica, we have to take
the real part of . The imaginary part corresponds
to numerical noise and nearly equals zero.

Fig. 6 shows the radial field component as a func-
tion of the radial distance of the observation point of the
space. The ring inner radius is 25 mm, the outer one is
28 mm, and the ring height is 3 mm. The magnetic polariza-
tion equals 1 T. We observe a discontinuity of the radial field
component for a distance which corresponds to the ring inner

Fig. 6. Radial field component �� ��� �� as a function of the radial dis-
tance � of the observation point ���� ��. The observation height � is 1,5 mm,
� � �� mm, � � �� mm, � � � mm, � � �� .

radius . The ring radial component verifies the
Gauss theorem (26), which is consistent with the expressions
obtained

(26)

IV. COMPARISON BETWEEN THE APPROXIMATE

2-D ANALYTICAL APPROACH AND THE EXACT

3-D ANALYTICAL APPROACH

This section discusses the utility of a 3-D analytical approach
to calculate the magnetic field created by radially magnetized
permanent-magnet rings. For this purpose, we calculate the rel-
ative difference between the magnetic field components calcu-
lated with the approximate 2-D analytical approach and those
calculated with the exact 3-D analytical approach.

A. The 2-D Analytical Approach

Fig. 4(B) shows the two geometries considered in the compar-
ison of the 2-D and the 3-D analytical approaches. The geometry

(25)
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which corresponds to the 2-D analytical approach is an infinite
parallelepiped whose height is . This parallelepiped can be rep-
resented by two parallel planes. The inner one is charged with
a surface magnetic pole density ; the outer one is charged
with the opposite surface magnetic pole density . Let us
consider a point on the plane. We only calculate the magnetic
field created by the face . The magnetic field , at any point

of the space, is given by

(27)

The integration of (27) leads to the magnetic field components
and along the defined axes, which are

given by the expressions of (28) and (29)

(28)

(29)

These expressions were established by J. P. Yonnet [12].

B. Comparison Between the 2-D Analytical Approach and the
3-D Analytical Approach for a Given Ring Inner Radius

The aim of this section is to show the limits of the 2-D ana-
lytical approach.

1) Radial Component : Let us consider the ra-
dial component . We calculate the relative difference

with the expressions of (24) and (28). The relative
difference is defined in

(30)

We plot in Fig. 7. This figure shows that the 2-D an-
alytical approach is not sufficient to calculate the radial compo-
nent either close to or far from the permanent-magnet
ring. We incur an error of at least 10% in calculating the radial
component by using the 2-D analytical approach.

2) Axial Component : Let us consider the axial
component . We calculate the relative difference

by using the expressions of (21) and (29). The
relative difference is defined by

(31)

The relative difference is plotted in Fig. 8. This
figure shows that for a given inner radius which equals 25 mm,
we can use the 2-D analytical approach with a 2% relative error
to calculate the axial component at a radial distance
from the ring smaller than 1 mm. We deduce that the 2-D an-
alytical approach is a good approximation for calculating the

Fig. 7. Representation of the relative difference between the radial component
calculated with the 2-D analytical approach and the one calculated with the 3-D
analytical approach; the relative difference ��� �� � is a function of the ra-
dial length �; � � � � �� mm, � � � � �� mm, � � � mm,
� � 	 T.

Fig. 8. Representation of the relative difference between the axial component
calculated by the 2-D analytical approach and the 3-D analytical approach; the
relative difference ��� �� � is a function of the radial distance �; the obser-
vation height is � � 
 mm; � � � � �� mm, � � � � �� mm,
� � � mm, � � 	 T.

magnetic field near the permanent-magnet ring. The discrepan-
cies between the 2-D and the 3-D approaches are far larger for
the radial field component than for the axial one. In conclusion,
Figs. 7 and 8 show that the 2-D analytical approach is only ap-
propriate for calculating the axial field component for
a inner radius which equals 25 mm. However, the 2-D analyt-
ical approach is a good approximation for calculating the radial
field component in this case.

C. Radius of Curvature Influence on the Magnetic Field

In this section, we study the radius of curvature influence
on the magnetic field created by the permanent-magnet ring.
For this purpose, we calculate the magnetic field components

and at a given observation point for different radii of
curvature.
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Fig. 9. The relative difference ��� �� � is a function of the radius of cur-
vature �; the observation height is � � �� � mm; � � � � �� mm,
� � � � �� mm, � � 	 mm, � � � T.

Fig. 10. The relative difference ��� �� � is a function of the radius of cur-
vature �; � � � � �� mm, � � � � �� mm, � � 	 mm, � � � T.

D. Radius of Curvature Influence on

In Fig. 9, the relative difference (30) is a function
of the radius of curvature. The relative difference
is plotted for different radii of curvature in Fig. 9. This
figure shows that the closer the observation point is to the ra-
dius of curvature, the more precise the 2-D analytical approach
is. However, when the radius of curvature is smaller than 60 mm,
the 2-D analytical approach is not appropriate since the relative
error is at least 5%. In consequence, we should use the 3-D an-
alytical approach to calculate the radial component of the field
created by a permanent-magnet ring.

E. Radius of Curvature Influence on

In Fig. 10, the relative difference is a function of
the radius of curvature.

The relative difference becomes important for
a ring radius of curvature which equals 10 mm. This figure
shows that the 2-D analytical approach is only appropriate when
the observation point distance is smaller than . When

, an at least 5% error is incured when the 2-D analyt-
ical approach is used to calculate the axial component. However,
for an observation point distance larger than , the error is
smaller than 4%. In conclusion, the 3-D analytical calculation is
necessary to determine at any point of the space the radial com-
ponent and the axial component but the 2-D
analytical approach can be used to calculate the axial compo-
nent when we calculate the axial component for an ob-
servation point distance which equals at least . The 2-D
analytical approach cannot be used to calculate the radial com-
ponent if the radius of curvature is smaller than 60 mm.

V. CONCLUSION

This paper presents the 3-D analytical calculation of the field
intensity created by ring magnets. For axially magnetized ring
magnets, the paper gives a formulation of both the radial com-
ponent and the axial component. The formulation of the axial
component has been established but this expression is difficult
to plot in the whole space. It is to be noted that this paper models
the magnet as a ring plane charged by a surface density.

For radially magnetized ring magnets, the paper models the
magnet as a cylindrical plane charged by a surface density, and
the axial and radial components of the field are given analyti-
cally. Furthermore, a comparison has been made between the
approximate 2-D analytical formulation and the 3-D analytical
formulation for radially polarized magnets. The result is that the
radial component becomes rapidly inaccurate with the 2-D for-
mulation when the distance of the observation point from the
magnet increases and when the radius of the magnet is smaller
than 60 mm. Indeed, the relative difference between 2-D and
3-D values remains under 5% if the magnet curvature is larger
than 60 mm and if the observation point is very close to the
magnet, at a distance smaller than 1% of the magnet radius.
Hence, the calculation of the axial component can often require
the 3-D formulation. The 2-D formulation has a larger range of
validity for the axial component, as the relative difference be-
tween 2-D and 3-D values remains under 6% for magnet radii
of 10 mm and an observation point distance from the magnet
representing 10% of the magnet radius. The result of the com-
parison should help to decide whether the 2-D or the 3-D ana-
lytical formulation must be chosen to dimension and optimize a
specific device.

The Mathematica files containing the analytical expressions
used to calculate the axial and radial components for axial and
radial magnetizations are given online [37].
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