
HAL Id: hal-00354583
https://hal.science/hal-00354583

Submitted on 20 Jan 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The three exact components of the magnetic field
created by a radially magnetized tile permanent magnet
Romain Ravaud, Guy Lemarquand, Valérie Lemarquand, Claude L. Depollier

To cite this version:
Romain Ravaud, Guy Lemarquand, Valérie Lemarquand, Claude L. Depollier. The three exact com-
ponents of the magnetic field created by a radially magnetized tile permanent magnet. Progress In
Electromagnetics Research, 2008, PIER 88, pp.307-319. �10.2528/PIER08112708�. �hal-00354583�

https://hal.science/hal-00354583
https://hal.archives-ouvertes.fr


Progress In Electromagnetics Research, PIER 88, 307–319, 2008

THE THREE EXACT COMPONENTS OF THE
MAGNETIC FIELD CREATED BY A RADIALLY
MAGNETIZED TILE PERMANENT MAGNET

R. Ravaud, G. Lemarquand, V. Lemarquand
and C. Depollier

Laboratoire d’Acoustique de l’Universite du Maine
UMR CNRS 6613 Avenue Olivier Messiaen, 72085 Le Mans, France

Abstract—This paper presents the exact analytical formulation of
the three components of the magnetic field created by a radially
magnetized tile permanent magnet. These expressions take both
the magnetic pole surface densities and the magnetic pole volume
density into account. So, this means that the tile magnet curvature
is completely taken into account. Moreover, the magnetic field can be
calculated exactly in any point of the space, should it be outside the
tile magnet or inside it. Consequently, we have obtained an accurate
3D magnetic field as no simplifying assumptions have been used for
calculating these three magnetic components. Thus, this result is
really interesting. Furthermore, the azimuthal component of the field
can be determined without any special functions. In consequence,
its computational cost is very low which is useful for optimization
purposes. Besides, all the other expressions obtained are based on
elliptic functions or special functions whose numerical calculation is
fast and robust and this allows us to realize parametric studies easily.
Eventually, we show the interest of this formulation by applying it
to one example: the calculation and the optimization of alternate
magnetization magnet devices. Such devices are commonly used in
various application fields: sensors, motors, couplings, etc. The point
is that the total field is calculated by using the superposition theorem
and summing the contribution to the field of each tile magnet in any
point of the space. This approach is a good alternative to a finite
element method because the calculation of the magnetic field is done
without any simplifying assumption.
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1. INTRODUCTION

The magnetic field created by arc-shaped permanent magnets can
be determined analytically by using three-dimensional [1–17] and
two-dimensional approaches [18–23]. Such approaches allow us to
realize parametric studies easily since their computational cost is very
low. In ironless structures, the magnetic field can be modelled by
using equally the Green’s function or the Coulombian Model. The
analytical expressions obtained are often based on special functions
(elliptic functions, Lambad’s function). In this paper we show that
the azimuthal component created by a tile permanent magnet can be
determined without using any special functions. We also proposed
semi-analytical expressions for the radial and axial components based
on special functions. The point is that we give an exact formulation
of the three components of the magnetic field created by a radially
magnetized tile permanent magnet. Moreover, these expressions take
both the magnetic pole surface densities and the magnetic pole volume
density into account. This means that the tile magnet curvature is
completely taken into account. Furthermore, the magnetic field can
be calculated exactly in any point of the space, outside as well as
inside the tile magnet. It is noted that all the expressions given
in this paper are three-dimensional, that is, we have obtained an
accurate three-dimensional field. Eventually, we illustrate how such
expressions are useful for studying the radial field created by alternate
magnet structures. Indeed, such structures are very common in various
applications such as sensors, motors or magnetic couplings. The
expressions given in this paper are available online [37].

2. NOTATION AND GEOMETRY

The geometry considered and the related parameters are shown in
Fig. 1. The tile inner radius is r1; the tile outer radius is r2; its
height is h = z2 − z1 and its angular width is θ2 − θ1. Calculations
are obtained by using the Coulombian model. Consequently, we must
take into account the magnetic pole surface densities located on the
inner and outer faces of the tile and the magnetic pole volume density
located in the tile permanent magnet. The elementary magnetic field
dH(r, θ, z) can be expressed as follows:

dH(r, θ, z) =
σ∗

µ0

(
∇G(r, r1)r1 +

∇G(r, r1)
ri

ridri −∇G(r, r2)r2

)
dθidzi

(1)
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Figure 1. Representation of the geometry considered. The tile inner
radius is r1; the tile outer radius is r2; its height is h = z2 − z1 and its
angular width is θ2 − θ1.

where G(r, rj) is the Green’s function defined by

G(r, rj) =
1

4π
√

r2 + r2
j − 2rrj cos(θ − θi) + (z − zi)2

(2)

and σ∗ corresponds to the fictitious magnetic pole density. Eqs. (1)
and (2) are equivalent to the Coulombian model since our structure is
ironless.

3. THREE-DIMENSIONAL EXPRESSIONS OF THE
MAGNETIC FIELD COMPONENTS

The three magnetic field components can be obtained by calculating
the projection of the magnetic field H(r, θ, z) along the three defined
axes �ur, �uθ and �uz. We obtain the magnetic components Hr(r, θ, z),
Hθ(r, θ, z) and Hz(r, θ, z). It is noted that the azimuthal component
Hθ(r, θ, z) is fully analytical whereas the radial and axial components
use elliptic integrals.
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3.1. Radial Component Hr(r, θ, z)

The radial component Hr(r, θ, z) is given by

Hr(r, θ, z) =
2∑

i=1

2∑
j=1

2∑
k=1

(−1)(i+j+k−1)
(
Sr

i,j,k + V r
i,j,k

)

+
2∑

i=1

2∑
j=1

(−1)(i+j)Ni,j (3)

where

Sr
i,j,k = α

(0)
i,j

(
α

(1)
i F∗

[
α

(2)
i,j,k, α

(3)
i,k

]
+ α

(4)
i Π∗

[
α

(2)
i,j,k, α

(5)
i,k , α

(6)
i,k

])
(4)

and

V r
i,j,k = −

f
(
z − zj , r

2 + r2
i + (z − zj)

2 , 2rri, cos (θ − θk)
)

(
β(1) + β(2)

) (5)

The function f(a, b, c, u) verifies:

f(a, b, c, u) = β(3)
[
(b − c)E∗

[
β(4), β(5)

]
+ cF∗

[
β(4), β(5)

]]
+β(6)

[(
b − a2

)
F∗

[
β(7), β(8)

]]
− β(10) − β(11)

+β(6)
[(

b − a2 + c
)
Π∗

[
β(9), β(7), β(8)

]]
(6)

Ni,j =
∫ cos(θ−θ2)

cos(θ−θ1)

(
1 − u2

)
arctan

[
(ri − ru) (z − zj)√

r2 (u2 − 1) ξ1

]
du(7)

with

ξ1 =
√

r2 + r2
i − 2rriu + (z − zj)2 (8)

and the special functions E∗, F∗ and Π∗ are the elliptic functions.

3.2. Azimuthal Component Hθ(r, θ, z)

The azimuthal component Hθ(r, θ, z) is given by:

Hθ(r, θ, z) =
2∑

i=1

2∑
j=1

2∑
k=1

(−1)(i+j+k−1)
(
Sθ

i,j,k + V θ
i,j,k

)
(9)
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Table 1. Parameters used for calculating the radial component
Hr(r, θ, z).

Parameters

α
(0)
i,j

J
√

2
4πµ0

ri(−z+zj)

(2rir)3/2α
(1)
i

α
(1)
i r2

i + r2 + 2rir

α
(2)
i,j,k cos

(
θ−θk

2

) √
4rir

α
(1)
i +(z−zj)2

α
(3)
i,k

√
α1

i +(z−zj)2

4rir

α
(4)
i 2rir

2 − ri(r2
i + r2)

α
(5)
i,k

α
(1)
i +(z−zj)

2

α
(1)
i

α
(6)
i,k

√
2(α

(1)
i +(z−zj)2)

4rir

β(1) a
√

1 − u2
√

b−cu
b+c + a

√
c(1+u)

c
√

1−u2

β(2) a(a2+b) arcsin[u]

c
√

b+c

√
b − cu

β(3) (1 + u)
√

c(u−1)
b−c

β(4) arcsin
[√

b−cu
b+c

]
β(5) b+c

b−c

β(6)
√

1 − u2

√
c(1+u)

b+c

β(7) arcsin
[√

1+u
2

]
β(8) 2c

b+c

β(9) 2c
b+c−a2

β(10) −2
√

1 − u2 log[a +
√

b − cu]

β(11) −
√

x
c log

[
4c2(c+a2u−bu+

√
x
√

1−u2)
x1.5(a2−b+cu)

]
x −a4 + 2a2b − b2 + c

α ri − r cos(θ − θk)

ξ
√

r2 + r2
i + (z − zj)2 − 2rri cos(θ − θk)
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where

Sθ
i,j,k = − (z − zj)

r
√

−(z − zj)2
arctan

[
ξ2√

−(z − zj)2

]
(10)

with

ξ2 =
√

r2
i + r2 + (z − zj)2 − 2rri cos(θ − θk) (11)

and

V θ
i,j,k =

1
r

(−zj − α log [z − zj + ξ] + (z − zj) log [α + ξ])

+ sin(θ − θk) arctan
[
r sin(θ − θk)

z − zj

]

+ sin(θ − θk) arctan
[

(z − zj)α
r sin(θ − θk)ξ

]
(12)

It is emphasized here that the azimuthal component expression is fully
analytical, that is, it does not use any special functions.

3.3. Axial Component Hz(r, θ, z)

The axial component Hz(r, θ, z) is given by:

Hz(r, θ, z) =
2∑

i=1

2∑
j=1

2∑
k=1

(−1)(i+j+k−1)
(
Sz

i,j,k

)
+

2∑
i=1

2∑
j=1

(−1)(i+j)V z
i,j

(13)

with

Sz
i,j,k =

2ri

(r − ri)2 + (z − zj)2
F

[
θ − θk

2
,− 4rri

(r − ri)2 + (z − zj)2

]
(14)

and

V z
i,j =

∫ θ2

θ1

tanh−1




√
r2 + r2

i + (z − zj)2 − 2rri cos(θ − θs)

ri − r cos(θ − θs)


 dθs (15)
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4. THREE-DIMENSIONAL STUDY OF THE RADIAL
FIELD CREATED BY ALTERNATE MAGNET
STRUCTURES

Alternate magnet structures are commonly used in electrical machines
for creating a radial field, in magnetic couplings or in magnetic sensors.
The way of assembling tile permanent magnets depends greatly on
the intended application. Let us first consider an assembly of tile
permanent magnets radially magnetized (Fig. 2). Each tile angular
width is π

4 rad. Thus, the geometry owns four pairs of poles. We
represent in Fig. 3 the radial field created by such a geometry for three
radial distances r and in Fig. 4 its three-dimensional representation.
We see here that it is very important to use a three-dimensional
approach for precisely calculating the magnetic field created by
arc-shaped permanent magnets. Moreover, the time necessary for
representing the three-dimensional representation is very low (a few
seconds).

Figure 2. Representation of an alternate magnet structures with 4
pairs of poles.

In addition, Fig. 3 clearly shows that such an approach can be used
for studying an ABS sensor as such a sensor generally uses alternate
magnets. Indeed, in such a sensor, the number of tiles used is an
important parameter as an increase in the number of tiles can generate
a decrease in the magnetic field magnitude. Consequently, only the 3D
analytical approach allows us to know the number of tiles necessary
to optimize the dimensions of an ABS sensor. More generally, as the
computational cost is very low, we can easily change the tile dimensions
in order to create another radial field. Let us consider an alternate
magnet structure whose tiles are all radially magnetized but have not
the same angular width. For example, let us consider the case when
the first pole (north pole) has an angular width which equals π

4 , the
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Figure 3. Representation of the radial field created by an alternate
magnet structure: the angular width of a tile is π

4 ; the inner radius is
0.025 m; the outer radius is 0.028 m; the height is 0.003 m and J = 1 T;
the more Hr is calculated far from the alternate magnet structure, the
thinner is the line represented in this figure (r = 0.024 m, r = 0.023 m,
r = 0.022 m), z = 0.001 m.
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Figure 4. Three-dimensional representation of the radial field created
by an alternate magnet structure: the angular width of a tile is π

4 ; the
inner radius is 0.025 m; the outer radius is 0.028 m; the height is 0.003 m
and J = 1 T; the more Hr is calculated far from the alternate magnet
structure, the thinner is the line represented in this figure (r = 0.024 m,
r = 0.023 m, r = 0.022 m), z = 0.001 m.
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Figure 5. Representation of the radial field created by an alternate
magnet structure whose tile permanent magnets have not the same
angular width: We have θ2 − θ1 = π

8 and θ2 − θ1 = π
4 ; the inner

radius is 0.025 m; the outer radius is 0.028 m; the height is 0.003 m
and J = 1 T; the more Hr is calculated far from the alternate magnet
structure, the thinner is the line represented in this figure (r = 0.024 m,
r = 0.023 m, r = 0.022 m), z = 0.001 m.
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Figure 6. Three-dimensional representation of the radial field created
by an alternate magnet structure whose tile permanent magnets have
not the same angular width: We have θ2 − θ1 = π

8 and θ2 − θ1 = π
4 ;

the inner radius is 0.025 m; the outer radius is 0.028 m; the height is
0.003 m and J = 1 T; the more Hr is calculated far from the alternate
magnet structure, the thinner is the line represented in this figure
(r = 0.024 m, r = 0.023 m, r = 0.022 m), z = 0.001 m.
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second tile (the south pole) has an angular width which equals 2π
4 , and

this configuration is repeated around the ring. We represent in Figs. 5
and 6 a radial field both in two and three dimensions. Here again, the
time necessary for plotting the three-dimensional radial field is very
low. Fig. 5 shows an interesting point. We can see that the more the
radial field is calculated far from the magnets, the more it is uniform
in front of the magnets whose angular width equals 2π

8 . This result
is interesting because some applications do not often require a great
radial field but rather a uniform radial field on a given angular space.
We see here that this radial field is not uniform, neither close to but
rather far from the magnets.

5. CONCLUSION

This paper has presented new three-dimensional expressions of the
magnetic field created by tile permanent magnets. In addition, we have
presented a fully analytical expression of the azimuthal component.
As both the surface densities and the volume density are taken
into account for calculating the magnetic field components, all their
expressions are exact for all points in space, outside as well as inside
the magnet. So, this means that the tile magnet curvature is fully taken
into account, without any simplifying assumption. For example, these
expressions allow us to study the magnetic field created by alternate
magnet structures. Indeed, these structures are commonly used in
many applications such as magnetic sensors, permanent magnet motors
or magnetic couplings. So, their design and their optimization can
be easily realized with such an approach as the presented expressions
have a very low computational cost. We can say that such a three-
dimensional approach is a good alternative to a classical finite-element
method. The expressions given in this paper are available online [37].
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