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OBLIQUE POLES OF [, |f[*|g|* O

D. BARLET AND H.-M. MAIRE

ABSTRACT. Existence of oblique polar lines for the meromorphic extension of the cur-
rent valued function [ |f|**|g|>*O is given under the following hypotheses: f and
g are holomorphic function germs in C**! such that g is non-singular, the germ
S := {df A dg = 0} is one dimensional, and g|s is proper and finite. The main
tools we use are interaction of strata for f (see [4]), monodromy of the local system
H"(u) on S for a given eigenvalue exp(—2imu) of the monodromy of f, and the
monodromy of the cover g|s. Two non-trivial examples are completely worked out.

INTRODUCTION

In the study of a holomorphic function f defined in an open neighbourhood of 0 € C*+*
with one dimensional critical locus S started in [4] and completed in [5], the main tool
was to restrict f to hyperplane sections transverse to S* := S\ {0} and examine, for a
given eigenvalue exp(—2imu) of the monodromy of f, the local system H" !(u) on S*
formed by the corresponding spectral subspaces. Higher order poles of the current valued
meromorphic function f |f12*0 at —u—m, some m € N, are detected by non-extendable
sections of H" !(u) to S. An important part of this local system remained unexplored
in [4] and [5] because only the eigenvalue 1 of the monodromy © of the local system
H"'(u) has been considered, via the spaces H°(S*, H" '(u)) and H'(S*, H" '(u)).
In this paper, we will focus on the other eigenvalues of ©. Let us introduce an auxiliary
function t with the following properties:

(1) the function ¢ is non-singular near 0;

(2) the set ¥ :={df A dt =0} is a curve ;

(3) the restriction t|g : S — D is proper and finite ;

(4) t/5'(0) = {0} and t|s- is a finite cover of D* :=D\ {0}.
Remark that condition (4) may always be acheived by localization near 0 when conditions
(1), (2) and (3) are satisfied. These conditions are satisfied in a neighbourhood of
the origin if (f,¢) forms an isolated complete intersection singularity (icis) with one
dimensional critical locus. But we allow also the case where ¥ has branches in {f = 0}
not contained in S.
The direct image of the constructible sheaf H" ! (u) supported in S by ¢ will be denoted
by H; it is a local system on D*. Let H, be the fibre of H at t, € D* and ©,
its monodromy which is an automorphism of #y. In case where S is smooth, it is
possible to choose the function ¢ in order that ¢|s is an isomorphism and ©y may be
identified with the monodromy © of H" '(u) on S*. In general, ©, combines © and
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2 D. BARLET AND H.-M. MAIRE

the monodromy of the cover t|g-.
If S =: UierS; is the decomposition of S into irreducible branches, we have an analoguous
decomposition on S* of the local system H" '(u) = &; H" (u)’ with © = @; ©°.

Take an eigenvalue exp(—2inl/k) # 1 of ©, with [ € [1,k — 1] and ([,k) = 1. We
define an anologue of the interaction of strata in this new context. The auxiliary non
singular function ¢ is used to realize analytically the rank one local system on S* with
monodromy exp(—2inl/k). To perform this we need the degree of ¢ at the origin on the
irreducible branch S; we are interested in to be relatively prime to k. Of course this is
the case when S is smooth and ¢ transversal to S at the origin. Using then a k—th
root of ¢ we can lift our situation to the case where we consider the invariant section of
the complex of vanishing cycles of the lifted function f (see Theorem 3.2) and then use
already known results from [4].

With the help of elementary properties of meromorphic functions of two variables detailed
in paragraph 2, we deduce from interaction of strata above the existence of oblique polar
lines for the meromorphic extension of [ |f[**[¢/*0. This result is new and consists in
a first step toward the comprehension of the polar structure of such an extension.

1. POLAR STRUCTURE OF [, |f[** O

Theorem 1.1. BERNSTEIN & GELFAND. For m and p € N*, let Y be an open subset

m C™, f:Y — C a holomorphic map and X a relatively compact open set in Y.
Then there ezists a finite set P(f) C NP such that, for any form ¢ € A™™C®(X) with
compact support, the holomorphic map in {RA; > 0} x -+ x {RA, > 0} given by

(1) S PR
X
has a meromorphic extension to CP with poles contained in the set
U {@ixn+i=0}
a€P(f),leN*

Proof. For sake of completeness we recall the arguments of [8].

Using desingularization of the product f; ... f,, we know [10] that there exists a holo-
morphic manifold Y of dimension m and a holomorphic proper map 7 : ¥ — Y such
that the composite functions f] := fjom are locally expressible as

~ ak ak
(1.2) fe) =ut - yprun(y), 1 < k< p,

where af € N and u; is a holomorphic nowhere vanishing function. Because 7=*(X) is

relatively compact, it may be covered by a finite number of open set where (1.2) is valid.
For ¢ € A™™C®(X) and R\, ..., R\, positive, we have

[1aPinPeo= [ ARPfPee
X 7 1(X)
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Using partition of unity and setting py := a,lc)\l +---4 aﬁ)\p, 1 < k < m, we are reduced
to give a meromorphic extension to

(13) s st) > [ a0,
cm

where w is a C* form of type (m,m) with compact support in C™ valued in the space of
entire functions on C™. Of course, (1.3) is holomorphic in {Ru; > —1,..., Ry > —1}.
The relation

(1 + 1) = O (| [ .n)
implies by partial integration in g

1
/ |2y [P w (i, y) = 1 | |22 -y 01w (s, ).
'm (Cm

Because 0w is again a C*° form of type (m, m) with compact support in C™ valued in

the space of entire functions on C™, we may repeat this argument for each coordinate
Y2, - - -, Ym and obtain

/@m | Ym0 (i, y) =
(—nm

D) (T 1) /Cm 91| g1 o2 yo - Y| Y 01 - O (11, ).
The integral on the right hand side is holomorphic for ®u; > —3/2,..., Ry, > —3/2.
Therefore the function (1.3) is meromorphic in this domain with only possible poles in
the union of the hyperplanes {y; +1=0},...,{pm +1=0}.
Iteration of these arguments concludes the proof. O

Remark 1.2. An alternate proof of Theorem 1.1 has been given for p = 1 by Bernstein
[7], Bjork [9], Barlet-Maire [6], and by Loeser [11] and Sabbah [12] in general.

In case where fi,..., f, define an isolated complete intersection singularity (icis), Loeser
and Sabbah gave morover the following information on the set P(f) of the "slopes” of the
polar hyperplanes in the meromorphic extension of the function (1.1): it is contained in
the set of slopes of the discriminant A of f, which in this case is an hypersurface in CP.
More precisely, take the (p—1)—skeleton of the fan associated to the Newton polyhedron
of A at 0 and denote by P(A) the set of directions associated to this (p — 1)—skeleton
union {(ay,...,a,) € N’ | a;...a, =0}. Then

P(f) € P(4).

In particular, if the discriminant is contained in the hyperplanes of coordinates, then
there are no polar hyperplanes with direction in (N*)? .

The results of Loeser and Sabbah above have the following consequence for an icis which
is proved below directly by elementary arguments, after we have introduced some termi-
nology.

Definition 1.3. Let fi,..., f, be holomorphic functions on an open neighbourhood X
of the origin in C™. We shall say that a polar hyperplane H C CP for the meromorphic
extension of [, [fi[*...[f,[***O is supported by the closed set F C X, when H is not
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a polar hyperplane for the meromorphic extension of [\ | fi]22 ] fp|P*0. We shall
say that a polar direction is supported in F' if any polar hyperplane with this direction
is supported by F'.

Proposition 1.4. Assume fi,..., f, are quasi-homogeneous for the weights wn, . .., w,,
of degree ai,...,a,. Then if there exists a polar hyperplane direction supported by the
origin for (1.1) in (N*)? it is (ai,...,a,) and the corresponding poles are at most simple.

In particular, for p =2, and if (f1, f2) is an icis, all oblique poles have direction (a1, as).
Proof. Quasi-homogeneity gives fj (t“’lfk. cL Yy, =% fi(x), k=1,...,p.
Let =Y ""(-1)"twjz;dzo A --- A dzj A--- A dzy, so that dQ = (3 w;)dz.
. From Euler’s relation,because f,i"“ is quasi-homogeneous of degree ag\:

df A Q = aph fik du,

dz’ AQ = (w | 6)2° dz, V6 € N™.

Take p € C°(C™); then, with 1 =(1,...,1) € N’ and ¢ € N™:
d(|f1P2°75pQ A dZ) = ({a | A) + (w | 6 + 1)) |f|P 2’7 pda A dZ + | f|P2°2° dp AQ A d2Z.

Using Stokes’ formula we get
((a| )+ (w |6 +1)) / FPa7 pda A dz = —/|f|2)‘x‘sx5 dp A QA di.

For p =1 near 0, dp =0, near 0. Therefore the right hand side has no poles supported
by the origin. Now the conclusion comes from the Taylor expansion at 0 of the test
function. 0

The question of whether a polar hyperplane is effectively present in the meromorphic
extension of the function (1.1) for a least one ¢ has been addressed in case p =1 under
the name ”contribution effective” in a sequence of papers by D. Barlet [2], [1], [3] etc ...
For p > 1 no general geometric conditions are known to produce poles with direction in
(N*)?. In the following paragraphs, we examine the case p = 2.

2. EXISTENCE OF POLAR OBLIQUE LINES

In this paragraph, we consider two holomorphic functions f,g:Y — C, where Y is an
open subset in C™ and fix a relatively compact open subset X of Y. Without loss of
generality, we assume 0 € X. We study the possible oblique poles of the meromorphic
extension of the current valued function

(2.1) (A1) /X P g0,

The following elementary lemma is basic.

Lemma 2.1. Let M be a meromorphic function in C* with poles along a family of lines
with directions in N*>. For (Ao, po) € C?, assume
(i) {\= Ao} is a polar line of order < ko of M,
(ii) {u = po} is not a polar line of M,
(iii) A= M(X, po) has a pole of order at least ko +1 at Ag.



OBLIQUE POLES OF [, |f[**|g|** O 5

Then there exists (a,b) € (N*)? such that the function M has a pole along the (oblique)
line {aX + by = aXg + bug} -

Proof. If M does not have an oblique pole through (Ao, ), then the function (A, p) —
(A — Xo)¥oM (X, i) is holomorphic near (Mg, ig). Therefore, A — M (), 11p) has at most a
pole of order ky at Ay. Contradiction. O

It turns out that to check the first condition in the above lemma for the function (2.1),
it is sufficient to examine the poles of the meromorphic extension of the current valued
function

(2.2) Ao / F20.
X
Such a simplification does not hold for general meromorphic functions. For example,
A+ p
(A p) = —3

has a double pole along {\ = 0} but its restricition to {x = 0} has only a simple pole
at 0.

Proposition 2.2. If the meromorphic extension of the current valued function (2.2) has
a pole of order k at Ao € R_, i.e., it has a principal part of the form

Ty T
FEEnC A
at Ao, then the meromorphic extension of the function (2.1) has a pole of order
(2.3) ko :=max{0 <[ < k|suppT; Z {g =0}}

along the line {\ = \o}.

Proof. As a consequence of the Bernstein identity (see [9]), there exists N € N such that
the extension of [y |f|**¢ in {RX > Ag — 1} can be achieved for ¢ € A™™CN(X). Our
hypothesis implies that this function has a pole of order < k at \y. Because |g|*¢ is
of class CV for Ry large enough, the function

Ao /X P gl

has a meromorphic extension in {*\ > \g — 1} with a pole of order < k at \g. We have
proved that (2.1) has a pole of order < & along the line {\ = A\¢}.
Near \o, the extension of [ |f[**¢ writes

<Tka Cb) <T1’ ¢)>
D= T T AT
Hence that of [, |f|*}|g[*¢ looks

T 2u T 21
(A= Xo)* A=
If supp Ty, C {g = 0}, then the first term vanishes for Ry large enough, because T} is

of finite order (see the beginning of the proof). So the order of the pole along the line
{A = )\()} is < ko.

+ ...

+ ...
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Take zg € supp T}, such that g(z¢) # 0 and V' a neighborhood of zy in which g does
not vanish. From the definition of the support, there exists ¢ € A™™C(V') such that
(Tepy ) # 0. With ¢ := v|g| 2 € AmmC=(V), we get

(Tiolg|**, @) = (Tho, ¥) # 0.

Therefore, the extension of (2.1) has a pole of order ko along the line {\ = A¢}. O

Corollary 2.3. For (A, o) € (R_)?, assume

(i) the extension of the current valued function (2.2) has a pole of order k at Ao,
(il) po is not an integer translate of a root of the Bernstein polynomial of g,
(iil) X — Pf(p = po, [ [f*}|g[**0) has a pole of order ly > ko where ko is defined
m (2.3) at Ao.

Then the meromorphic extension of the current valued function (2.1) has at least lo — kg
oblique lines, counted with multiplicities, through (Ao, po) -

Example 2.4. m =3, f(z,y,2) = 2*> +y* + 2%, g(x,9,2) = 2.

e

Example 2.5. m =4, f(z,y,2) = 2*> +y* + 22 + %, g(z,y, 2, t) = t*.
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s

=)
b

Example 2.6. m =3, f(z,y,2) = 22 + 92, g(z,y,2) = y* + 22.

P
u

=)
=1

In this last example, Corollary 2.3 does not apply because for A\ = —1 we have ky = [,.
Existence of an oblique polar line through (—1,0) is obtained by computation of the
extension of A — Pf(u=1/2, [, |f|*g|*O).

3. PULLBACK AND INTERACTION

In this paragraph, we give by pullback a method to verify condition (iii) of Corollary 2.3
when ¢ is a coordinate. As a matter of fact the function A — [ |f[**|g[**O is only
known by meromorphic extension (via Bernstein identity) when pq is negative; it is in
general difficult to exhibit some of its poles.

We consider therefore only one holomorphic function f : Y — C, where Y is an open
subset in C**! and fix a relatively compact open subset X of Y. The coordinates in
C**! will be denoted by z1,...,x,,t. Let us introduce also the finite map

(3.1) p: C"" — C"* such that p(zy, ..., 20, 7) = (T1,..., 20, T")
for some fixed integer k. Finally, put f := fop: X — C where X := p H(X).
Proposition 3.1. With the above notations and g € R_ suppose

(a) the extension of the current valued function (2.2) has a pole of order <1 at Ay,
(b) A= [ |f[*0 has a double pole at Ay .
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Then there exists | € [1,k — 1] such that the extension of the current valued function
A [ [FIPE727%0 has a double pole at Ao .

Proof. Remark that the support of the polar part of order 2 of [ % | f 1?0 at Ay is con-
tained in {7 = 0} because we assume (a) and p is a local isomorphism outside {7 = 0}.

After hypothesis (b) there exists ¢ € AL H1C®(X) such that

A= Py(A = )\0,/ F0) 0.
e
Consider the Taylor expansion of ¢ along {7 = 0}

p(z,7)= > T 0 () Adr AdF+ oY)
J+i'sN
where N is larger than the order of the current defined by P, on a compact set K
containing the support of . Therefore

A=) B(A= )\0,/ |FIPA 77 ;i (@) x (I71%) A dr A dr)
J+i'<N X
where x has support in K and is equal to 1 near 0. Because A does not vanish there
exists (7,7') € N? with j + j' < N such that

A]"jl = PQ ()\ = )\0,\/~ |f|2)‘7—j77'j’g0j’jl ($)X(|T|2k) Adr A d77') ?é 0.
X

The change of variable 7 — exp(2i7/k)7 that leaves f invariant, shows that

Aj i = exp(2in(j — j')/k)A; . Hence A;; = 0 for j — j' ¢ kZ. We then get the
existence of (j, ;') € N? verifying j' = j + kv with v € Z and A, # 0.

The change of variable ¢ = 7% in the computation of A;; gives

P(h = —ho, / ARG HRD R o (2)x(HP) A dE A dE) # 0.
X

This ends the proof with —l = j—k+1if v > 0 and with =l =5 —k+1if v < 0.
Notice that | < k in all cases. Necessarily [ # 0 because from hypothesis (a), we know
that the extension of the function (2.2) does not have a double pole at Ag. 4

Theorem 3.2. For Y open in C*™' and X relatively compact open subset of Y, let
f:Y — C be holomorphic and g(x,t) =t. Assume (f,qg) satisfy properties (1) to (4)
of the Introduction. Moreover suppose

(a) [|f1*0 has a at most a simple pole at A\ — v , Vv € N;

(b) ¥ s q eigenvalue of the monodromy of f acting on the H" ' of the Milnor fiber
of f at the generic point of a connected component S; of S*, and there exist a non
zero eigenvector such its monodromy around 0 in S; is a primitive k— root of unity,
with k > 2;

(c) the degree d; of the covering t : S — D* is prime to k;

(d) ¥ s not an eigenvalue of the monodromy of f acting on the H" ' of the Milnor
fiber of f at 0 , where f(z,7) = f(x1,..., %0, 7).
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Then there exists an oblique pole of [|f*g|**O through (Mo — j,—1/k), some j € N,
and some | € [1,k — 1].

Remark that condition (b) implies that A\ € Z because of the result of [1].

Proof. Notice first that (A, ) — [ |f[**|g/**O has a simple pole along {\ = A\¢}. Indeed
the support of the residue current of A — [ |f|**0 at A¢ contains S; where ¢ does not
vanish and Proposition 2.2 applies.

Denote by z a local coordinate on the normalization of S;. The function ¢ has a zero of
order d; on this normalization and hence d; is the degree of the cover S; — D* induced
by t. Without loss of generality, we may suppose ¢t = 2% on the normalization of S;.

Lemma 3.3. Let k,d € N* and put
Yy = {(z,7) e D? /7% = 29}, Y} ==Y, \ {0}.

If k and d are relatively prime, then the first projection pry 4 : Y, — D" is a cyclic cover
of degree k.

Proof. Let us prove that the cover defined by pr, 4 is isomorphic to the cover defined by
pry 1, that may be taken as definition of a cyclic cover of degree k.
After Bézout’s identity, there exist a,b € Z such that

(3.2) ak +bd = 1.

Define ¢ : Yy — C? by ¢(2,7) = (2,2%7°). From (3.2), we have ¢(V;) C Y; and clearly
Pry ;09 = Pri4-

The map ¢ is injective because

o(z,7) = ¢(z,7") = 7" =7 and 7* = 7",
hence 7 = 7', after (3.2). It is also surjective: take (z,0) € Y7*; the system

™ =027% 7F = 2%, when o* = 2,

has a unique solution because the compatibility condition 0¥z~ % = 2% is satisfied. [

End of proof of Theorem 3.2. Take the eigenvector with monodromy exp(—2inl/k)
with (l,k) = 1 given by condition (b). Its pullback by p becomes invariant under the
monodromy of 7 because of the condition (c) and the lemma given above. After (d),
this section does not extend through 0. So we have interaction of strata (see [4]) and a
double pole for A — [ |f[0 at Ay — j with some j € N. Tt remains to use Proposition
3.1 and Corollary 2.3. O

4. INTERACTION OF STRATA REVISED

In this paragraph notations and hypotheses are those of the Introduction. Here, the
function ¢ is the last coordinate. We suppose that the eigenvalue exp(—2imu) of the
monodromy of f is simple at each point of S*. Therefore, this eigenvalue is also simple
for the monodromy acting on the group H" ! of the Milnor fibre of f at 0. In order to
compute the constructible sheaf H"~!(u) on S we may use the complex (Qx[f™!],d.),
that is the complex of meromorphic forms with poles in f~'(0) equipped with the dif-
ferential ¢, :=d — ude/\ along S. This corresponds to the case ko =1 in [4].
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We use the isomorphisms
(4.1) "R — H™ Yu) over S and 7y : A" — h" over S,

where h™ ! [resp. h"] denotes the (n — 1)—th [resp. m—th] cohomology sheaf of the
complex (Qx[f 1], du).

In order to look at the eigenspace for the eigenvalue exp(—2iwl/k) of the monodromy
© of the local system H"'(u) on S*, it will be convenient to consider the complex
of sheaves
— i@ /\)

kt
which is locally isomorphic along S* to (Qx[f'],d.) via the choice of a local branch
of #/* and the morphism of complexes (Qx[f'],6.) — I given by w — t/*.w
which satisfies

Ty = (Q[F ¢, 6,

ldt
5u(tl/kw) - E? A tl/kw == tl/kéu(w).

But notice that this complex I'; is also defined near the origin. Of course, a global section
o € HYS* h"~Y(T})) gives, via the above local isomorphism, a multivalued global
section on S* of the local system H"'(u) ~ h"~! with monodromy exp(—2i7l/k)
(as multivalued section).

So a global meromorphic differential (n — 1)—form w with poles in {f.t = 0} such
that dw = u% Aw+ é% Aw defines such a ¢, and an element in H, with monodromy
exp(—2iml/k).

We shall use also the morphism of complexes of degree +1

GREVYE=S Y

given by 7i(0) = %/\0. It is an easy consequence of [4] that in our situation 7; induces

an isomorphisme 7 : A"7'(T;) — A™(T;) on S*, because we have assumed that the
eigenvalue exp(—2imu) for the monodromy of f is simple along S*.

Our first objective is to build for each 7 € N a morphism of sheaves on S*
(42) T h"_l(Fl) — EFS](OX),

via the meromorphic extension of [y [f|*}[¢[**0J. Here Hf(Ox) denotes the subsheaf
of the moderate cohomology with support S of the sheaf H3(Ox). It is given by the
n—th cohomology sheaf of the Dolbeault-Grothendieck complex with support S :

H7y(0x) ~ H"(Hy(Dby"), d").

Let w be a (n—1)—meromorphic form with polesin {f = 0}, satisfying 6,(w) = £ LAw

on an open neighbourghood U C X \ {t =0} of a point in S*. Put for j € N :

73{w) = Res (A = —u, PE( = —l/k,/ P Y A w A D)),
U f

These formula define d'—closed currents of type (n,0) with support in S*NU.
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Indeed it is easy to check that the following formula holds in the sense of currents on U':
&'[PE (A = —u, PE( = —l/k,/ PP AD))] =
U
- d
Res (A = —u, P(j = —l/k,/ |f|”|t|2“f‘97f AwAD)).
On the other hand, if w = 6,(v) — 4 Av for v e T(U,Q"2[f~]), then
d'[ Res (A = —u, Pi( = —l/k,/ |f|2A|t2ﬂf—17f AvAaD)] =
U

df

Res (A = —u, Pf(u = —l/k,/ 1oL nw D)
U

because the meromorphic extension of [ |f[**0 has no double poles at A € —u — N
along S*, since exp(—2imu) is a simple eigenvalue of the monodromy of f along S*. It
follows that the morphism of sheaves (4.2) is well defined on S*.
By direct computation we show the following equality between sections on S$* of the
sheaf Hfg (QY) :

d'rj(w) = —(u+j)df Arjii(w)
where d': His(Ox) — H{g () is the morphism induced by the de Rham differential
d: OX — Ql
Because ﬂf‘s]((’)x) is a sheaf of Ox—modules, it is possible to define the product g.r;
for g holomorphic near a point of S* and the usual rule holds

d'(g.r;) = dg Ar;+g.d'p;.

Now we shall define, for each irreducible component S; of S such that the local system
H™ '(u)" has exp(—2inl/k) as eigenvalue for its monodromy ©°, linear maps

pé- : Ker (©" — exp(—2irl/k)) — H(S}, H5(0x))
as follows : '
Let s; € Sf be abase point and let v € H" !(u),, be such that ©%(y) = exp(2iwl/k).y.
Denote by () the multivalued section of the local system H" '(u)’ on S} defined by
7. Near each point of s € S we can induce ¢ by a meromorphic (n — 1)—form wj
which is §,—closed. Choose a local branch of ¢!/* near the point s and put w = t/*wy.
Then it is easy to check that we define in this way a global section X(y) on S} of the
sheaf A"'(I';) which is independent of our choices. Now set

p5(7) == r(2(9))-

Like in paragraph 3, define f:X = Cby f:= fop with p of (3.1). The singular
locus S of f is again a curve, but it may have components contained in {r = 0} (see
for instance Example 5.1). Let S* := 7~1(D¥) (so in S we forget about the components
that are in 771(0)) and define the local system # on D* as T*(H” '(u)|g.). Denote its

fiber H, at some 7y with 7§ =, and the monodromy O, of H, .
We have

(:)0 = (W*)_IO@OOW*, where 7(7) := 7—’“,
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and 7, : Hg — H, is the isomorphism induced by 7.

Choose now the base points s; of the connected components S} of S* in {t = t;} where
to is the base point of D*. Moreover choose the base point 79 € C* such that 7§ = t,.
In order to use the results of [4], we need to guarantee that for the component S} of S*,
the map p~'(SF) — S} is the cyclic cover of degree k.

Fix a base point 5; € p~'(S;) such that p(5) = s;. The local system H"'(u) on
the component S* of S containing §; is given by H" '(u)s, which is isomorphic to
H" (u),,, and the monodromy automorphism ©?. In case p : S* — S is the cyclic
cover of degree k, we have 6 = (9.

After Lemma 3.3, this equality is true if k£ is prime to the degree d; of the covering
t:5; —D*.

Let 7 be the element in (H"'(u)’);, whose image by p is . Let o(%) the multivalued
section of the local system ﬁ"’l( )¢ on S* given by 4 on S* By construction, if
(k,d;) =1, we get ©5 = 7. Therefore o(5) is in fact a global (singlevalued) section of
the local system H™ '(u)? over S¥.

Theorem 4.1. Notations and hypotheses are those introduced above. Take v € H" ' (u)s,
such that ©%(y) = exp(—2irl/k)y where ©' is the monodromy of H" '(u)s, and | is an
integer prime to k, between 1 and k — 1.

Assume that k is relatively prime to the degree of the cover t‘g; of D*.

If the section o(7) of H" '(u)" on S} defined by vy is the restriction to S¥ of a global
section W on S of the constructible sheaf H" *(u) then there exists w € I'(X, Qrh
such that the following properties are satisfied:

(1) dw = (m—l—u)%/\ +é%/\w for some m € N;
(2) The (n—1)—meromorphic 6,— closed form t~"/*w/f™ induces a section on S of
the sheaf h"~1(T';) whose restriction to S} is given by X(7);

(3) the current
zyzR%Q:—m—quw=-Um/ P 8 A oA D))
X /

satisfies d'T; = d'K; for some current K; supported in the origin and T; — K
is a (n,0)— current supported in S whose conjugate induces a global section on
S of the sheaf Hig(Ox) which is equal to r;(7y) on S;.

Proof. After [2] and [4], there exist an integer m > 0 and a (n — 1)—holomorphic form
@ on X verifying the following properties:

() do=(m+w 3 A

~ @
(ii) along S the meromorphic d,—closed form o~ induces the section W;

(iii) the current

df

szzRes()\:—m—u/UF)‘fme Ao A O)
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satisfies d'7; = d'K; for some current K; supported in the origin and T; — K;
is a (n,0)—current supported in S whose conjugate induces the element r;(W) of
H (X, O0%).

On X we have an action of the group &, of k—th roots of unity that is given by
Z.(x,7) := (x,(T) where ( := exp(2iw/k). Then X identifies to the complex smooth
quotient of X by this action. In particular every &;—invariant holomorphic form on X
is the pullback of a holomorphic form on X . For the holomorphic form & € I'(X, Q"X_l)
above, we may write

Il
iz
ISR

with Z* LUg Cu)g

1=0
Indeed, &, = ZN 0 (7Y Z7)*@ does the job. Because 7F7‘@, is & —invariant, there
exist holomorphic forms wy,...,wr_1 on X such that

N
—

(4.3) =Y ™ Fprw,.
0

o~
Il

Put w := wy_;. Because property (i) above is Z—invariant, each w, verifies it and hence
w, whose pullback by p is 7% ~'@;_;, will satisfy the first condltlon of the Theorem, after
the injectivity of p*.

The action of Z on 7 is Z5 = (~'¥; therefore @ ; verifies (ii) above and hence for
¢ # k — 1, the form @&, induces 0 in H" '(u) along S.

Let us prove property (3) of the Theorem. When @ is replaced by @;—; in the definition
of T}, the section it defines on S does not change. On the other hand, the action of Z
on this section is given by multiplication by ¢~'. Because this section extends through
0, the same is true for 7% "7, whose conjugate will define a ®;—invariant section of
H5(Ox) extendable through 0. Condition (3) follows from the isomorphism of the

subsheaf of ®;—invariant sections of ﬁfg](o;() and H{g(Ox). O

Our next result treats the case where there is a section W of H™ '(u) on S* which is
not extendable at the origin and induces ¥ on S’z* Remark that there always exists a
global section on S* inducing 7 on gz* : just put 0 on the branches S’Z*, for each ' # 1.
The next theorem shows that is this case we obtain an oblique pole of [ [f[**|g**O.

Remark that in any case we may apply the previous theorem or the next one. When S*
is not, connected, it is possible that both apply, because it may exist at the same time a
global section on S* of the sheaf H™ '(u) inducing 4 on S* which is extendable at the
origin, and another one which is not extendable at the origin.

Theorem 4.2. Under the hypotheses of Theorem 4.1, assume that we have a global sec-
tion W on S* of the local system H" (u) inducing ¥ on S} which is not extendable at

the origin. Then there exists Q € T'(X, Q%) and I' € [1, k] with the following properties:
d I dt
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(2) along S* the n—meromorphic (4, — %%/\)—closed form Q/f™ induces T1(0) =
dTf/\(f in the sheaf h™(Ty), for some global section o on S* of the sheaf h"~*(I'y);
(8) the current on X of type (n+ 1,0) with support {0} :

P(r = =m —u Pfu=~(k =0k, [ 1AL ne D))
X

defines a non zero class in H[%TI(X, Ox) for j large enough in N.

Remark 4.3. As a consequence, with the aid of Corollary 2.3, we get an oblique pole
of [ |f**g|*O through (—m —u — j,—I'/k) for j > 1, provided [, [f[**0 does not
have double pole at —u — m, for all m € N.

Proof. As our assumption implies that I{& (S, H"'(u)) # 0, Proposition 10 and Theorem
13 of [4] imply the existence of Q € I'(X, Q%) verifying

s df -
(i) dQ = (m-i—u)Tf A2, for some m € N;

(ii) ()Nbl([g)])jé 0, that is €/f™ induces, via the isomorphisms (4.1), an element in
H(S*, H"~'(u)) which is not extendable at the origin;
(iii) ZQ = ¢7¥Q, for some I € [1,k] and ¢ := exp(—2ir/k).

Define then 7' € H, by the following condition: (7,)~'7 is the value at 75 of 6\61([(2])
After condition (iii) we have ©y(y') = ¢ V7.
As we did in (4.3), we may write

0=

k—1
Teikp*Qg.
e:

0

Put Q := Q_y. Because p*Q = 7577Q_, and Q, satisties dQ, = (m + u)de A Q, for
any ¢, property (1) of the Theorem is satisfied thanks to injectivity of p*.

Relation (iii) implies that Q;_y induces 7' := (m,)~'y" and €, induces 0 for £ #k —1'.
Hence condition (2) of the Theorem is satisfied.

In order to check condition (3), observe that the image of 7;(7') in H['g]“(f( , Q%) s
equal to the conjugate of

d'Res(/\:—m—u,/~ |f|2’\f’jﬁk,l:/\|:|) =Py(A= —m—u,/~ |f\2)‘fj%/\flky/\|:|).
X X

After [4], this current is an analytic nonzero functional supported in the origin in X.
There exists therefore w € I'(X, Q”XH) such that

P\ = —m —u, / |f|”f—j% A Qs A i) # 0,
X
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for any cutoff x equal to 1 near 0. The change of variable 7 — (7 shows that @ may
be replaced by its component 1@_p in the above relation. With w € I'(X, Q%') such

that p*w = 75 by we get

P = =m =, [ |FPF 20l g Axa) 20
X

O

Remark 4.4. The case I' =k is excluded if [, |f 1?20 has only simple poles at —m —u
for all m € N. Indeed, if I' = k, the class [Q] in H"(u) satisfies ob;([2]) # 0; from
Theorem 13 of [4] interaction of strata is present and gives rise to poles of order > 2.

5. EXAMPLES

Example 5.1. n = 2, f(z,y,t) = tz* — y*. The extension of [ |f[*}|¢[**O presents
an oblique polar line of direction (3,1) through (—=5/6 — j,—1/2), for 7 > 1. In fact it
follows from general facts that 7 = 2 is large enough because here X is a neighborhood
of 0 in C3.

Proof. We verify directly that the standard generator of H'(5/6) (which is a local system
of rank 1) on S* := {z =y =0} N{¢ # 0} has monodromy —1 = exp(2ir1/2). We take
therefore £ = 2 and we have f(z,y,7) := 722 — 93.

Put
S*=857uS; with S;:={x=y=0}n{r#0}, S;:={r=y=0}n{z #0}

The form @ := 3z7dy — 2y d(z7) verifies

)

(5.1) do =

ANw

&,

and @ induces a nonzero element in the H 1 of the Milnor fibre of f at 0 because it
induces on S; the pullback of the multivalued section of H'(5/6) we started with. It
follows that the form w of Theorem 4.1 is

w = 3xtdy — 2yt dx — xy dt.

It verifies p*w = 7@ and hence

d A +1 A
W= ——" w - w.
6 f 2t

One way to see interaction of strata for f and exp(2im5/6) consists in looking at the
form Q := I NG =dr A (3zdy — 2y dz) that verifies dQ = S Q. Along S we have

~l&

Q= d@logT) — g% A @logT,

after (5.1). Hence oby(Q) # 0 in H(S;, H'(5/6)). Interaction of strata is proved.
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It turns out that Theorem 4.2 may also be used to see existence of an oblique pole as
follows. Construct a section on S* of H'(5/6) that does not extend through 0 by setting
0 on S; and the restricition of & to S*. This section does not extend because otherwise
its value at the origin should be not 0 in H' of f (because not 0 along S*) on one hand
and should be 0, because of its value on 5’5‘ , on the other hand.

Notice also that the meromorphic extension of [, |f 1?0 does not have a double pole at
—5/6 — j, for all j € N, because interaction of strata is not present for exp(—2in5/6):
the monodromies for H' and H? of the Milnor fibre of f do not have the eigenvalue
exp(—2im5/6) because they are of order 3 thanks to homogeneity. O

Example 5.2. n = 2, f(z,y,t) = 2* + y* + ta®y. The extension of [, |f[*|t[*O
presents an oblique polar line of direction (4, 1) through (—5/8,—1/2).

Proof. The Jacobian ideal of f relative to ¢, denoted by J,(f), is generated by

of = 423 4 2tzy and of = 4y + ta?
ox Jy
We have
af of 2 2
2 — —4r— =2(t" — .
(5.2) tor ~ 73, (t* — 8y")zy

Put § := #* — 8y? and notice that for ¢ # 0 the function § is invertible at (¢,0,0).
We use notations and results of [5]. Recall that E := Q? / d,f A d,O is equipped with

two operations a and b defined by a = £f, b(d/§) := d,f A{ and a t—connection
b=1.V : P — E that commutes to a and b where
(1) V:E—E is given by V(d,€) := d,f A% — 9Lde,
(2) P:={a€E|V(a) € bE}.
Relation (5.2) gives
(5.3) 2zyd = d,f A (tdy+ 4z dz) = d,f A d/(ty + 227);

hence zyé = 0 € E, and 2y € J/(f) for ¢ # 0. As a consequence, for ¢ # 0 fixed, x?
and y* belong to J(f;). Therefore the (a,b)—module Ey, := E/(t — t;)E has rank 5
over C[[b]]. The elements 1, z,y,z? y? form a basis of this module.

We compute now the structure of (a,b)—module of E over the open set {t # 0}, i.e.,
compute the action of a on the basis. Let us start with

a(yQ) — x4y2 +y6 +x2y3.
Relation (5.2) yields

(5.4) 22°yd = d,f A (tz dy + 42> dz) = t.b(1)
and also

0 te dy + 422 dx _1 4. )
(5.5) T’y = b(d(—% ) = th(l) + t3b(y )+ b°.E.

From
b(1) = d/f A (zdy) = Azt + 22’y = d/f A (~ydz) = Ayt + tzy
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we get
8
(5.6) 4ot = —t—Qb(yQ) + b’E.
Therefore
1 4
(5.7) dy* = b(1) — tr’y = b)) — t—2b(y2) + b’E.
The relation . A
dy + 4z*y d
deduced from (5.3) shows zty? € b2E.
Relation (5.4) rewritten as 2t?z%y = tb(1) + 16z2y? yields
2’y = ﬁny — ib(l)
8 16
Moreover of
vy +1a®) =yt o = df Ay dr) = 30(y)
and hence
495 = —t2*y® + 3b(y?).
On the other hand
b(y?) = d,f A (zy® dy) = Azty? + 2ta?y?® = 2tz?y® + V’E.
Finally
t
a(y®) = z*y® +y° + ta’y’ = —Zny?’ + gb(yQ) + t2*y* + VE = gb(yQ) + b’E.
Now, after (5.6), (5.7) and (5.5) we obtain successively
2 1 1 1 4
_ 44 2, 2 2 2 2
a(l) =2 +y* +tay = _t_Zb(y ) + gb(1) — t_Zb(y ) + 5b(1)+ t_2b(y )+ b°E
5 1
= =b(1) + =b(y®) + °E
212 3 1. .5 29 ., 2 5 212 9
1——)==b(1)+ b ——==b b’E = -b(1 — =) + b°E.
(1= 20 = 2b(0) + 5b47) — 5 b(y?) + VE = b1~ ) 4

Some more computations of the same type left to the reader give

a(r) = b(z) + b°E,
7

a(y) = gb(y) + V’E,

a(z?) = %b(:ﬁ) + PR

17

Let us compute the monodromy M of ¢ on the eigenvector vy := 1 — 2%22 + bE. Because

b-'V = 2 it is given by
M = exp(2inth~'V).
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We have )
1 4y
20t 2y 2
V(1) =—z%y b(2t1+ t3)+bIE
and hence )
0 -1 4y
—(1)=—1-—2 +}E
g =517z +b
Also
2 t 21 4 t
2 _ .23 L 9 2 _ v 29 2 2
V(y?) = -2’y g7y + 7500 = —5 (5,0(1) + 50(y") + 750(1) + V'E
gives
0 1
t— (%) = —=19% + bE
5 W) Y+
Hence \ ,
0 2y 1 2y
t—(1 — = —— (1= =)+ bE
ol ) =)
from what we deduce Mv = —v.

An analogous computation with 72 = t, shows that the eigenvector @ is invariant under
M . On the other hand, the relation
2y? ~
b=1- "2 4t
T
where E is associated to the pair (f,7), with f(z,y,7) := z* + y* + 7222y, shows that
¥ does not extend through 0 as a section of E.

This last assertion may be proved directly. It suffices to show that there does not exist
a holomorphic non-trival' 1—form @ near 0 such that

(5.8) do = % N

oo | Ut

Because f is quasi-homogeneous of degree 8 with the weights (2,2,1) and because
@/ f5/% is homogeneous of degree 0, the form @ must be homogeneous of degree 5. So
we may write

O = (ap+ a7’ + aor)dr + 78 + T

where «; and [; are respectively 0— and 1—homogeneous forms of degree 2 — ¢ with
respect to z,y. Setting 3 := By + 726;, we get

df A\o=d,fATB and d& =7d;3 modulo drAD.
With (5.8) we deduce
8fd,B=5d,f N

and an easy computation shows that this can hold only if # = 0. In that case a = 0
also and the assertion follows. O

Lthat is, not inducing 0 in the Milnor fibre of f at 0
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