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Abstract

The harmonic balance method is widely used for the analysis of strongly nonlinear prob-
lems under periodic excitation. The concept of hypertime allows for the generalization of the
usual formulation to multi-tone excitations. In this article, the method is applied to a system
involving a nonlinearity which cannot be explicitly expressed in the multi-frequency domain
in terms of harmonic coefficients. The direct and inverse Discrete Fast Fourier Transforms
are then necessary to alternate between time and frequency domains in order to take into
account this nonlinearity. The results show the efficiency and the precision of the method.

Keywords: harmonic balance method, hypertime domain, unilateral contact

Résumé

La méthode de l’équilibrage harmonique permet l’analyse de problèmes fortement non
linéaires sous excitation périodique. En utilisant le concept d’hyper-temps, il est possible
de généraliser la formulation usuelle à des excitations apériodiques. Dans cet article, cette
méthode est appliquée à un système impliquant une non-linéarité qui ne s’exprime pas
de façon explicite dans l’espace multi-fréquentiel des coefficients harmoniques. Les Trans-
formées de Fourier Rapides directe et inverse sont alors nécessaires pour alterner domaines
temporel et fréquentiel afin de prendre en compte cette non-linéarité. Les résultats montrent
l’efficacité et la précision de la méthode.

Mots clés : méthode de l’équilibrage harmonique, espace hyper-temps, contact unilatéral

1 Introduction

It is well known the the Harmonic Balance Method (HBM) is one of the most commonly used
approaches for analyzing strong nonlinear systems. It offers an alternative to time-domain
methods for the analysis of equations where a periodic steady-state is sought and has been used
for years in electrical engineering for studying nonlinear circuits [1]. The usual 1-dimensional
HBM is limited to predicting periodic vibrations only whereas aperiodic (quasi-periodic) so-
lutions made up with incommensurate tones are frequent. For the first time in [2], the HBM
applied to mechanical systems was extended to the multi-tone free response of a nonlinear beam
with cubic terms considering the concept of hypertime. Unfortunately, the main drawback of
this approach, which requires a complicated algebraic formulation as a preliminary, lies in its
inability to consider nonlinearities, such as unilateral contact, that can not be directly evalu-
ated in the frequency domain. A major breakthrough was proposed by [3] as the Alternating
Frequency/Time domain method (AFT). It was realized that strong nonlinearities can be ac-
curately analyzed in the time domain and transformed back in the frequency domain so as to
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form a set of nonlinear equations which can be handled by a nonlinear solver. Based on a
pioneering work [4], an extension of the AFT to aperiodic systems was proposed in [5] for the
study of the internal resonant vibration of a nonlinear Jeffcott rotor with contact terms using
multi-frequency Fourier Transforms. In a recent work, Pušenjak [6] has extended the method to
handle general multi-degree of freedom externally excited and autonomous dynamical systems.

This article finds its motivation in a study concerning the rotor-stator ”modal” interaction
explained in [7]. According to this work, for a tiny range of rotational velocities and under
certain circumstances, a travelling wave speed coincidence [8] will occur between the nodal di-
ameter modes of the bladed-disk and the casing through direct contact, leading to an aperiodic
limit cycle. Time integration including inherent difficulties like time-step size and initial con-
ditions, it has been found interesting to use the presented n-dimensional HBM for a clearer
insight and an intrinsic description of this phenomenon.

2 n-dimensional harmonic balance method: theoretical state-

ments

Nonlinear mechanical problems generally involve equations of motion which can be written in
the following generic form:

MẌ + DẊ + KX + Fnl(X, Ẋ) = Fext (1)

where X, Ẋ and Ẍ respectively stand for the position, velocity and the acceleration vectors
expressed in generalized coordinates. The external excitation is given in Fext and the nonlinear
terms are gathered in Fnl(X, Ẋ). The mass, damping and stiffness matrices of the mechanical
system are respectively named M, D and K. Following [6], the extension of the HBM to
multi-tone systems requires the construction of an hypertime domain. First, Ms pseudo-time
variables τm = ωmt for m = 1, 2, . . . ,Ms within the hypertime domain 0 ≤ τm ≤ 2π are
introduced, where ωm represent the incommensurable frequencies of the steady-state response
sought. Assuming that the aperiodic solution for the generalized coordinate Xj (jth coordinate
of X for j = 1, 2, . . . , N) exists where N represents the total number of DOF of the system, the
solution is sought in the form of truncated multiple Fourier series:

X =

Nh
∑

j1=−Nh

Nh
∑

j2=−Nh

· · ·

Nh
∑

jMs=−Nh

[

aj1,j2,...,jMs
cos

(

Ms
∑

m=1

jmτm

)

+ bj1,j2,...,jMs
sin

(

Ms
∑

m=1

jmτm

)]

(2)

where Nh denotes the highest order of the harmonic terms in the truncated Fourier series. In
equation [2], the various combination tones are expressed by means of the arguments

∑Ms

m=1 jmτm,
where jm are positive or negative integers. Vectors aj1,j2,...,jMs

and bj1,j2,...,jMs
include all the

Fourier coefficients of the frequency-discretized displacement along with the different tone com-
binations. Because of the parity of the cos and sin functions, only the terms at positive combi-
nation frequencies meeting the following constraint need to be kept:

Ms
∑

m=1

jmτm ≥ 0 (3)

In spite of the above restriction on the positive combination frequencies, the total number of
harmonic terms in the solution will become very high at greater values of Nh. To keep the
smallest total number of harmonic terms, additional constraints on the combination frequencies
are assumed if possible. Once the selection of combination frequencies and harmonics has been
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performed, the solution can be constructed by following equation [2] which makes possible to
express the aperiodic displacement Xj conveniently in a matrix form as:

Xj = T · uj, j = 1, 2, . . . , N (4)

where T = [Tcos,Tsin], uj = {uj
cos,u

j
sin}

T and superscript T denotes matrix transposition. At
this level, it is worth mentioning that uj is a non-redundant rearrangement of the harmonic
coefficients aj1,j2,...,jMs

and bj1,j2,...,jMs
defined in equation [2] and consistent with the row vector

T, combination of two subvectors Tcos and Tsin of the form:

Tcos =

[

cos

(

Ms
∑

m=1

j1
mτm

)

, cos

(

Ms
∑

m=1

j2
mτm

)

, . . . , cos

(

Ms
∑

m=1

jNcos
m τm

)]

(5)

where ji
m (i = 1, 2, . . . , Ncos and m = 1, 2, . . . ,Ms) are integers satisfying constraint [3]. Subvec-

tor Tsin is analogously combined of Nsin elements of sine terms. The total number of harmonic
terms Nh is equal to Ncos + Nsin. Considering that the constant component can be interpreted
by the corresponding cosine term at the zero frequency in matrix T and that no sine term at
the zero frequency in matrix T is needed yields: Ncos = Nsin +1. By introducing the Kronecker
product ⊗ such as:

Y = T ⊗ IN and u = [u1
T , u2

T , . . . , uN
T ]T (6)

vectors X, Ẋ and Ẍ are expressed as follows :

X = Y · u, Ẋ =

(

Ms
∑

n=1

ωn
∂Y

∂τn

)

· u and Ẍ =

(

Ms
∑

m=1

Ms
∑

n=1

ωmωn
∂2Y

∂τm∂τn

)

· u (7)

and plugged into equation [1] before a Galerkin procedure is applied over the entire hyper-
time domain [0, 2π]Ms , resulting in a vector of nonlinear equations in u that are to be solved
simultaneously:

R = H · u + Fu
nl(u) − Fu

ext (8)

Notations in equation [8] are given below:

H =

〈

Y,

[

Ms
∑

m=1

ωm

(

Ms
∑

n=1

ωnM
∂2Y

∂τm∂τn
+ D

∂Y

∂τm

)

+ KY

]〉

Fu
nl(u) =

〈

Y,Fnl(X, Ẋ)
〉

Fu
ext = 〈Y,Fext〉

(9)

with the inner product 〈· , ·〉 defined as follows:

〈Y1,Y2〉 =
2

(2π)Ms

∫ 2π

0

∫ 2π

0
· · ·

∫ 2π

0
Y1

TY2 dτ1dτ2 . . . dτMs

Vanishing of the residual vector R with a nonlinear solver means that the equilibrium steady
state is reached. Usually, the iterative procedure takes the following form:

u(k+1) = u(k) − H−1R
(

u(k)
)

(10)

where H is a numerical estimation of the Jacobian matrix [9]. Vector Fu
nl

(u) in equation [8] is
generally not an explicit function of the unknown vector u except for particular nonlinearities,
such as cubic restoring forces for instance.
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3 Application to simple cases

3.1 Algorithm and implementation

For the sake of generality, a program capable of taking into account any kind of nonlinearities in
a systematic way has been developed. The cornerstone of the method is to accurately evaluate
the nonlinear terms directly in the time domain. To this end, n-dimensional discrete direct
(n-FFT) and inverse (n-iFFT) Fast Fourier Transforms are performed at each iteration of the
nonlinear resolution in order to alternate between the frequency domain, where the nonlinear
set of equations is solved, and the time domain, where the nonlinear terms are considered.
Figure 1 illustrates the general algorithm. When the equations of motion are projected onto

no

yes

starting

guess u(0)

n-FFT

n-iFFT

X Fu

nl
(u)

computation of

Fnl(X, Ẋ)

computation

of H

u(k)

R < ε ?stop

kth iteration of quasi-Newton solver

Figure 1: General implementation of the n-Harmonic Balance method

the frequency domain, the notion of time has vanished. For a periodic signal, the hypertime
domain collapses to one period. For an aperiodic behavior, it can be interesting to visualize
true time going through the hypertime domain. Satisfying the relationship between true time

2π

2π

4π

4π

0
0

τ1

τ 2

t

2

2

3

3

4

4

Figure 2: Schematic of the path of time t through the hypertime domain [τ1, τ2]

t and pseudo-time variables τi yields in two dimensions:

{

τ1 = ω1t
τ2 = ω2t

⇒ τ2 =
ω2

ω1
τ1 (11)

True time t can be represented by the line τ2 = ω2

ω1
τ1 in the (τ1, τ2)−plane. As it is periodic

according to τ1 and τ2, it fulfils the light grey square [0, 2π]2 depicted in figure 2. Indeed, the
line segments numerated 2, 3 and 4 represent an interpretation of the mapping defined by:
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t ∈ [0, +∞[→ (τ1, τ2) ∈ [0, 2π]2 such as equation [11] is verified. By construction, two points
infinitely close to each other in [0, 2π]2 may be completely different true instants in [0,+∞[.
This geometric interpretation can of course be generalized to a cubic hypertime domain or more.

3.2 Cubic nonlinearity

In order to check the implementation of the mentioned algorithm, a simply supported beam
connected to a cubic nonlinear spring at x = L/2 as depicted in figure 3 (L is the length of the
beam) is subjected to the following aperiodic external load fext = 100

(

cos(πt) + cos(e1t)
)

. The
displacement field is discretized by the usual Euler-Bernoulli functions. When the steady state is

fext

knl(v)
v(x)

x

Figure 3: Schematic of the beam with a cubic restoring force

reached, figure 4 confirms the accuracy of the HBM dealing with cubic nonlinearities. The max-
imum difference between time integration (namely the central finite difference scheme) results
and 2-HBM results are of order 10−14 m. As explained in [10], only odd and odd-combination
(odd sum of indexes in τ1 and τ2) harmonics appear in the solution. The residual error is obvi-
ously due to the truncation of the double Fourier series up to the number of harmonics Nh kept.
Trivially the higher the number of harmonics, the smaller the error. It has to be noted that a
comparison of the CPU costs between the n-HBM and the time marching procedure is difficult:
because of the aperiodic behavior of the motion and the mapping between true time t and the
hypertime domain, results given by the n-HBM are valid for t ∈ [0,+∞[ that would require an
infinite amount of time for the computation directly in the time domain. An analytical analysis

time (s)
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p
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tu

d
e

(m
)

×10−3

-3

-2

-1

1

2

3

0

0 5 10 15 20 25 30

Figure 4: Displacement of the beam in x = L/2: time integration (—) and 2-HBM (- -) for
Nh = 7

is given below for comparison. For the sake of simplicity, the displacement is considered up to
the first harmonic only (u = [a1 a2 b1 b2]

T ):

v|x=L/2 = a1 cos τ1 + a2 cos τ2 + b1 sin τ1 + b2 sin τ2 (12)
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Then, projecting the cubic nonlinear term onto the multi-frequency domain and performing the
Galerkin procedure gives the respective components of Fu

nl
(u) (see table 1).

harmonic cubic force

combinations components

cos τ1 3knl/4
(

2a1b2
2 + 2a2

2a1 + a1b1
2 + a1

3
)

cos τ2 3knl/4
(

a2
3 + a2b2

2 + 2a2a1
2 + 2a2b1

2
)

sin τ1 3knl/4
(

2b2
2b1 + a1

2b1 + 2a2
2b1 + b1

3
)

sin τ2 3knl/4
(

a2
2b2 + b2

3 + 2a1
2b2 + 2b2b1

2
)

Table 1: Analytical calculation of the cubic nonlinear restoring force expressed in the frequency
domain for Nh = 1

harmonics nonlinearity computed

directly in the frequency domain using the n-FFT technique

a1 1.190871824484995 · 10−3 1.190871824485002 · 10−3

a2 1.191004700829494 · 10−3 1.191004700829497 · 10−3

b1 1.159230995878226 · 10−6 1.159230995878233 · 10−6

b2 1.340061751905898 · 10−6 1.340061751905895 · 10−6

Table 2: Comparison between 2-HBM results with (1) the cubic nonlinearity expanded directly
in the multi-frequency domain and (2) using the n-FFT technique

Reading table 2 shows the perfect agreement between the n-FFT technique and the analyti-
cal results for an explicit nonlinearity in the frequency domain. The precision of the alternating
frequency/time domain approach is left to the reader’s appreciation.

3.3 Contact constraint

The model of the previous section is considered now with a contact constraint (instead of a
cubic spring) on v|x=L/2 as depicted in figure 5. The new equation of motion becomes:

{

MẌ + DẊ + KX + Fnl(X, Ẋ) = Fext

v|x=L/2 ≤ vmax, ∀t ≥ t0
(13)

The contact is treated as follows: the contact reactions are not explicitly calculated but if a

fext

vmax

v(x)

x

Figure 5: Schematic of a beam constrained by a wall

penetration is detected in the time domain, the displacement v|x=L/2 is corrected such as to
be equal to vmax. This can be considered as an exact contact law where no penetration is
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allowed, equivalent to a dual formulation using Lagrange multipliers which is a straightforward
extension. This approach is more accurate from a physical point of view than the one presented
in [5] which only uses a penalty-based technique for taking contact constraints into account.
This new displacement is then transformed back to the multi-frequency domain: this procedure
is depicted in figure 6. The 2-HBM results are compared to the time-integration results in
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Figure 6: Partial description of the 2-HBM algorithm dealing with a contact constraint. Dis-
placement v|x=L/2 is depicted. White harmonic combinations in subfigures (a) and (d) are
redundant. For this specific case, the contact pressure is directly considered by correcting the
displacement field in the hypertime domain as illustrated in subfigure (c)

figure 7. In order to get an accurate solution using the 2-HBM, a relatively high number of
harmonics is needed. Unfortunately, the necessary number of spectral components that would
guarantee an accurate solution is not known in advance. In fact, it is well known that all
combinations of harmonics are more or less excited due the presence of the contact constraint
as illustrated in figure 8 for which twelve harmonics for each frequency component (equivalent
to a total of 313 non-redundant harmonic combinations) have been kept for the computation.
Figure 7 shows that the solution from time integration and its counterpart from HBM are
nearly indistinguishable. Further calculations would show that five harmonics for each frequency
component represent a good compromise between CPU costs and accuracy. Indeed, the use of
discret Fourier Transform techniques requires an estimation of 2N lg2 N computations if N
stands for the number of evaluated points. Consequently, the number of computations greatly
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Figure 7: Displacement v|x=L/2: time integration (—) and 2-HBM (- -) for Nh = 12

increases if a 2-dimensional (or more) domain is considered: this represents the main drawback
of the proposed approach.
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Figure 8: Normalized absolute values of harmonic coefficients for Nh = 12

Yet an effective incremental harmonic balance with two time scales for computing the re-
sponse of the previous model with such a strong nonlinearity in time domain has been validated.

4 Rotor-stator modal interaction phenomenon

4.1 Basic background

Under certain conditions related to the rotational velocity of an aircraft engine, an energy
exchange via direct structural contacts can lead to a wave speed coincidence between the n-
nodal diameter modes of both structures. This very specific phenomenon is explained in details
in [8]. It features a limit cycle associated to an aperiodic self-excited oscillating behavior of the
entire structure even if any external load has disappeared [11]. Very simple geometrical and
linear considerations state that a unique critical rotational velocity Ω can be dangerous in terms
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of amplitude of vibration:

ωc

n
= Ω −

ωbd

n
(14)

where ωbd and ωc respectively stand for the bladed disk’s and the casing’s eigenfrequencies. In
simple words, this condition stipulates that there is a rotational velocity for which the velocity
in a stationary frame of a resonant backward wave travelling on the bladed disk (Ω − ωbd

n )
equals the velocity of a resonant forward travelling wave on the casing (ωc

n ). An illustration of
this phenomenon for n = 3 is given in figure 9. The black square � follows the forward wave
propagating on the casing whereas the black blade illustrates the motion of the bladed disk.
The aperiodic behavior is shown by the fact that after one round of the wave on the casing, the
black blade is away from its initial position.

However, a numerical investigation using a finite element model including a contact law in
conjunction with a time marching procedure showed that equation [14] is too restrictive and
cannot precisely predict the interaction phenomenon [11]. Moreover, in order to overcome both
the influence of initial conditions and the time-step size problem due to the contact detection, the
frequency-domain method described in this paper can be helpful in giving a intrinsic description
of the phenomenon.

t0 t0 + 2Tc/5 t0 + Tc t0 + 7Tc/5

t0 + 8Tc/5 t0 + 2Tc t0 + 13Tc/5 t0 + 3Tc

Figure 9: Snapshots of the bladed disk - casing model after three periods Tc

4.2 Autonomous systems

Because the limit cycle explained above and which is of interest in this study occurs even
when any external forcing has disappeared, it is solution of an autonomous set of equations.
Tackling such a system of nonlinear equations, where the zero solution is trivial, relies on a
modified version of the generalized harmonic balance described. In order to find a non-trivial
aperiodic solution, Ms incommensurate frequencies ωm are included in the unknown vector.
The well-posedness of the problem holds by prescribing Ms harmonic coefficients among the u

components. Because the system is autonomous, this has no influence on the almost periodic
response except in the appearance of the phase shift. Equation [8] is then rewritten in the
following manner:

R(u,ω) = H(ω)u + Fu
nl(u,ω) (15)

such has the unknown vector u is diminished of Ms harmonic coefficients that are replaced
by the Ms incommensurate frequencies to be sought in order to find a non-zero solution and
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arranged in ω. Convergence is obtained when the residual vector R(u,ω) is smaller than a
given value.

5 Conclusions and prospects

The harmonic balance method has been adapted to solve systems with strong nonlinearities in
a systematic way. Two simple cases, namely (1) a beam connected to a cubic nonlinear spring
and (2) a beam constrained by a wall, showed the efficiency and accuracy of the n-dimensional
HBM. Work are in progress to apply this method to a rotor-stator system undergoing an ape-
riodic motion under very particular circumstances. It is believed that this technique will give a
description of the motion close to the concept of nonlinear normal mode.
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