This document must be cited according to its final version which is published in a conference proceeding as: P. Dufour¹, "Control engineering in drying technology from 1979 to 2005: Review and trends", Proceedings of the 15th International Drying Symposium (IDS) 2006, vol. B, pp. 732-739, Budapest, Hungary, august 21-23, 2006.

All open archive documents of Pascal Dufour are available at: <u>http://hal.archives-ouvertes.fr/DUFOUR-PASCAL-C-3926-2008</u>

The list of Pascal Dufour's works published in journals are available at: <u>http://www.researcherid.com/rid/C-3926-2008</u>

1

Université de Lyon, Lyon, F-69003, France; Université Lyon 1; CNRS UMR 5007 LAGEP (Laboratoire d'Automatique et de GEnie des Procédés), 43 bd du 11 novembre, 69100 Villeurbanne, France Tel +33 (0) 4 72 43 18 45 - Fax +33 (0) 4 72 43 16 99 http://www-lagep.univ-lyon1.fr/ http://www.univ-lyon1.fr http://www.cnrs.fr

CONTROL ENGINEERING IN DRYING TECHNOLOGY FROM 1979 TO 2005: REVIEW AND TRENDS

by: Pascal DUFOUR

IDS'06, Budapest, 21-23/08/2006

dufour@lagep.univ-lyon1.fr

Outline

- 1. What are Online Control Tools <u>useful</u> for?
- 2. Some <u>Benefits</u> previously obtained with Online Control Tools in Industrial Drying Technology
- 3. Some <u>Basis</u> for Control: keywords
- 4. Main R<u>esults</u> of the Survey of 71 Papers dealing with Control in Drying Technology

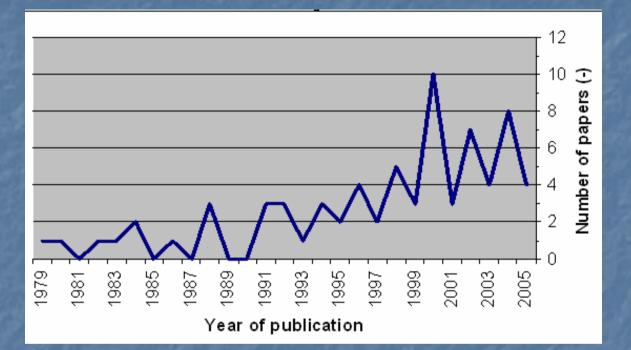
What are Online Control Tools useful for ?

Open <u>questions</u> <u>during</u> industrial drying <u>operations</u> are:

How to always <u>produce</u> the <u>desired properties/quality</u>?

How to <u>minimize off spec production</u> induced by changes in some of the drying condition (set-points, feed characteristics or atmospheric conditions) ?

How to <u>optimize the cost of production</u>: decrease the drying time and increase the energy efficiency ?


What are Online Control Tools useful for ?

In <u>control engineering</u>, <u>these</u> open <u>questions</u> may be summerized as a <u>single one</u>:

How to <u>adjust</u> some of the <u>experimental drying conditions</u> (<u>manipulated variables</u>) <u>during the drying</u> while achieving the specified performances (for the <u>controlled variables</u>) ?

<u>Efficient solutions</u> exist in <u>control engineering</u> and will be outlined in the next slides

Number of <u>publications</u> dealing with <u>control</u> <u>in drying</u> versus the year of publications

<u>39 %</u> of the 71 papers where published <u>in 19 years</u> (1979 - 1997). <u>61 %</u> of the 71 papers where published <u>in the last 8 years</u> (1998 - mid 2005)

Interest of papers dealing with control in drying engineering has increased since 1998.

dufour@lagep.univ-lyon1.fr

Some Benefits obtained with Online Control Tools in Industrial Drying Technology (1)

Applications	Drying cost	Energy consumption	Various
Grain dryer (Ryniecki and Nellist, 1991)	2.29 £/t to 1.52 £/t = -34%	Airflow : -30% Heater : -85%	
Grain dryer (Mc Farlane et al., 1996)	-1.3%	Fuel : -6%	Drying time : -18%
Beet sugar factory (CADDET, 2000)	-1.2% (- 18,900 £/year)	- 14,000 £/year	Off spec. production : From 11% to 4% Payback : 17 months
Rotary dryer (Iguaz et al., 2002)	-7% dufour@lagep	.univ-lyon1.fr	Throughput : +1.4% = +105 845 US\$/year profit. Payback : 9 months ₆

Some Benefits obtained with Online Control Tools in Industrial Drying Technology (2)

(Conclusion from previous table):

• (+) the <u>use of control</u> tools allows to:

- to decrease off-specification production
- to <u>minimize drying time</u>
- to decrease energy consumption
- to improve benefits

• (+) return on this investment is relatively short : < 1.5 years.

Some Basis for Control: keywords

Questions to answer before starting a control study:

<u>What</u> can be <u>tuned</u> ?:

design variables (dryer dimensions, ...) or <u>manipulated control variables</u> (flow rates, cooling temperature)

When is the value of the tuning variables <u>calculated</u> ?:
 Off-line control (open loop=before operation)
 or <u>on-line control</u> (closed loop=during operation)
 <u>How</u> is this <u>value calculated</u> ?
 Manual control
 or <u>automatic control</u>

In control engineering, "<u>Online control</u>" = <u>automatic</u> <u>on-line</u> <u>tuning</u> of the <u>manipulated control variables</u>.

Some Basis for Control: keywords

Online control is based on a control target, which is either:

<u>Regulation</u>: the <u>controlled variables</u> have to <u>track</u> as best as possible their respective <u>constant set-point</u> and with a minimum variability during the operation.

<u>Optimal behavior</u>: <u>minimize</u> a <u>dynamic criteria based on</u> <u>online measures + a model + constraints</u> s.t.:

- <u>process limitations</u> (e.g.: actuators magnitude have upper and lower bounds)
- <u>process safety</u> (e.g.: a maximum temperature beyond which operation becomes hazardous)
- process specification (e.g.: a maximum temperature beyond which final quality is too altered)

Number of papers versus the type of control problems solved in drying and versus the years of publication

Years	Regulation	Optimal behavior
1979-1997	22 p=1.16 p/year	5 p=0.28 p/year
1998-2005	25 p=1.39 p/year	20 p=2.85 p/year
1998-2005	25 p=1.39 p/year *1 .2	20 p=2.85 p/

This <u>underlines the recent needs</u> to really <u>optimize the</u> <u>dryer efficiency</u>, which is today <u>possible</u> with still more efficient <u>computer-based optimization control tools</u>.

Type of control tool	Regulation	Optimal behavior	Regulation + optimal behavior
Closed-loop optimal control	<u>15</u>	<u>16</u>	31
PID	<u>25</u>	1	26
Open-loop optimal control	4	<u>12</u>	16
Feed-forward	<u>15</u>	0	15
IMC	<u>4</u>	<u>6</u>	10
Fuzzy	<u>8</u>	0	8
Observer	2	<u>5</u>	7

• Advanced <u>optimal control algorithms</u> like MPC, successfully used in the chemical industry since 30 years, are <u>now</u> also <u>used</u> in drying.

• The <u>60 year old PID</u> <u>control algorithm</u> is <u>still the main control</u> tool used in drying <u>for regulation issue</u>: due to <u>easy</u> implementation and tuning, as well as its ability to lead to relatively good <u>performances</u>.

Optimization of the drying conditions has recently become more important than regulation: indeed, optimization allows: • improving final product quality

• and decreasing cost and energy consumption.

• <u>Fuzzy controller</u>, usually based on <u>data analysis</u>, is a <u>control algorithm</u> used for regulation purpose but is not suitable for optimal control in drying.

• <u>Observer</u> is also an interesting tool, since it is a <u>model based software sensor</u> which aims at <u>estimating</u> <u>unmeasured variables</u> and <u>unknown</u> model <u>parameters</u>.

• In drying, the <u>effects</u> of some <u>disturbances</u> over the controlled variable (e.g. the change in the moisture content of the product at the dryer inlet) is <u>usually very strong in drying</u>. <u>Feed-forward control</u> is the <u>basic control structure</u> to handle such disturbances.

• Concerning <u>Internal Model Control</u>, it is a simple and powerful <u>control structure</u> that has the ability to correct errors due to <u>modeling errors</u> and <u>uncertainty</u>.

Number of papers versus the type of model used in the control strategies versus the years of publication.

<u>Control algorithm</u> are <u>based on a model</u>:

 <u>black-box models</u>: very <u>quick to obtain</u>, <u>basic and simple</u> to use in a control strategy.

 <u>first principle models</u>: <u>more accurate</u> to model <u>complex</u> <u>behavior</u>, but usually more complex to obtain.

Years	Black-box	First principles
1979-1997	19 p=1 p/yr 🔨	<u>6 p=0.33 p/yr</u>
1998-2005	15 p =1.87 p/yr 🛩	<u>26 p=3.25 p/yr</u>
	*	<u>1.8</u> <u>*10</u>

Since 1998, more first principle models are used.

dufour@lagep.univ-lyon1.fr

Type of models used in the control tools in drying versus the control objective

Control objective	Black-box model	First principles model
Regulation	<u>28</u>	14
Optimal control	5	<u>18</u>

• <u>Regulation</u>: <u>black-box models</u> are more often use than complex but more accurate first principle models.

 <u>Optimal drying conditions</u>: an optimal controller usually based on a <u>first principle model</u> is preferred.

Therefore, <u>stronger production needs</u> specified through the control objective <u>requires</u> the <u>development of</u> <u>more accurate first principle models</u>.

Conclusions and perspectives

- <u>1979</u>: use of <u>control</u> tools <u>in drying</u> started.
- Since 1998: new trends based on optimal control.
- <u>Since 1998</u>: joined development of optimal control and first principle model.
- Use of modern <u>control tools</u> allows:
 - improving benefits,

 <u>decreasing</u> the energy consumption and the offspecification production.
 Moreover, the <u>return on this investment is relatively low</u>.

• More first principle models are now needed !

 60 000 products dried + 100 dryer types: a <u>real potential of</u> <u>new collaborations between control and drying communities</u> <u>exist to improve dryer efficiency !</u>

Thank you for your attention

Much more details on this survey in:

Dufour P., "Control Engineering in Drying Technology: Review and Trends" special issue of Drying Technology, on Progress in Drying technologies (5), 24(7), pp. 889 - 904, 2006.

Please: some questions ?

Number of papers where control tools are used in drying and year of the first publication, both versus the type of applications domain

Application domain	Number of papers (percent)	Year of the first publication	
Food	<u>66,1 %</u>	1983	
Painting	8,5 %	<u>2002</u>	
Pharmaceuticals	6,8 %	<u>1998</u>	
Paper	6,8 %	<u>1996</u>	
Wood	5,1 %	<u>1998</u>	
Bio-cell	3,4 %	1992	
Mineral	1,7 %	1994	
Textile	1,7 %	2001	
dufour@lagep.univ-lyon1.fr 19			

Number of papers where control tools are used in drying and year of the first publication, both versus the type of applications domain

<u>66.1 %</u> of the control applications in drying deal with <u>food</u>:
not a surprise, since <u>food</u> has a <u>direct impact on daily life</u>
at least <u>eight times more applications in food</u> than in <u>any</u> <u>other</u> domain !

<u>Since 1992, emerging applications</u> have appeared in painting, pharmaceuticals, paper and wood applications. This also clearly <u>underlines the real emergence of control in drying</u> today.