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Abstract: Based on a review of 71 relevant publications all dealing with control aspects in 
drying, this paper aims to promote more works in common between drying and control 
communities. First, it is shown that the use of control tools really started to emerge in 
drying applications only since 1979. In a second phase started around 1998, new trends 
based on more advanced concepts have also appeared in drying control. It is underlined 
how control in drying is more and more a reality and that many opportunities exist to 
enhance industrial drying performance via efficient control of the operation. 
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INTRODUCTION 

On one side, drying technology is a major energy 
consumer used in many industries: agriculture, 
biotechnology, food, textile, minerals, 
pharmaceutical, pulp and paper, polymer, wood... 
Drying operation aims to reduce the moisture content 
within a product. It is perhaps the oldest chemical 
engineering unit operation.  

On another side, automatic control appeared much 
more recently than drying technology, especially 
with the introduction of PID control (the first 
paradigm in control) in 1942 by Ziegler and Nichols.  

Whereas control techniques are widely used since the 
middle of the 1970’s in many industries, the number 
of applications of control in drying is relatively still 
modest. Indeed, with 60 000 products dried and 100 
dryers types commonly used worldwide (Mujumdar, 
2004; Kudra, 2004) and with the complexities 
generally involved in the multiple drying behaviours 
(simultaneous transfers of heat, mass …), no single 
controller can be applied to all dryers. Moreover, 
most of the research is still focused on the 
understanding of the drying mechanisms rather than 
on the drying control. Therefore, it is not a surprise to 
see that relatively few works are dealing with the 
control in drying engineering. In the meantime, one 
has to underline that the major cost for dryers is not 
in the initial investment (design and assembly) but in 
the daily operation, where control is very important. 
It is therefore clear that dryer control is a real 
challenge and that with a deeper understanding of the 
drying; new “smart” dryers can be made more 
reliable and more cost-effective than classical dryers.  

In this paper, some basis of the main control 
objectives and tools used in drying technologies are 
first reminded. Then, the main contribution of the 
paper deals with the analysis of 71 relevant 
publications (all dealing with control in drying) both 
in term of importance and trend. Due to the lack of 
space, the reader is invited to find more details of the 
study in (Dufour, 2006). The main aspects are: the 
application domain, the control problem tackled 
(especially regulation and/or optimal control), the 
type of the model used in the control strategy 
(especially black-box and first principle model), the 
type of models used in the control tools in drying 
versus the control objective. 

MOTIVATION FOR THE USE OF CONTROL 
TOOLS IN DRYING 

Various formulations of the control problem  

During drying, the most important objective is to 
adjust some of the drying conditions while achieving 
the main final overall performances required. 

• Increase the yield while obtaining the specified 
final properties and desired quality of the dried 
products needed for their commercial use. This 
includes: size, colour, visual appeal, porosity, 
stability, texture, stress resistance, etc. (Perera, 
2005). Moreover, one has to minimize the amount of 
off spec products induced by changes in some of the 
drying conditions: desired set-points (e.g.: a grade 
transition), velocities, feed rates, feed characteristics 
or atmospheric conditions (e.g.: the ambient mean 
humidity). 

• Decrease the cost of production due to: the energy 
consumption, the maintenance cost and the drying 



time. Concerning the energy consumption, drying is a 
highly energy-intensive operation and it represents 
from 10% to 25% of the national industrial energy in 
the developed world (Mujumdar, 2004). Moreover, it 
is also known that a majority of industrial dryers 
operate at low energy efficiency, from a 
disappointing 10% to a respectable 60% (this ratio is 
defined as the theoretical energy required for the 
drying to the actual energy consumed). Therefore, 
due to the escalating energy costs and more intensive 
global competition, these performances have to be 
improved. This can be done using control tools. 

However, in many situations, the specified objectives 
are in conflict. For example, improved properties and 
quality often demand to increase the cost of 
production whereas decreasing the drying time may 
lead to decrease the quality. Therefore, adjusting the 
drying conditions is not straightforward and the 
objectives are often relaxed to obtain manual drying 
control procedures. Such manual control procedures 
are the easiest to obtain but the drawback is that 
overall performances are not the best one could 
expect. So, it is not a surprise that the development of 
a “smart dryer” has recently emerged in drying 
technology. In the “smart dryer”, a controller 
automatically tunes the drying conditions such that 
the expected final overall performances are reached. 
Such a “smart” attitude is quiet common in others 
industry (e.g.: chemical industry) since a few decades 
and in comparison, relatively few works have been 
done until now in control in drying technology. 

Some benefits of control tools in drying technology 

We start with a review of several studies where the 
benefits obtained in the drying industry with the use 
of control tools are explicitly stated:  

• For a grain dryer, an optimization procedure 
allowed to significantly decrease the drying cost by 
33.6% from 2.29 £/t to 1.52 £/t, with the optimal 
tuning of the airflows 30% less than “normal” 
(Ryniecki and Nellist, 1991a). The optimal tuning for 
the heater power became 85% less than “normal” 
(Ryniecki and Nellist, 1991b). 

• For a grain dryer, the use of an on-line optimal 
controller led to an 18% decrease in drying time, a 
6.4% decrease in fuel consumption and a total cost 
decrease of 1.3% (Mc Farlane et al., 1996).  

• In a beet sugar factory, the use of a model based 
predictive controller (CADDET, 2000) reduced the 
energy costs by 1.2% (18,900 £/year) and decreased 
the downstream energy cost by 14,000 £/year. The 
product yield increased by 0.86% worth 61,600 
£/year and off-specification production has decreased 
from 11% to 4%. Finally, the payback time 
(including hardware and development) was 17 
months. 

• For a rotary dryer, a PI controller was used to 
control the outlet mean product moisture content near 

the desired set-point (Iguaz et al., 2002). The 
throughput was increased by 1.4% leading to a 
potential increase of a company profit by 105 845 
US$/year. Concerning energy consumption, it 
decreased by 7 % from 22 069 kW (manual control) 
to 20 483 kW (automatic control). Based on an 80 
000 US$ control system, the payback time (including 
hardware and development) was 9 months. 

Clearly, one can see that the use of control tools 
allows to improve benefits, and to decrease energy 
consumption and off-specification production. 
Moreover, even if the initial control study is not 
simple (e.g.: in case of both first principle model and 
software developments), the return on this investment 
is relatively short as it does not exceed 1.5 years.  

BASIS FOR CONTROL 

In this part, some concepts of control engineering are 
reviewed in the context of the aim and scope of this 
paper. 

Design variables vs. manipulated control 

Basically, the drying procedure depends on two 
families of variables: 

• Design variables such as the dryer type, actuators, 
sensors, equipments and dimensions. Such variables 
appear when the dryer does not exist. The choice and 
the value of such variables are the first to be 
discussed in order to design and build the dryer.  

• Manipulated variables (or decision variables or 
control actions) such that heating power, air flow rate 
and air humidity. After the design and the building of 
the dryer, the value of such variables has to be tuned 
off-line (before the drying) or on-line (during the 
drying) either manually or automatically. 

In terms of control engineering, tuning of both design 
variables and manipulated variables needs to be 
discussed. But, due to lack of a multidisciplinary 
approach, usually control engineers are not involved 
in the decisions concerned with the design variables, 
even if these variables also have a large impact on 
the performance of the drying operation. In this 
paper, our discussion deals only with the tuning of 
the manipulated variables, which is the fundamental 
issue in control. 

Objectives for the tuning of the manipulated 
variables 

The need for the tuning of the manipulated variables 
is a direct consequence of the original control 
problem, which is classically one of the following 
two problems: 

• In a regulation problem, a constant set-point vector 
is defined (e.g.: the desired final mean moisture 
contents). The problem is to choose and design a 
controller that tunes the manipulated variables, such 
that the considered controlled variables (e.g.: final 



mean moisture contents of the product) tracks as best 
as possible their respective set-point and with a 
minimum variability during the drying.  

• In an optimization problem, the idea is initially to 
state the criteria accounting for the controlled 
variables and/or the manipulated variables and/or the 
available state variables (which contain all the 
dynamic characteristics of the drying). Then, an 
optimization procedure adjusts the manipulated 
variables as to minimize these criteria. Constraints 
dealing with process limitations (e.g.: actuators 
magnitude have upper and lower bounds), process 
safety (e.g.: a maximum temperature threshold 
beyond which operation becomes hazardous), 
process specification (e.g.: a maximum known 
surface temperature beyond which final quality is too 
altered) may be explicitly incorporated into this 
formulation. 

Finally, controller performances may be compared 
according to a combination of the following 
objectives: 

• Decrease the rise time, defined as 10% to 90% of 
the time needed by a controlled variable to move 
from the initial constant value to a new constant 
value (e.g.: after a change in set-points). 

• Decrease the overshoots that may occur if the 
controlled variable has an unstable behaviour. 

• Decrease the steady-state error, which is the error 
between the set-point and the controlled variable 
when the dynamic behaviour has disappeared. 

• Improve the disturbances rejection: a good 
controller is requested to rapidly attenuate the effects 
of the disturbances over the controlled variables (e.g.: 
without control, a change in atmospheric humidity 
affects the final moisture content of a product). 

• Improve the robustness: a good controller is 
requested to be able to account for a large variety of 
similar products, even if some uncontrolled drying 
conditions or feed characteristics change (e.g.: the 
initial moisture content of a product). 

Off-line control (open loop) vs. on-line control 
(closed loop) 

Manipulated variables can be tuned in two ways:  

• Off-line control (open loop control): if the drying 
behaviour, the desired product specifications, the 
uncontrolled operating conditions and the feed 
characteristics are known in advance accurately, an 
easy way to control a dryer is to tune (by 
computation or manually) the manipulated variables 
before the beginning of the drying. These values are 
then used during the drying.  

• On-line control (closed loop control): in reality, 
desired product specifications are most of the time 
known in advance, but atmospheric operating 
conditions and feed characteristics may be time-

varying, may not be measured and they usually 
strongly influence the drying. An efficient way to 
control a dryer is then to tune (automatically or 
manually) the manipulated variables during the 
drying in order to obtain the best control results using 
the time varying measures available.  

In this paper, although both approaches are 
discussed, the focus is on the on-line control, which 
is a more powerful tool in control engineering. 
Indeed, the measures made during the drying are 
used to adjust the manipulated variables. This is very 
helpful to improve the drying performances. If they 
are measured, time varying drying conditions may 
also be accounted for. Unfortunately, until now, off-
line control approaches are more often used in drying 
engineering than the on-line control approaches. This 
is partially due to a lack of knowledge of drying 
engineers in the control tools and especially the 
benefits that can be obtained with their 
implementation. We hope that this paper will help to 
bring closer these two groups of experts. Moreover, 
due to lack of accurate and reliable sensors available 
for such a wide range of products, it is also difficult 
to get the on-line measures needed by the controller. 
This made initially control tools difficult to 
manipulate. In recent years this situation has 
improved considerably with availability of good 
quality and cheaper sensors. 

Manual control vs. automatic control 

An on-line controller used during the drying can tune 
manually or automatically the manipulated variables: 

• Manual control is the most common way to tune the 
manipulated variables: an operator mentally senses 
the overall process behaviour (usually by inference to 
available measurements and a strong expertise in 
drying operations) and adjusts the manipulated 
variables (e.g.: flow rate, heating power). Such 
control is very simple. The drawback is that this can 
be uneasy, due to the usual complex and 
multivariable behaviours occurring in drying. 
Moreover, the influence of disturbances (e.g.: change 
in feed characteristics) are usually not negligible 
during the drying. Also, since the frequency of this 
tuning is not known, new adjustments required by the 
new uncontrolled drying conditions may not be 
implemented when needed. This, therefore, leads to 
decrease of drying performance. 

• On the other hand, automatic control refers to 
intelligent hard and/or soft devices that aim to tune 
automatically on-line the manipulated variables (e.g.: 
the thermostat in your house). The manipulated 
actions are therefore adjusted at each time, or at a 
fixed sampling time. Since the introduction of PID 
control in 1942 by Ziegler and Nichols, it has 
become common today to use automatic controllers 
in the industry. Even if implementation of automatic 
controllers is usually less easy than the 
implementation of manual control, overall 



performances in the process operation can be rapidly 
improved (e.g.: the disturbances do less affect the 
drying during automatic control than during manual 
control). Multivariable controllers can also be more 
easily handled than the manual ones. 

This paper focuses on automatic controller tools, 
since better performances may be obtained. 

Needs for a model for control  

For automatic control, a “model” is usually needed to 
tune the controller. Such a model is either an 
“experience based model” or a “numerical model”:  

• For an operator who tunes the manipulated 
variables manually, a model based on the expertise 
(of the operator) is developed through years of 
experience. It takes therefore time for the operator to 
learn and then, the tuning of the controllers strongly 
depends on the operator, who is not continuously 
supervising the drying. Another drawback is that this 
model is obviously only available if the operator is 
still assigned to this particular dryer! 

• For the control of more complex systems, 
“numerical models” are developed. The easy 
availability of computers over past two decades 
makes the development of this numerical tool 
possible and cost-effective (Menshutina and Kudra, 
2001). Development of such models is similar to the 
development of models used for process simulation 
in drying engineering. These fall into the following 
categories: 

o Models based on first principles (based on heat, 
mass and momentum balances) leading to an 
explicit model described by a set of static and/or 
dynamic equations, ordinary and/or partial 
differential equations, linear and/or nonlinear 
equations. The main advantage of these models 
is that most of the parameters have a physical 
significance (e.g.: heat transfer coefficient, 
diffusion coefficient), which make these models 
the most helpful to get a better knowledge of the 
drying phenomena. Therefore, extrapolation of 
the use of these models in new drying conditions 
is easy. The drawback may be the time needed 
for the development. Moreover, it may not be 
possible to model any behaviours involved, 
leading to fitting some parameters to a “black 
box” model. Large computational time needed to 
solve complex behaviours on-line may also be a 
hard constraint when a model based control 
algorithm for on-line control is used. 

o Knowledge-based models, where no a priori first 
principle knowledge is needed, but where many 
process data are needed to design the model such 
as: fuzzy model, neural network model, black 
box model and genetic algorithm based model. 
The main advantage of these models is in the 
relatively short time to formulate the models. 
The first drawback is dealing with the choice and 

use of the initial data set. Moreover, the validity 
of the model outside the data set is not known 
and the model parameters have less physical 
significance than in a first principle model. 
Therefore, extrapolation of the use of these 
models in new drying conditions is uneasy. 

In this paper, the control approaches are based on 
“numerical” models, since we advocate that they lead 
to better performances for drying processes. 

Control strategies 

In control theory, no universal controller exists to 
solve any control problems. Therefore, a vast amount 
of tools are available. According to the previous 
remarks on the approaches treated in this paper, only 
the main control strategies used in drying engineering 
are discussed here. The most important control 
strategies in a general framework are as follows: 

Open loop control strategies: 

• Model based methods: 

o Optimal model- based control theory is a 
mathematical field that is concerned with control 
policies that can be deduced using optimization 
algorithms (Kirk, 1970). The control that 
minimizes a certain cost of operation is called 
the optimal control. Model based optimal control 
deals with the problem of finding a control law 
for a given model such that a certain optimality 
criterion is achieved. It can be derived using 
Pontryagin's minimum principle. Model based 
optimization techniques lead to the real 
theoretical optimal tuning of the manipulated 
variables. In drying this is clearly the best 
approach when the desired product 
specifications, the uncontrolled operating 
conditions and the feed characteristics are 
accurately known in advance. Unfortunately, if 
the reality makes things too different (which is 
the case most of the time), closed loop 
optimization approaches are better strategies.  

• Data based methods: 

o There has been widespread interest from the 
control community in applying the genetic 
algorithm (GA) to problems in control systems 
engineering (Fogel, 1994). The GA is a 
particular class of evolutionary algorithms that 
use techniques inspired by evolutionary biology 
such as inheritance, mutation, natural selection 
and crossover. Compared to traditional search 
and optimization procedures, such as calculus-
based and enumerative strategies, the GA is 
robust, global and generally more 
straightforward to apply in situations where there 
is little or no a priori knowledge about the 
process to be controlled. As the GA does not 
require derivative information or a formal initial 
estimate of the solution region and because of 



the stochastic nature of the search mechanism, it 
is capable of searching the entire solution space 
with more likelihood of finding the global 
optimum. The drawback is still today the 
computation time, which can extend to several 
days. 

Closed loop control strategies: 

• Model based methods: 

o PID control was created in 1942. It is a simple 
and powerful tool, especially since it allows 
obtaining decent regulation results with small 
investments. Even today, PID represents 90% of 
the control tools used in the industry (Aström et 
al., 1993).  PID control stands for Proportional, 
Derivative and Integral. The PID controller is 
usually used to solve a regulation problem, i.e. 
when a process dynamic characteristic (the 
controlled variable considered) has to track as 
best as possible a set-point. Each of these three 
actions (P, I and D) gives a particular benefit to 
the closed-loop control structure and are all 
based on the error, which is the difference 
between the desired set-point and the real value 
of the controlled variable. To some extent, the 
proportional control accounts for the actual 
error, the integral control accounts for the past 
error, the derivative control accounts for the 
future error. 

o Optimal model- based control theory is 
concerned with control policies that can be 
deduced using optimization algorithms (Biegler 
and Grossman, 2004). The control that 
minimizes a certain operating cost is called the 
optimal control. Optimal control deals with the 
problem of finding a control law for a given 
system such that a certain optimality criterion is 
achieved. Both off-line and on-line optimization 
procedures may be combined to decrease the on-
line computational time. The optimal control 
problem may be stated as a state linear quadratic 
regulator (LQR): it is no more than a state 
feedback matrix gain where the matrix gain is a 
solution of the continuous time dynamic Riccati 
equation induced by the model. Its main 
drawback is that it requires at each time instant a 
measure of the state of the process, which is 
often not completely known. 

o Model-based predictive control, also named 
model predictive control or receding horizon 
control is a particular class of optimal controller 
(Qin and Badgwell, 2003). It consists in solving 
an explicit optimization problem formulated into 
the future. The main advantage is that constraints 
(such that manipulated variables physical 
limitations, constraints due to safety …) can be 
explicitly specified into this formulation. In this 
structure, a model aims to predict the future 
behaviour of the process and the best behaviour 

is chosen by a correct tuning of the manipulated 
variables. This procedure is repeated at each 
sampling time with the update on the process 
measurements. Since its first development at the 
early 70’s, many concepts have appeared (DMC, 
QDMC, GPC …) and it has become the second 
control paradigm in the history of control. 
Thousands of industrial applications of MPC 
exist today, for example in the chemical and 
petrochemical industries. 

o Robust control provides tools for systematically 
accounting for a priori known model 
uncertainties into the controller design 
(Kwakernaak, 1993). These tools let to identify 
worst-case scenarios and automatically generate 
controllers with reduced sensitivity to such 
parameter variations and modelling errors. 

o Underlining the design of robust controllers is 
the so called “internal model control” (IMC) 
principle (Morari and Zafiriou, 1989). It states 
that unless the control strategy contains, either 
explicitly or implicitly, a description of the 
controlled process (i.e., a model), then either the 
performance or the stability criterion, or both, 
will not be achieved. The corresponding IMC 
design procedure encapsulates this philosophy 
and provides robust properties. The primary role 
of this structure is to attenuate uncertainties in 
the feedback using the difference between 
process and model controlled variables. The 
strategy and the concept that it embraces are 
clearly very powerful. Indeed, the IMC principle 
is the essence of model based control and all 
model based controllers can be designed within 
its framework.  

o Observer-based control is a very powerful tool 
developed in nonlinear control theory (Gauthier 
and al., 1992). The main idea is to design a 
model-based soft-sensor (the observer). It aims 
at estimating on-line some key dynamic 
variables (e.g.: a humidity profile inside the 
product) or an unknown model parameter (e.g.: a 
heat transfer coefficient) according to available 
measurements, the value of the manipulated 
variables and the model. The limitation of the 
feasibility of such approach depends on both the 
mathematical structure of the model and the 
sensitivity of the estimated variables with respect 
to available measurements. The observer-based 
controller is very helpful for the state estimation 
needed in some control strategy, like state 
feedback control or LQR (which is an optimal 
state feedback controller). 

• Data based methods: 

o The basic idea behind expert system is simply 
that expertise, which is the vast body of task-
specific knowledge, is transferred from a human 
to a computer (Liao, 2005). This knowledge is 



then stored in the computer which is used for 
specific advice. The computer can make 
inferences from on-line measures and draw a 
specific conclusion. Then like a human 
consultant, it gives advices for the tuning of the 
manipulated variables and explains, if necessary, 
the logic behind this advice.  

o The fuzzy logic control method (Sugeno, 1985) 
is based on a large number of process data. They 
are processed according to human based fuzzy 
"If-Then" rules, which can be expressed in plain 
language words, in combination with traditional 
non-fuzzy processing. Then, the resulting 
outputs from all the individual rules are averaged 
into one single defuzzified signal which tells the 
controller what to do. Fuzzy logic is used in 
system control and analysis design, because it 
shortens the time for engineering development 
and sometimes, in the case of highly complex 
systems, is the only way to solve the problem. 
Fuzzy logic controllers may be combined with 
expert systems. 

Feed-forward control and feed-back control 

In automatic control, two control schemes can be 
combined for control purpose: 

• A feed-back control structure, which employs a 
sensor to measure the drying characteristics we want 
to control (e.g.: the mean moisture content at the 
outlet). It also requires the desired behaviour for this 
characteristic during the drying (e.g.: a mean 
moisture content set-point). After comparison of 
these two values, the controller aims to tune the 
manipulated variables (e.g.: the infrared irradiation) 
according to the chosen controller. This structure is 
the key element of automatic control. 

• A feed-forward control structure, which also 
employs a sensor to measure a drying characteristic, 
named input disturbance (e.g.: the mean moisture 
content in feedstock). The idea is to account for this 
disturbance in the tuning of the manipulated variables 
before it does affect the controlled variables 
considered. This requires additional sensors, 
knowledge of the effect of the disturbances over the 
manipulated variables and controlled variables, 
which increases the initial engineering costs. In the 
meantime, such investments may lead to improved 
dryer operation. Since many input disturbances are 
present during the drying, many feed-forward control 
structures have been developed in drying 
engineering. 

USE OF CONTROL TOOLS IN DRYING 

In this part, an analysis of 71 publications dealing 
with both drying and control is presented (see 
(Dufour, 2006) for the complete study and the 71 
references). It also underlines some recent trends in 

control approaches and how control tools are applied 
in drying technologies. 

First, the interest of papers dealing with control in 
drying engineering has increased (Fig. 1): 61 % of 
them were published in the last 8 years (from 1998 to 
the first half of 2005) whereas fewer papers where 
published in the previous 19 years (between 1979 
and 1997). Consequently, the yearly mean 
publication rate of papers dealing with control 
aspects in drying has been multiplied by 3.7 since 
1998. Clearly, since a few years, control approach 
seems finally to emerge successfully in drying 
industry, which happens a few decades ago in other 
large chemical engineering units such as those in the 
petrochemical industry. 
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Fig.1. Number of publications dealing with control in 
drying versus the year of publications 

Concerning journals and conferences where these 
works were published, Drying Technology is the 
major journal of choice for dissemination of works 
on control of dryers: it covers 33 % of the published 
papers dealing with both control and drying. It is not 
a surprise since it is the most important journal 
dealing with drying science and technology. Another 
relevant journal is the Journal of Agricultural 
Economic Research, where 14% of the papers were 
published. Concerning conferences, the bi-annual 
International Drying Symposium (IDS) is also of 
great interest, especially since 2000 in terms of 
publications combining control and drying aspects. 
On the other side, few works are published in major 
control journals, such as Automatica.  

Concerning the application domains of control tools 
in drying, 66.1 % of the applications deal with food. 
This is not a surprise, since food has a direct impact 
on daily life: food drying controls quality of the dried 
product. That is also why the first publication in food 
drying control is one of the oldest listed in this 
review (1983). There are also at least eight times 
more applications in food than in any other domain! 
Since 1992, emerging applications have appeared 
with few papers in painting, pharmaceuticals, paper 
and wood applications. This also clearly underlines 
the real emergence of control in drying today. 

Regarding control objectives, a trend has clearly 
appeared since 1998 (see table 1). On one hand, 



regulation issues are still studied in drying; besides 
the yearly mean publication rate has been multiplied 
by 3 since 1998. On the other side, the yearly mean 
publication rate of papers dealing with both optimal 
control and drying has been multiplied by 10 since 
1998! This clearly underlines the recent needs to 
really optimize the dryer efficiency, which is today 
possible with still more efficient computer- based 
optimization control tools.  

Table 1. Number of papers versus the type of control 
problems solved and versus the years of publication 

Years Regulation Optimal control 
1979-1997 22 5 
1998-2005 25 20 

Various tools from control engineering are used for 
drying and may also be combined together. First, 
table 2 shows that the use of closed-loop optimizers 
(MPC, LQR …) has emerged for both regulation and 
optimal control. Finally, advanced closed-loop 
control algorithms like MPC, successfully used in the 
chemical industry since 30 years, are now also used 
in drying. Like most of the industries, the 60 year old 
PID is still the main control tool used in drying to 
solve regulation issues. Due to easy implementation, 
tuning procedure well-know by technicians, as well 
as ability to lead to good performances, the PID 
control is indeed well suitable for regulation. A 
comparison of the numbers of papers based on 
closed-loop optimizers and PID shows that 
optimization of the drying conditions has recently 
become more important than regulation: indeed, 
optimization often allows obtaining really interesting 
improvements, both in terms of final product quality 
and decrease in cost and energy consumption. Open-
loop optimizers are also helpful for some cases in 
regulation, but are more combined with closed-loop 
optimizers: e.g., in order to reduce the on-line 
computation time required by the closed-loop 
optimizers by solving off-line the optimal behaviour 
of the drying. There is something particular in 
drying, which is not true for many other industries. 
Indeed, many disturbances may be present during the 
drying, e.g. the change in the moisture content of the 
product at the dryer inlet. 

A very important control issue is to handle them as 
best as possible, since the impact of this kind of 
disturbances over the final product quality is usually 
very strong in drying. A major effort has therefore 
been put to use feed-forward control, which is the 
basic structure to handle such disturbances. This is 
not the case in all other industries, since such impact 
may not be so strong there and since such structure 
may lead to a small improvement over the final 
results. Yet, in terms of control, such an approach is 
very helpful in drying, since it allows accounting for 
such disturbances before their impact has started. 
Strangely, in the meantime, such feed-forward 
structure is not yet employed for optimal control, 

whose performances could therefore clearly be 
improved. Concerning Internal Model Control, it is a 
simple and powerful control structure that has the 
ability to correct errors due to modelling errors and 
uncertainty. This control structure is used in drying 
for both regulation and optimal control. Fuzzy 
controller, usually based on data analysis, is also 
used for regulation purpose but is not suitable for 
optimal control in drying. Observer is also an 
interesting tool, since it can be seen as a software 
sensor which aims at estimating unmeasured 
variables and unknown model parameters. More 
studies will certainly use this idea in the future since 
it allows, combined with full state control approaches 
like LQR, to get a very tight control. 

Table 2. Type of control tools used for regulation and 
optimal control in drying 

Type of 
control tool 

Regulation 
Optimal 
control 

Regulation 
+ optimal 
control 

Closed-loop 
optimizer 

15 16 31 

PID 25 1 26 
Open-loop 
optimizer 

4 12 16 

Feed-forward 15 0 15 
IMC 4 6 10 
Fuzzy 8 0 8 

Observer 2 5 7 
Other: 

adaptive 
control, 

inferential 

3 0 3 

Other: state 
feedback 

2 1 3 

Other: poles 
placement, 

Smith 
predictor 

2 0 2 

Other: genetic 
algorithm 

1 1 2 

Other: neural 
network,  

non-linear 
control 

1 0 1 

Other: sliding 
mode  control 

0 1 1 

Nowadays, a control algorithm is usually based on a 
model, which helps to represent the process 
behaviours inside the control strategy. As previously 
underlined, this model can have various 
representations. In drying, black-box models are 
classically used since they are quiet easy to obtain, 
basic and simple to use in a control strategy. Since 
1998, even if they are still usually more complex to 
obtain, first principle models are more used since 
they are more accurate to represent complex 



behaviours involved in drying: the yearly mean 
publication rate of such studies has been multiplied 
by 11 since 1998! This modelling approach is really 
helpful, especially in optimal control strategies. 
Recent joined development of optimal control and 
first principle model is therefore not a surprise, 
especially since 1998. 

Since a model is very helpful for control synthesis, 
the modelling aspect is therefore the first question to 
tackle in a control study. Table 3 shows that simple 
and easy to obtain black-box models are more often 
use for regulation purpose than complex but more 
accurate first principle models. But, if one needs to 
get optimal drying conditions, an optimal controller 
usually based on a first principle model is preferred. 
Therefore, stronger production needs specified 
through the control objective requires the 
development of more accurate models.   

Table 3. Type of models used in the control tools in 
drying versus the control objective 

Control  
objective 

None, neural,  
or fuzzy 

Black
-box 

First 
principles 

Regulation 7 28 14 
Optimal control 0 5 18 

CONCLUSIONS 

This paper underlines how the use of control tools 
has started to emerge in drying applications only 
since 1979. In a second phase started around 1998, 
new trends based on optimization of a performance 
function solved by optimal control tools appeared. 

This paper shows that the use of modern control tools 
allows to improve benefits, and to decrease the 
energy consumption and the off-specification 
production. Moreover, even if the initial control 
study may be more or less uneasy (e.g.: in case of 
both first principles model and software 
developments), the return on this investment is 
relatively low. 

Finally, with 60 000 products dried and 100 dryer 
types commonly used worldwide, a real potential of 
control applications in drying exists. Today is 
therefore just the beginning of the collaboration 
between control and drying communities. 
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