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LANGUAGE, MEANING AND GAMES

- A model of communication, coordination and evolution

Stefano Demichelis∗ and Jörgen W. Weibull†

First draft February 1, 2006. This version: January 8, 2008.

Abstract. Language is arguably a powerful coordination device in
real-life interactions. We here develop a game-theoretic model of pre-play com-
munication that generalizes the cheap-talk approach by way of introducing a
meaning correspondence between messages and actions, and postulating two
axioms met by natural languages. Deviations from this correspondence are
called dishonest and players have a lexicographic preference for honesty, second
to material payoffs. The model is first applied to two-sided preplay commu-
nication in finite and symmetric two-player games and we establish that, in
generic and symmetric n× n -coordination games, a Nash equilibrium compo-
nent in such a lexicographic communication game is evolutionarily stable if and
only if it results in the unique Pareto efficient outcome of the underlying game.
We extend the approach to one-sided communication in finite, not necessarily
symmetric, two-player games.
JEL-codes: C72, C73, D01.

1. Introduction
Communication is crucial to most human interaction, and yet most economic analy-
ses either neglect communication altogether or presume that it leads to play of an
equilibrium that is not Pareto dominated by any other equilibrium.1 An example
of the latter is renegotiation proofness, a criterion used in contract theory and in
analyses of repeated games (see Benoit and Krishna (1993) for a succinct analysis).

∗Department of Mathematics, University of Pavia, Italy. Demichelis thanks the Knut and Al-
ice Wallenberg Foundation for financial support and the Stockholm School of Economics for its
hospitality.

†Department of Economics, Stockholm School of Economics. Both authors thank Cedric Argen-
ton, Robert Aumann, Milo Bianchi, Vince Crawford, Tore Ellingsen, Ernst Fehr, Drew Fudenberg,
Segismundo Izquierdo, Michael Kosfeld and Robert Östling for comments.

1Indeed, laboratory experiments usually support the hypothesis that pre-play communication
enhances coordination on payoff domant equilibria in coordination games. A pioneering study of
this phenomenon is Cooper et al. (1989). See Crawford (1998) for a survey, Charness (2000), Clark,
Kay and Sefton (2001) and Blume and Ortmant (2005) for more recent contributions.
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LANGUAGE, MEANING AND GAMES 2

However, as pointed out by Aumann (1990), strategically interacting decision-
makers may agree to play a payoff dominant equilibrium even if each decision maker
secretly plans to deviate. Aumann illustrated this possibility by means of the follow-
ing game:

c d
c 9, 9 0, 8
d 8, 0 7, 7

(1)

This two-player game has three Nash equilibria, all symmetric: the payoff dominant
but risk dominated strict equilibrium (c, c), the risk dominant but payoff dominated
strict equilibrium (d, d), and a mixed equilibrium that results in an intermediate
expected payoff. Aumann points out that each player has an incentive to suggest
play of (c, c), even if the suggesting player actually plans to play d; it is advantageous
to make the other play c rather than d irrespective of what action the suggesting
player takes. In Aumann’s colorful words, with Alice and Bob in the two player roles:
“Suppose that Alice is a careful, prudent person, and in the absence of an agreement,
would play d. Suppose now that the players agree on (c, c), and each retires to his
‘corner’ in order actually to make a choice. Alice is about to choose c when she says
to herself: ‘Wait; I have a few minutes; let me think this over. Suppose that Bob
doesn’t trust me, and so will play d in spite of our agreement. Then he would still
want me to play c, because that way he will get 8 rather than 7. And of course, also
if he does play c, it is better for him that I play c. Thus he wants me to play c no
matter what. [...] Since he can reason in the same way as me, neither one of us gets
any information from the agreement; it is as if there were no agreement. So I will
choose now what I would have chosen without an agreement, namely d.’” (op. cit.
p. 202) Aumann concludes that the payoff dominant Nash equilibrium (c, c) is not
self-enforcing.
This line of reasoning abstracts away from the possibility that Alice and Bob

may have a preference against dishonesty (here, for violating an agreement). In
this abstraction, Aumann is not alone. Indeed, virtually all of economics relies on the
presumption that economic agents have no preference for honesty or against deceiving
or lying per se. The standard assumption is that economic agents opportunistically
misreport their private information whenever they believe it is to their advantage to
do so.2

We here show that “small lying costs,” in the sense of a lexicographic preference
for honesty–when it doesn’t reduce material payoffs–render the “bad” equilibrium
(d, d) in the above game evolutionarily unstable under two-sided pre-play communi-
cation. While small lying costs don’t eliminate all bad equilibria, they do destabilize

2Notable exceptions are Alger and Ma (2003), Alger and Renault (2006), Alger and Renault
(2007), and Kartik, Ottaviani and Squintani (2007).
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payoff dominated equilibrium outcomes, where stability is defined in a standard evo-
lutionary model with a set-valued notion of evolutionary stability. When applying
our model to Aumann’s example, we come to the conclusion that the outcome (c, c),
which Aumann convincingly argues is not self-enforcing when players are indifferent
towards honesty, is the only robust long-run outcome. Expressed somewhat loosely:
if such a game were played with pre-play communication, over and over again in a
large population with a common language and a lexicographic preference for honesty,
then play of (c, c) would be the only mode of behavior that would be sustainable in
the long run. Even if the population were initially playing (d, d), it would eventually
find its way to the payoff dominant equilibrium (c, c).
More precisely, we generalize the cheap-talk approach to include what we call

a meaning correspondence, a correspondence that specifies what pre-play messages
mean in terms of the action to be taken in the underlying game, such as the one in
(1). For instance, the message “I will play c” would typically mean that the sender
intends to take action c. To take any other action would be deemed dishonest. By
contrast, the message “I will play c or d” is consistent with any action in the game (1)
and is thus honest irrespective of what action the sender takes.3 The key assumption
is here that the two parties have a common language and agree on its meaning. Our
analysis shows how such a shared culture–language and honesty code–facilitates
coordination on socially efficient equilibrium outcomes in strategic interactions. It
does not imply honesty, however. Individuals may lie in equilibrium, even when this
is part of an evolutionarily stable set. It is rather the common understanding of the
language–the common meaning correspondence–that drives home the result.
Most individuals arguably feel some guilt or shame when lying or being dishonest.

The practice of using the polygraph in trials suggests that lying causes physiological
symptoms of effort (sweating) and recent fMRI studies provide neurological evidence
that lying activates more parts of the brain, and parts more associated with negative
emotions, than truth-telling.4 Gneezy (2005) provides experimental evidence for a
psychological cost associated with the act of lying, see also Ellingsen and Johannesson
(2004), Hurkens and Kartik (2006) and Lundquist et al. (2007)). Gneezy’s main
empirical finding is that “The average person prefers not to lie, when doing so only
increases her payoff a little but reduces the other’s payoff a great deal.” (op. cit.
p. 385). In the context of the above example: for a sufficiently large psychological

3Examples of lying that is usually not thought to be dishonest are “white lies” in social life and
policy makers’ denials of plans to devalue a currency.

4Kozel, Padgett and George (2004) find that “For lying, compared with telling the truth, there is
more activation in the right anterior cingulate, right inferior frontal, right orbitofrontal, right middle
frontal, and left middle temporal areas.” (op.cit., p 855). Other studies suggest that activities in
the right side of the brain are correlated with negative emotions, see e.g. Davidson and Hugdahl
(1995).
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cost of lying, neither Alice nor Bob would say that they will play c and then play d.
What happens, by contrast, if the preference for honesty is weak in comparison to
the material stakes?
This is exactly what we analyze here. We go to the extreme and assume that

players avoid dishonest messages only if this comes at no loss of material payoff. This
assumption may, at first sight, seem too weak to have any interesting implication for
behavior. However, this is not so. For example, suppose that, in Aumann’s example,
both Alice and Bob say that they will play c, but take action d. Such behavior
is compatible with Nash equilibrium under cheap talk, since then messages have
no exogenous meaning. By contrast, it is incompatible with Nash equilibrium in
a lexicographic communication game if the message space is rich enough to permit
precise descriptions of actions in the game. For if the language contains some message,
m, that is honest only if action c is taken and another message, m0, that is honest only
when followed by action d– two innocuous assumptions about any natural language
– then it is lexicographically better to say m0 instead of m, since this can induce no
payoff loss in the game G in (1).5

Lexicographic preferences for honesty, by themselves, imply neither honesty nor
efficiency in equilibrium. In fact, we show that there are Nash equilibria in lexico-
graphic communication games in which both players are dishonest and we also show
that there are Nash equilibria in such games that result in outcomes that are pay-
off dominated by other Nash equilibria in the underlying game G. However, Nash
equilibria in pre-play communication games usually come in whole continuum sets,
so-called equilibrium components. Our main result is that in finite and symmetric
two-player n×n-coordination games with a unique payoff-dominant equilibrium, com-
ponents that yield payoff dominated outcomes are set-wise evolutionarily unstable,
granted the message space satisfies two axioms–a precision and a null axiom–that
are met by natural languages. The precision axiom requires that there for each action
in the underlying game G exists a message that means that the sender intends to take
precisely that action. The null axiom requires that there is a message that means
that the sender may take any action. We also show that the payoff-dominant Nash
equilibrium outcome is evolutionarily stable. We extend our model to sender-receiver
games and show that the sender’s most preferred equilibrium is selected. This finding
is in agreement with earlier results based on different approaches from ours.
The mechanism that drives home our inefficiency result–that inefficiency leads

to evolutionary instability–is similar to that in Robson (1990) in that it depends on
the existence of unsent messages in equilibrium. Robson noted that, in a population
playing such an equilibrium, a small group of deviating players can profitably use such

5Just as with Aumann’s informal reasoning, this hinges on the fact that the off-diagonal payoff
8 is no less than the on-diagonal payoff, 7.
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messages as a “secret handshake” to recognize each other and to coordinate their play
to an efficient equilibrium. However, while the existence of such unsent messages is
assumed in Robson (1990), and non-deviating players in his setting are assumed not
to react to these, the existence of unsent messages is here derived from primitives and
non-deviators may recognize and even “punish” senders of such messages.
We believe that setwise evolutionary stability is relevant in the present context.

If an interaction takes place over and over again in a large population with a com-
mon language and culture, then drift may occur among materially payoff-equivalent
strategies in connected sets.6 Thus, if the set is evolutionarily unstable, a small group
of individuals can, sooner or later, deviate to some strategy outside the set and do
better in terms of material payoffs.
Our results appear to be broadly in agreement with recent empirical findings.

Based on laboratory experiments, Blume and Ortman (2005) find that, in games with
payoff structures similar to that in Aumann’s example, costless communication with
a priori meaningful messages leads to the efficient outcome after some rounds of play.
In a follow-up on Gneezy (2005), Hurkens and Kartik (2006) find that Gneezy’s data
cannot reject the hypothesis that some people never lie while others lie whenever they
obtain a material benefit from that. In particular, an individual’s propensity to lie
may not depend on the individual’s material benefit nor on the harm done to others.
To us, this seems to lend some empirical support to the here maintained hypothesis of
a (probably culturally conditioned) lexicographic deontological preference for honesty.
The rest of the paper is organized as follows. The model is laid out in section

2, Nash equilibrium is analyzed in section 3 and evolutionary stability in section 4.
Section 5 analyzes one-sided communication, section 6 discusses related research and
section 7 concludes. Mathematical proofs are given in an appendix.

2. Lexicographic communication games
Let G be a symmetric n×n two-player game with payoff matrix Π = (π (a, b)). Thus,
π (a, b) is the payoff to a player who uses pure strategy a when the other player uses
pure strategy b. We will refer to G as the underlying game. Let A denote the finite
set of pure strategies of G, to be called actions. Let M be a non-empty finite set of
messages. There is no restriction on what these messages are, but we take them to
be statements in a natural language (allowing for basic notation from mathematics),
mastered by both persons playing the game in question, and referring to actions to
be taken in the game G. The messages can be unconditional, such as “I will take
action a ∈ A”, or conditional, such as “I will take action a ∈ A if you say that you

6Drift in equilibrium components of games is analyzed in detail in Binmore and Samuelson (1994,
1997), see also Gilboa and Matsui (1991) for the related concept of cyclically stable sets.
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will take action a”.7

Let G =(S, v) be a symmetric cheap-talk communication game, based on the game
G, as follows. First, the players simultaneously send a message from the setM to each
other. Then each player observes both messages and takes an action a ∈ A. The pure-
strategy set for each player in G is thus the finite set S of pairs (m, f), where m ∈M
is a message to send and f :M2 −→ A a function or “rule” that specifies what action
a = f (m,m0) in game G to take after having sent message m and received message
m0, for all possible message pairs (m,m0).8 Given a mixed strategy σ ∈ ∆ (S), a
randomization over one’s set S of pure strategies, let σ(m, f) denote the probability
assigned to the pure strategy s = (m, f).9 Define the payoff function v : S2 → R,
in G =(S, v), by letting v [(m, f), (m0, g)] be the payoff π [f(m,m0), g(m0,m)] that a
player who takes the action (m, f) against action (m0, g) in the underlying game G.
We extend the pure-strategy payoff function v linearly to mixed strategies in G as
usual.10

Having defined the cheap-talk game G =(S, v), let β : ∆ (S)⇒ ∆ (S) be the best-
reply correspondence in G. This correspondence specifies, for each (pure or mixed)
strategy σ0 ∈ ∆ (S) that one’s opponent may play, the (non-empty) set β (σ0) ⊂ ∆ (S)
of optimal (pure and mixed) strategies to use. Let

∆NE = {σ ∈ ∆ (S) : σ ∈ β (σ)} (2)

be the set of fixed points under β; the set of (pure and mixed) strategies in the cheap-
talk game that are best replies to themselves. In other words, ∆NE is the set of pure
and mixed strategies used in symmetric Nash equilibria in G.
We are now in a position to define lexicographic communication games. The

messages, actions and strategies in such a game G̃ are defined as in G, withG denoting
the underlying game. We proceed to define G̃ as an ordinal game, that is, a game in
which players have complete and transitive preference orderings over mixed-strategy
profiles (see Chapter 2 in Osborne and Rubinstein (1994)). Messages in G̃ have a

7Note that it is not clear what actions two persons will take who send this conditional statement.
However, this would have been clear had they both sent the following message: “I will take action
a if also you send this message”.

8It is technically inessential that each player conditions his action upon his own message (he
knows what message he has sent). However, this formalization simplifies the notation.

9Technically, ∆ (S) is thus the unit simplex of probability distributions over S. Recall that
mixed strategies have two distinct interpretations in game theory. In the epistemic interpretation
(Aumann and Barndenburger, (1995)), a mixed strategy represents another players’ uncertainty
about the player’s behavior . In the mass action interpretation (Nash, 1950), there is a population
associated with each player role in the game, and a mixed strategy represents a population frequency
of deterministic behaviors.
10This is done as follows: multiply each pure-strategy payoff v [(m, f), (m0, g)] by the probabilities

σ(m, f) and σ0(m0, g) attached to the pure strategies involved, and take the sum all these products.
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pre-determined meaning in the sense that to send any message m ∈M “means” that
one intends to take some action in a subset of A that depends on m and that may
also depend on the message m0 received. Let this subset be denoted μ (m.m0). For
example, to send the message mc =“I will take action c” would usually be taken to
mean that the sender intends to take action c, irrespective of the message received:
μ (mc,m0) = {c} for all m0 ∈M . Likewise, the meaning of the message mcd =“I will
take action c or d” can be formalized as μ

¡
mcd,m0¢ = {c, d} for all m0 ∈M . If m∗ is

the conditional statement “I will take action c if you say that you will take action c”
satisfies μ (m∗,mc) = {c} and μ

¡
m∗,md

¢
= A for md =“I will take action d” for any

action d 6= c.11 We call such a correspondence μ : M2 ⇒ A, mapping message pairs
to subsets of actions, a meaning correspondence.12

Players have a lexicographic preference for honesty, defined as follows. Let h :
M2×A→ R+ be the “honesty cost” (psychological and/or social discomfort) of send-
ing message m and taking action a, having received message m0, where h (m,m0, a) =
0 if and only if a ∈ μ (m,m0), that is, to take actions in accordance with the
common language has zero honesty cost, while all other behaviors have positive
honesty cost.13 Define the second-order payoff function w : S2 → R by setting
w [(m, f), (m0, g)] = −h [m,m0, f (m,m0)]. The function value w [(m, f), (m0, g)] ≤ 0
is the second-order utility arising from potentially being dishonest when using pure
strategy (m, f) ∈ S when the other player uses pure strategy (m0, g) ∈ S, as, for
example, when first saying that one will take a certain action a and then not doing
so. With some abuse of notation, let w(σ, σ0) be the linear extension of w to mixed
strategies, hence, representing the expected value of w for a player who uses the
mixed strategy σ when the other uses σ0. Let <L define the lexicographic order on
R2, defined as usual: (x1, x2) <L (y1, y2) if x1 > y1 or x1 = y1 and x2 ≥ y2. Each
player’s utility vector, when the own strategy is σ and the other’s is σ0, is defined as

ṽ(σ, σ0) = (v(σ, σ0), w(σ, σ0)) ∈ R2. (3)

The preferences of the players in G̃ are defined as the lexicographic ordering of these
utility vectors. In other words: each player prefers one strategy profile over another

11Although this does not follow from predicate logic, we conjecture that a vast majority of English-
speking persons would understand m∗ to also satisfy μ (m∗,m∗) = {c} (or at least c ∈ μ (m∗,m∗).
12Usually, correspondences are taken to be non-empty valued. However, since there are statements

that are dishonest irrespective of the actions taken (for example: “I am a violinist” if uttered by any
one of the authors), we allow for the possibility that μ (m,m0) = ∅ for some m,m0 ∈M . However,
by requiring all messages in the set M to be either honest or dishonest, we exclude from the set M
such messages as “This message is dishonest”, which, arguably, is neither honest nor dishonest.
13Individuals may differ as to their honesty costs. The key assumption is that they have a common

meaning correspondence.



LANGUAGE, MEANING AND GAMES 8

if the first profile’s utility vector is lexicographically ranked before the other’s,

(σ, σ0) < (τ , τ 0) ⇔ ṽ(σ, σ0) <L ṽ(τ , τ 0), (4)

where σ, τ ∈ ∆ (S) are the player’s own strategies and σ0,τ 0 ∈ ∆ (S) those of the
other player. Material payoffs are thus ranked first and honesty payoffs second. One
strategy profile is thus strictly preferred over another if and only if either (i) the
expected payoff from the interaction in the underlying game G is higher under the
first profile, or (ii) there is an exact tie between those expected payoffs but the
expected dishonesty cost is lower under the first profile. This defines G̃ =(S,<) as
an ordinal game.
The best-reply correspondence β̃ : ∆ (S)⇒ ∆ (S) in a lexicographic communica-

tion G̃ is defined by

β̃ (σ0) = {σ ∈ ∆ (S) : (σ, σ0) < (τ , σ0) ∀τ ∈ ∆ (S)} . (5)

In other words, a (pure or) mixed strategy σ is a best reply in G̃ against the pure or
mixed strategy σ0 if and only if there is no other pure or mixed strategy τ that either
results in a higher expected material payoff or in exactly the same material payoff
but a lower expected honesty cost. Accordingly, a Nash equilibrium of G̃ is a strategy
profile (σ, σ0) such that σ ∈ β̃ (σ0) and σ0 ∈ β̃ (σ). Such an equilibrium is symmetric
if σ = σ0. The set of strategies used in symmetric Nash equilibria of G̃ will be denoted

∆̃NE =
n
σ ∈ ∆ (S) : σ ∈ β̃ (σ)

o
. (6)

This is the set of (pure and) mixed strategies that are best replies to themselves in
the lexicographic communication game.
The following two axioms for the meaning correspondence turn out to be impor-

tant and will be explicitly invoked when assumed:

Axiom P (the precision axiom): For each action a ∈ A there exists at
least one message m ∈M such that μ (m,m0) = {a} for all m0 ∈M .

Axiom N (the null axiom): There exists at least one message m ∈ M
such that μ (m,m0) = A for all m0 ∈M .

In other words, Axiom P requires the message set M to contain at least one mes-
sage for each action in the underlying G such that the action is exactly specified. To
send such a message and then take another action violates the common understanding
of the language, irrespective of the message sent by the other player. Such a message
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could take the form “I will take action a irrespective of what message you send”.14

Likewise, Axiom N requires the message set to contain at least one message that does
not specify what action inG the speaker will use, irrespective of what the other player
says, for instance, “I promise nothing as to what action I will take, irrespective of
what you say”. Messages of the latter type will be called null messages.

Remark 1. We obtain cheap talk as the special case when all messages are null
messages (μ (m,m0) = A for all m,m0 ∈M).

3. Nash equilibrium

It follows from the definition of the best-reply correspondence β̃ that a mixed-strategy
profile (σ, σ) is a Nash equilibrium of G̃ if and only if (i) it is a Nash equilibrium of
G, (ii) all strategies in the support of σ have the same expected cost of dishonesty,
and (iii) there is no other pure strategy that earns the same material payoff against
σ and has a lower expected dishonesty cost. Formally (and with a slight abuse of
notation):

Lemma 1. σ ∈ β̃ (σ) if and only if σ ∈ β (σ) and

v((m, f), σ) = v(σ, σ) ⇒ w((m, f), σ) ≤ w((m0, g), σ)

for all (m, f) ∈ S and all (m0, g) ∈ supp(σ).

As an immediate corollary we obtain that if (σ, σ) is a Nash equilibrium of G̃ in
which a null message is used with positive probability, then w (σ, σ) = 0. We call
such Nash equilibria honesty equilibria. By contrast, a symmetric Nash equilibrium
(σ, σ) of G̃ is a dishonesty equilibrium if w (σ, σ) < 0. The following example exhibits
a dishonesty equilibrium.

Example 1 [Dishonesty equilibrium]. Consider the game G defined by the payoff bi-
matrix in (1). LetM = {“c”, “d”}, where “c” is honest iff c is played, μ (“c”, ·) ≡ {c},
and “d” is honest iff d is played, μ (“d”, ·) ≡ {d}.15 Consider the pure strategy
s = (“d”, f), where f (“d”, “d”) = c and f (“d”, “c”) = d. In other words: say “d”
and take action c if you receive the message “d”, otherwise take action d. Clearly
(s, s) is a Nash equilibrium in the cheap-talk game G, since no deviation can result in
a higher material payoff. A deviation to “c” results in a material payoff loss, so (s, s)
is also a Nash equilibrium in the lexicographic communication game G̃, a dishonesty
equilibrium.
14Likewise, Rabin (1994), see section 5, defines completeness of a pre-play communication language

to essentially mean that in the pre-play negotiation stage in his model, players are able to specify
any equilibrium they want to suggest (op. cit. Definition 2).
15The message “c” could, for example, be “I will take action c” or “Let us play c”.
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Next, we consider the opposite possibility, discussed in Aumann (1990), namely
that people may say “c” when they actually intend to play d in the game G in (1).
Such behavior, while compatible with Nash equilibrium under cheap talk, is incom-
patible with Nash equilibrium in any language in which (a) saying “c” is dishonest
when followed by play of d, and (b) there is a message that is honest to send in con-
junction with taking action d. More precisely, to send the message “c” with positive
probability and then play the Nash equilibrium (d, d) of G in the preceding example
is incompatible with Nash equilibrium in the lexicographic communication game.

Example 2 [Disequilibrium]. Let G̃ be as in the preceding example. Suppose that
σ sends the message “c” with positive probability and that play of (σ, σ) results in
the action pair (d, d) with probability one. Then each player incurs material payoff
7 and a positive expected dishonesty cost. A unilateral deviation to a pure strategy
s = (“d”, f), where f (“d”,m) = d for all messages m, does not reduce the material
payoff but reduces the dishonesty cost. Hence, (σ, σ) is not a Nash equilibrium of G̃.
By contrast, sending “d” with probability one and playing the action pair (d, d) is
compatible with Nash equilibrium in G̃.

We now explore the implications of Axioms P and N. First, if the language contains
a null message, then any symmetric Nash equilibrium of an underlying game G can
be implemented in Nash equilibrium in G̃ by simply having both players send a
null message (“promise nothing”) and play the symmetric Nash equilibrium of G
irrespective of the message received from the other player. In particular, the payoff
dominated equilibrium (d, d) in the game in (1) is consistent with Nash equilibrium
in G̃. Denoting mixed strategies in G by ρ ∈ ∆ (A), with ρ (a) for the probability
assigned to action a ∈ A, we have:

Lemma 2. Let (ρ, ρ) be a Nash equilibrium of a symmetric two-player game G and
suppose that G̃ satisfies axiom N. Then there exists a symmetric honesty equilibrium
of G̃ in which each action a ∈ A is played with probability ρ (a).

Second, ifG is a coordination game with at least two actions, then every symmetric
Nash equilibrium in the associated lexicographic communication game has a message
that is not sent in equilibrium if axioms P and N are met. More precisely, we call a
finite and symmetric n× n-game G a (pure) coordination game if the payoff matrix
Π satisfies π (i, i) > π (j, i) ∀i, j 6= i. In other words, each (pure) action is its own
unique best reply. A message m ∈M is unsent under a mixed strategy σ ∈ ∆ (S) if
no pure strategy in the support of σ uses m with positive probability.

Lemma 3. Let G̃ be a lexicographic communication game that satisfies Axioms P
and N, and where G is an n×n−coordination game with n ≥ 2. Every σ ∈ ∆̃NE has
at least one unsent message.
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The following example shows that there are dishonest equilibria in some games
even under the hypotheses of Lemma 3. It is as if two friends are joking with each
other. They both say “let us meet at the bad restaurant” although they understand
that the other actually plans to go to the good restaurant. A deviation from this joke
would bewilder the other and induce him or her to indeed go to the bad restaurant.

Example 3 [Dishonesty despite Axiom N]. Reconsider game G in (1) and let M =
{“c”,“d”, n}, where “c” is honest if and only if c is played, “d” if and only if d is
played, and n is a null message. Let G̃ be the lexicographic communication game
based on G, with message set M and the meaning correspondence described above;
so G̃ satisfies Axioms P and N. Consider the pure strategy s = (“d”, f), where for all
m ∈M : f (m, “d”) = c and f (m, “c”) = f (m,n) = d. In other words: say “d”, and
take action c if and only if you receive the message “d”. Messages “c” and n are thus
unsent in s. It is easily verified that (s, s) is a Nash equilibrium of G̃ for the reasons
given in Example 1.

This example and Lemma 3 together show that, although a lexicographic prefer-
ence for honesty does not rule out the possibility of lying equilibria, nevertheless it
restricts the sets of messages sent in equilibrium. In particular, it rules out so-called
babbling equilibria, that is, equilibria in cheap-talk games in which all messages are
sent and “nobody listens” (actions are not conditioned on messages). This property
is crucial for our main result.
The structure of the sets of Nash equilibria, inG and G̃ respectively, are as follows.

The cheap-talk game G is finite, so its Nash equilibria form a finite disjoint union of
closed and connected semialgebraic sets, the Nash equilibrium components of G. The
same is true of the set ∆NE of fixed points under β.16 Likewise, the set ∆̃NE can be
defined in terms of finitely many real polynomial inequalities and so is a finite disjoint
union of semialgebraic subsets of ∆NE. It follows immediately from the definition of
lexicographic Nash equilibria that each component (and hence its closure) of ∆̃NE is
contained in some component of ∆NE. Components of ∆̃NE, unlike those of ∆NE,
need not be closed, due to the possibility of dishonesty equilibria. The next example
illustrates this fact.

Example 4 [A non-closed component]. Reconsider the strategy s = (“d”, f) in Ex-
ample 1, and let s0 = (“d”, f c), where f c ≡ c. Consider mixed strategies σλ =
λs+(1− λ) s0, for λ ∈ [0, 1]. Note that σλ ∈ ∆NE for all such λ. It is as if everybody
says “d”, plays c when hearing “d”, and plays d with probability λ if someone would

16This set is a projection of the intersection between the set of Nash equilibria in G and the
diagonal of the space of mixed-strategy profiles. It is non-empty by Kakutani’s Fixed-Point theorem
applied to β, see Weibull (1995).
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instead say “c”. We also have σλ ∈ ∆̃NEfor all λ > 0, but not for λ = 0. For positive
λ, a deviation from message “d” to message “c” leads to a lower expected material
payoff, since “c” is met by action d with positive probability. However, for λ = 0 a
deviation to “c”, followed by taking the action c, incurs no loss in expected material
payoff (is not “punished”) but raises the honesty payoff. Such a deviation is thus a
lexicographically better reply to σ0, and hence σ0 /∈ ∆̃NE. Thus the component of
∆̃NE that contains the strategies σλ, for all λ > 0, is not closed.17

4. Evolutionary stability
The concept of neutral stability (Maynard Smith (1982)) is a weakening of evolu-
tionary stability: instead of requiring that any mutant strategy does strictly worse
in the post-mutation population (granted its population share is small enough) it is
required that no mutant does strictly better in the post-mutation population (under
the same proviso). Neutral stability is thus similar in spirit to Nash equilibrium; no
small group of individuals in a large community can do better by together deviating
to another strategy when the rest of the community plays the original strategy.18 We
here apply this concept to thematerial payoffs in lexicographic communication games
(or equivalently, to the cheap-talk game associated with any given lexicographic com-
munication game).19 Formally,

Definition 1. A mixed strategy σ ∈ ∆ (S) is neutrally stable if ∀τ ∈ ∆ (S):
(i) v (τ , σ) ≤ v (σ, σ) and
(ii) v (τ , σ) = v (σ, σ) ⇒ v (τ , τ) ≤ v (σ, τ).

In other words, a neutrally stable strategy (an NSS) is a strategy σ that is a
best reply to itself, in terms of material payoffs, and, in case of multiple best replies,
fares at least as well against other best replies τ as these fare against themselves.20

Let ∆NSS ⊂ ∆ (S) denote the (closed but potentially empty) set of neutrally stable
strategies. Clearly ∆NSS ⊂ ∆NE. We call a component X of ∆̃NE neutrally stable if
it is contained in ∆NSS.
A closed setX of neutrally stable strategies is called evolutionarily stable (Thomas

(1985)) if it contains all strategies τ that (a) are material best replies to some strategy

17In fact, honesty and closedness are strongly related properties: if axiom N and the game is not
trivial components are closed if and only if they do not contain lying equilibria. The proof of this
fact, that is not needed in the sequel is available upon request from the authors.
18In the case of evolutionary, as opposed to neutral, stability, such groups do strictly worse; a

parallel to strict Nash equilibrium.
19Similar results are obtained if one includes honesty costs and applies evolutionary stability to

the full lexiographic payoff structure.
20To see that this is equivalent with the above given verbal condition concerning post-mutation

populations, note that, since v is linear in each of its two arguments, neutral stability is equivalent
with requiring that for all τ : v (τ , (1− ε)σ + ετ) ≤ v (σ, (1− ε)σ + ετ), for all ε > 0 small enough.
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σ in X and (b) does materially just as well against themselves as strategy σ does
against them:

Definition 2. A non-empty and closed set X ⊂ ∆NSS is evolutionarily stable if
for all σ ∈ X and τ ∈ ∆ (S):

v (τ , σ) = v (σ, σ) ∧ v (τ , τ) = v (σ, τ) ⇒ τ ∈ X. (7)

Applied to a singleton set {σ}, this definition is identical with Maynard Smith’s
(1982) definition of an evolutionarily stable strategy (ESS) σ. Not surprisingly, evolu-
tionarily stable sets thus have most of the properties of evolutionarily stable strategies.
In particular, just as an ESS, viewed as a population state, is asymptotic stable in the
replicator dynamic (Taylor and Jonker (1978)), an evolutionarily stable set is set-wise
asymptotically stable in the same dynamic (Thomas (1985), Weibull (1995)). More
precisely, if we view the probabilities assigned by a mixed strategy σ to pure strate-
gies s = (m, f) as population shares, in a population where individuals now and then
are randomly pairwise matched to play the game G̃, and if pure strategies that on
average give higher material payoffs spread faster in the population than those that
on average give lower material payoffs, then no small perturbation of a population
state σ in, or near, an evolutionarily stable set X will lead the population state far
away from X. Indeed, the population state will in the long run be arbitrarily close
to, or in, the set X.21 In this sense, (setwise and pointwise) evolutionary stability
implies asymptotic stability in the replicator dynamic. It is also known that a neu-
trally stable strategy σ, again viewed as a population state, is weakly dynamically
stable (or Lyapunov stable) in the replicator dynamic (Bomze and Weibull (1995)).
It is easily verified that this also holds for any neutrally stable set.22 Hence, no small
perturbation of a neutrally stable population state, or a population state in or near
a closed set of such states, will lead the population state far away.23

21A population state x, or, more generally, a compact set X of population states is Lyapunov
stable if for every open set A containingat x (0) ∈ B ⇒ x (t) ∈ A for all t > 0. In other words,
starting in B, the population state will never leave A. A compact set X is asymptotically stable if
it is Lyapunov stable and, moreover, there exists an open set B∗ containing X such that x (0) ∈
B∗ ⇒ d(x (t) ,X) → 0. In other words, starting sufficiently near X, the population state will
asymptotically approach X.
22To see this, let X ⊂ ∆NSS be closed, and let A ⊃ X be open. For each x ∈ X, let x ∈ Ax for

Ax open with Ax ⊂ A. There exists an open set Bx such that x ∈ Bx and such that x (0) ∈ Bx ⇒
x (t) ∈ Ax for all t > 0. The union B = ∪x∈XBx is an open set that contains X, and x (0) ∈ B ⇒
x (t) ∈ Ax ⊂ A for all t > 0.
23The closedness requirement is important, since each point in a non-closed setX can be Lyapunov

stable and yet boundary points of X can be dynamically unstable. Binmore and Samuelson (1994),
Binmore, Gale and Samuelson (1995), Weibull (1995) and Binmore and Samuelson (1999) analyze
variants of entry-deterrence and ultimatum-bargaining games with precisely this property.
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Let G be a finite and symmetric coordination game with a unique payoff-dominant
Nash equilibrium (c, c), resulting in payoff α to each player.24 For any real number β,
call β a (material) equilibrium outcome in the lexicographic communication game G̃ if
v (σ, σ) = β for some strategy σ in ∆̃NE, and say that a component X of ∆̃NE results
in payoff β if v (σ, σ) = β for all strategies σ in X. Finally, call β an evolutionarily
stable outcome if the set X (β) = {σ ∈ ∆ (S) : v(σ, σ) = β} of strategies σ that earn
material payoff β against themselves is evolutionarily stable.
We proceed to establish that if Axioms P and N are met, then an equilibrium

component is neutrally stable if and only if it results in the payoff dominant outcome
in the underlying game and, moreover, that this outcome is the unique evolutionarily
stable equilibrium outcome. Formally:

Proposition 1. Let G be a finite and symmetric coordination game with a unique
payoff dominant Nash equilibrium with payoff α. Suppose that G̃ is a lexicographic
communication game, based on G, that satisfies Axioms P and N. A component X of
∆̃NE is neutrally stable if and only if it results in material payoff α. Moreover, this
outcome is the unique evolutionarily stable equilibrium outcome.

While the proof given in the appendix is somewhat lengthy and technical, its
intuition is simple. The most important claim is the instability of components X of
∆̃NE that do not result in the maximal material payoff. Let X be such and suppose
that σ ∈ X. By Lemma 3, there exists a message m that is not sent by σ. The
population may drift in the component X towards strategies σ0 that do not “punish”
senders ofm, and earn the same material payoff as σ (against σ and itself). This leaves
the door open for mutants who use the message m as a “secret handshake” among
themselves. They earn the same material payoff against σ0 as the non-mutants do.
However, by playing the action-pair (c, c) when meeting each other, they earn more
in such encounters and thus also on average. The two parts of the argument, “drift
to non-punishing strategies” and “secret handshake” are illustrated in the following
two examples:

Example 5 [Drift]. Let G̃ be the lexicographic communication game in example 3.
There is a Nash equilibrium in which both players say “hi” (send message n) to each
other and then play the mixed Nash equilibrium in the underlying game G. More
exactly, let σ = 7

8
(n, f∗) + 1

8
(n, fd), where f∗(n, n) = c, f∗(n,“c”) = f∗(n,“d”) = d

and fd (·, ·) ≡ d. It is easily verified that σ is a best reply to itself in G̃, that is,
σ ∈ ∆̃NE. Unilateral deviations to any other message are punished by play of d for
sure, giving the deviator a material payoff of at most 7. However, also σ0 ∈ ∆̃NE for

24That is, (c, c) is a Nash equilibrium of G and both players obtain lower payoffs in all other Nash
equilibria of G.
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σ0 = 7
8
(n, f c) + 1

8
(n, fd), where f c (·, ·) ≡ c, a strategy that does not punish deviating

messages. The two strategies σ and σ0 belong to the same component of ∆̃NE, since
σt = (1− t)σ + tσ0 ∈ ∆̃NE for all 0 ≤ t ≤ 1. Hence, if strategies are subject to drift
off their equilibrium paths, then drift may lead away from the punishing strategy σ
to the “forgiving” strategy σ0 in the same component of ∆̃NE.

Example 6 [Secret handshake]. Let again G̃ be the lexicographic communication
game in example 3 and now let σ ∈ ∆̃NE be such that v (σ, σ) = 7, that is, σ
plays d against itself. By Lemma 3, there exists a message m that is not sent by σ.
Let τ send m, play c when receiving m, otherwise d. Then v (τ , σ) ≥ 7 = v (σ, σ).
Moreover, v (τ , τ) = 9 > v (σ, τ), where the last inequality holds since σ has to play
d against τ ; otherwise there would exist a profitable unilateral deviation against σ in
G. This proves that σ is not neutrally stable, σ /∈ ∆NSS. A small group of mutants
playing τ would do better than σ in the post-entry population. Consequently, the
component of ∆̃NE to which σ belongs is not even weakly evolutionarily stable.

5. Sender-receiver games
We here briefly discuss how our approach can be extended to games with one-
sided communication–so-called sender-receiver games–and what results the ap-
proach yields. Intuitively, one would expect one-sided communication to be beneficial
for the sender, who arguably can lead play towards any preferred Nash equilibrium in
the underlying game G. This intuition turns out to be roughly, though not entirely,
right.
Let G be a finite, not necessarily symmetric, two-player game with player roles

S and R and with action set A for player S and action set B for player R. Let the
payoffs to the pure-strategy pair (a, b) ∈ A × B be πS(a, b) and πR(a, b). Define a
cheap-talk sender-receiver game H, based on G, as follows. Before G is played, S
sends a message m from a finite setM . Player R receives this message and thereafter
both players simultaneously take their actions, a ∈ A and b ∈ B, respectively, in
game G. Hence, in H a pure strategy for the sender is a pair (m, a) ∈ M × A and,
for the receiver, a function g : M → B that maps received messages to own actions.
Play of such a pure-strategy pair in H results in actions a and b = g (m) ∈ B in G.
The payoffs in H are the resulting payoffs in the underlying game G, to be called the
material payoffs.
We introduce meaning of messages in a similar way as in games with two-sided

communication, and thereby obtain a game H̃ with one-sided communication. More
specifically, for each message m ∈M , let μ (m) be a subset of the sender’s action set
A. The elements of μ (m) are those actions that message m means that the sender
intends to play. This defines the meaning correspondence μ : M ⇒ A in H̃. Let
h :M ×A→ R+ be an function such that h (m,a) = 0 if and only if a ∈ μ (m); this
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is the sender’s honesty cost function. Define the sender’s lexicographic preferences
in H̃ along the same lines as in games with two-sided communication, and let the
receiver’s preferences in H̃ simply be defined by this player’s material payoffs. This
defines H̃ as a lexicographic sender-receiver game. Now define H̄ as the symmetric
lexicographic communication game that is obtained from H̃ by adding a first random
draw by “nature”, whereby one of the players in H̄ becomes the sender and the
other the receiver in H̃, with equal probability for both draws. Both players in the
symmetric game H̄ thus have a lexicographic preference for honesty, a preference that
matters only if the player happens to be drawn to be the sender.
Consider lexicographic communication games H̄ satisfying axioms P and N.25 For

each mixed-strategy profile (σ, τ), denote by vS(σ, τ) and vR(σ, τ) the conditionally
expected material payoffs to the player who plays σ, conditional upon the event that
this player is drawn to be the sender and receiver, respectively. Thus

v̄(σ, τ) =
1

2
vS(σ, τ) +

1

2
vR(σ, τ) (8)

is the expected material payoff to strategy σ in H̄ when played against τ . Let β̄ be
the best-reply correspondence in H̄ and let ∆̄NE be its set of fixed points. Again,
this set consists of finitely many connected components.
We establish the claimed results for a class of games G that contain those consid-

ered in Proposition 1– symmetric coordination games with a unique payoff dominant
Nash equilibrium. Generalizing the notation in the preceding section somewhat, let
αS denote the maximal payoff in G to player role S,

αS = max
(a,b)∈A×B

πS(a, b). (9)

In other words, whenever the player in the sender role obtains this payoff, he gets
“his way” in G. For any real number β, call β an equilibrium sender-outcome if
vS (σ, σ) = β for some strategy σ in ∆̄NE, and say that a component X of ∆̄NE

results in sender-payoff β if vS (σ, σ) = β for all strategies σ in X. Finally, call β an
evolutionarily stable sender-outcome if the set XS (β) = {σ ∈ ∆ (S) : vS(σ, σ) = β}
is evolutionarily stable.
Consider games G in which the maximum payoff αS to player role S is achieved

in only one action pair, (a∗, b∗), and, moreover, this action pair is a strict Nash
equilibrium of G. We call such games strict. In such a game, a message suggesting
play of (a∗, b∗) is self-committing in the sense that a sender believing that the receiver
believes the message has an incentive to carry out her action, a∗. However, such a

25In this context, axiom P requires that there for each a ∈ A exists at least one m ∈M such that
μ (m) = {a}, where μ is the meaning correspondence in the associated game H̃. Likewise, axiom N
requires that there exists at least one message n ∈M such that μ (n) = A.
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message need not be self-signaling, where self-signaling means that the sender prefers
the receiver to believe the message only if she plans to carry out her action. Aumann’s
example shows that strictness does not imply this property. Clearly all symmetric
coordination games with a unique payoff-dominant Nash equilibrium are strict in this
sense, as are all games of the battle-of-sexes and hawk-dove varieties (while prisoner’s
dilemma games are not). One would guess that, when the underlying game is strict,
it would be evolutionarily advantageous to “declare to be tough” and then play a∗

when in the sender role, and to be accommodating and play b∗ in the receiver role.
The following proposition formalizes this intuition.26

Proposition 2. Let G be strict and let H̄ be a symmetric lexicographic communi-
cation game, based on G, that satisfies axioms P and N. A component X of ∆̄NE is
neutrally stable if and only if it results in the maximal sender-payoff αS. Moreover,
this is the unique evolutionarily stable equilibrium sender-outcome.

The intuition for the proof, put in the appendix, is as follows. First, in a Nash
equilibrium there is always an unused message, as in the case of two-sided communi-
cation. Second, the population may drift, within the component in question, towards
a strategy that does not “punish” senders of the unused message. Third, if such a
“forgiving” strategy does not induce the maximal sender-payoff, this leaves the door
open for mutants who “get their way” as senders and accommodate optimally as re-
ceivers. On average, such mutants earn a higher material payoff than the rest of the
population.
Unlike in the case of two-sided communication, the unique evolutionary stable

outcome need not be ex-ante Pareto efficient. To see this, let G be the following
skewed battle-of-the-sexes game:

c d
c 3, 1 0, 0
d 0, 0 2, 6

(10)

This game has two strict Nash equilibria, one better for the row player, the other
better for the column player, both Pareto efficient in the game G, but the latter giving
the highest average payoff, 4. The game G is clearly strict, with αS = 3. Hence, in
a lexicographic and symmetrized communication game H̄ satisfying axioms P and
N, the unique evolutionarily stable set results in play of the strict equilibrium (c, c)
preferred by the player in the sender role, although the associated expected material
payoff in H̄ is only 2, while always sending a null message and taking action d is

26The conclusions are valid under less stringent, but more involved assumptions on G than strict-
ness.
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another Nash equilibrium of H̄ and results in the higher expected material payoff
4. Why cannot a few mutants playing (d, d) with each other invade a population
playing (c, c)? The point is that, even if such mutants would appear and start sending
an unused message (in order to recognize each other), and even if the rest of the
population would not punish senders of this message, the mutant in the sender role
has no way to know whether the receiver is a mutant or not, where the latter is
much more likely. So a mutant sender essentially has to presume that the receiver
is a non-mutant and will therefore have no way to be “nicer” to a receiving mutant.
By contrast, under two-sided communication, two mutants, both sending an unused
message, can recognize each other and thereby coordinate their actions on a better
equilibrium in the underlying game.27

6. Related work
Intuition and experiments suggest that pairs of individuals are usually able to achieve
efficiency in coordination games when they are allowed to communicate before play.
Moreover, the ability to coordinate seems to be greater the closer to a natural language
the experimental communication protocol is, see Valley et al. (2002) and Charness
and Dufwenberg (2006). We here model a shared language, along with the cultural
conventions in its use, by way of a meaning correspondence. In this we differ from the
cheap-talk literature and from other models of pre-play communication. This section
briefly comments on some of the most closely related work, in chronological order.
Farrell (1988,1993) analyzes costless pre-play communication when messages have

a pre-existing meaning. Unlike here, players have no preference for honesty per se.
Instead, Farrell imposes a credibility condition, roughly requiring the listener to be-
lieve the speaker unless the speaker could have a “strategic reason” to mislead the
listener. Credibility is a property of a message (and may depend on the game in
question), while we model honesty as a property of a triplet–a message-pair and an
action–and assume that players have a deontological preference for this property.
Myerson (1989) develops a formal credibility criterion for one-sided communica-

tion games, assuming that messages have a pre-existing meaning. Applied to games
of complete information, Myerson’s criterion essentially requires that if the sender
promises to take a certain action and recommends the others to take some actions,
the so defined action-profile should constitute a Nash equilibrium of the underlying
game. Players do not have deontological preferences for honesty or the truth.
As mentioned in the introduction, Robson (1990) pioneered the idea of using

unsent messages as “secret handshakes” among mutants (see also Wärneryd (1991)).
Using a similar argument, Sobel (1993) establishes a form of dynamic evolutionary

27The line of reasoning in this section applies also to cheap-talk games, at the expense of intro-
ducing one more round of evolutionary drift in order to create an unused message. In that setting,
our result essentially replicates Proposition 4 in Kim and Sobel (1995).
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stability of efficient outcomes in coordination games preceded by two-sided cheap
talk. He defines a population dynamic with a finite population for each player role
in a two-player game. Pairs of individuals, one from each player population, are
randomly matched to play the game and all individuals play pure strategies. Sobel
assumes that there are more messages than individuals in each player population, so
there always exists at least one unsent message. Evolutionary drift may lead to a
population state in which the unsent message in question is not “punished”. If, in
a coordination game, the average population payoff is not maximal, this opens the
door for mutants to destabilize the population state by way of sending the unsent
message and playing the “good” Nash equilibrium among themselves.28

Sobel’s (1993) model is further developed in Kim and Sobel (1995) and they
also consider sender-receiver games. As pointed out earlier, our result for this case
confirms theirs, the only difference being that our approach requires one round less
of evolutionary drift. This suggests the possibility that a honesty costs might induce
faster convergence to the equilibrium preferred by the sender.
Rabin (1994) analyzes two-sided pre-play communication in symmetric two-player

games. He considers costless communication in a language with pre-existing mean-
ing, and players make repeated simultaneous proposals before playing the underlying
game. If all players propose the same equilibrium in a given pre-play communica-
tion round, then this is taken to be an agreement to play that equilibrium. Our
approaches differ, since in Rabin’s model players do not have honesty preferences
and in our model two identical messages are not taken to necessarily constitute an
agreement.
Blume (1998) studies a stochastic population dynamic for pre-play communica-

tion games in which some messages have a priori meaning. Namely, for each strict
equilibrium in the underlying game, each player has exactly one message “linked” to
that equilibrium. If such a linked message is sent, then the receiver of the message
obtains a small increase in his or her material payoff when playing according to that
equilibrium, while the sender’s payoff is unaffected. By contrast, we assume that it is
the sender who may incur a lexicographic payoff loss, while the receiver’s payoff does
not depend directly on the message received.
Hurkens and Schlag (2002) analyze cheap talk pre-play communication in situa-

tions where each player has the option of not showing up at the pre-play communica-
tion stage, that is, of not sending a message and not knowing if the other player has
sent a message. By contrast, while our null axiom permits senders to avoid “commit-

28As showed by Schlag (1993, 1994), Wärneryd (1998) and Banerjee and Weibull (1993, 2000),
this argument does not apply if individuals are allowed to play mixed strategies and the game in
question is played by individuals drawn from one and the same population. In particular, there
exists an evolutionarily stable outcome in 2 × 2 coordination games that sends all messages and
results in suboptimal payoffs.
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ting” to any particular action, receivers in our model cannot commit to not observe
the other’s message. Hurkens and Schlag show that in their setting the unique evolu-
tionarily stable set in n×n-coordination games is characterized by play of the payoff
dominant equilibrium.
Kartik, Ottaviani and Squintani (2007) develop a sender-receiver model of the

Crawford and Sobel (1982) variety and use this to analyze strategic misrepresentation
of private information. The sender knows the true state and incurs a disutility from
misrepresenting his private information. The message space is identical with the state
space and this is an unbounded interval. The sender’s utility function is decreasing
in his message’s deviation from the truth. Receivers have a small probability of being
credulous. See Chen (2004), Kartik (2005) and Chen, Kartik and Sobel (2007) for
more research on this topic.29

Lo (2007) develops an alternative model of language, meaning and games. She
focuses on sender-receiver games and formalizes meaning by way of restricting the
receiver’s reactions to messages. Her solution concept is iterated elimination of weakly
dominated strategies. In battle-of-the-sexes games, the sender obtains her preferred
outcome, as in our model (Section 5), while all outcomes are possible in Aumann’s
example (1), in sharp contrast with our model.

7. Concluding comments
An interesting feature of evolutionary stability in pre-play communication games is
its logical independence of ordinality in the underlying game, where by ordinality
we mean invariance of the solution under transformations that leave the best-reply
correspondence unchanged. For example, while the best-reply correspondence of the
game in (1) is identical with that of

c d
c 1, 1 0, 0
d 0, 0 7, 7

(11)

the unique evolutionarily stable outcome in a lexicographic pre-play communication
game, as modelled above, is play of (c, c) when based on (1) but (d, d) when based on
(11).30 A more profound question, falling outside the scope of this study, is whether
indeed ordinality should be viewed as a general desideratum for solution concepts in
games.

29For other analyses of deceit and lying, see Sobel (1985), Benabou and Laroque (1992), Farrell
and Gibbons (1989), Conlisk (2001), Crawford (2003) and Miettinen (2006).
30Note, however, that evolutionary and neutral stability are ordinal solution concepts in the sense

of being invariant under transformations that keep the best-reply correspondence unchanged in the
game to which they are applied, here the cheap-talk game G.
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We plan to extend our analysis in different directions. We plan to apply this
approach to infinitely repeated games. Fudenberg and Maskin (1991) showed that
evolutionary stability and noise together have strong efficiency implications in infi-
nitely repeated prisoners’ dilemmas. If, instead of noise, the players communicate
with each other between rounds, will this destabilize inefficient outcomes? We also
intend to study the evolution of meaning and honesty of language in populations
using cheap talk.

8. Appendix
This section contains mathematical proofs of results not proved in the main text.

8.1. Lemma 3. Consider a mixed strategy σ ∈ ∆ (S) such that every message
m ∈ M is sent with positive probability in σ. By Axiom N, the language contains
a null message. Let n be such a message. Since n is used in σ, no pure strategy
(m, f) in the support of σ is dishonest against σ, by Lemma 1. Moreover, since
every message is sent with positive probability, the support of σ contains only pure
strategies s = (m, f) such that f (m,m0) ∈ μ(m,m0) for all m0 ∈M . By hypothesis,
the game G contains at least two actions, say c and d. By Axiom P there exist
messages “c”,“d”∈ M such that μ(“c”, ·) ≡ {c} and μ(“d”, ·) ≡ {d}. Since, by
hypothesis, every message is sent in σ, the message pair (“c”,“d”) is realized with
positive probability. The player who sent “c” has to play c, but this is not a best reply
to the action of the other player, who plays d (since she sent “d”). Hence, σ /∈ β̃(σ).

8.2. Proposition 1. First, we prove that a component X of ∆̃NE is not neutrally
stable if it contains a strategy σ with v (σ, σ) < α.
Since σ ∈ ∆̃NE and axioms N and P hold, Lemma 3 implies that there exists

at least one message that is not sent in σ. Let n ∈ M be such. Choose a pure
strategy s̃ ∈ supp(σ) such that v(σ, s̃) < α and let s̃ = (m̃, f̃). For each pure strategy
s = (m, f) ∈ supp(σ), let s1 be the associated modified pure strategy (m, f1), where
f1(m,m0) = f(m,m0) for all m0 6= n and f1(m,n) = f(m, m̃). Note that s1 reacts
to receiving n just as s reacts to m̃, while otherwise they coincide. If σ =

P
λisi

for pure strategies si and probability weights λi > 0 summing to 1, let σ1 =
P

λis
1
i .

In other words, σ1 is the same convex combination of the pure strategies s1i as σ is
with respect to the si. For all 0 ≤ t ≤ 1, define σt = (1 − t)σ + tσ1. Note that
σ and σt send the same messages and react in the same way to the messages they
send: they differ only in their reaction to the (unsent) message n. This implies that
v(σ, σ) = v(σt, σt) and w(σ, σ) = w(σt, σt) for all 0 ≤ t ≤ 1.

σt ∈ ∆̃NE for all t < 1.
Proof : Suppose first that τ ∈ ∆ (S) does not use n. Then v(τ , σt) = v(τ , σ) ≤

v(σ, σ) = v(σt, σt) since σ ∈ ∆̃NE. Under equality, w(τ , σt) = w(τ , σ) ≤ w(σ, σ) =
w(σt, σt) for the same reason. Suppose now that τ ∈ ∆ (S) uses n. Consider thus a
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pure strategy sending n, say s0 = (n, h). Clearly v(s0, σ) ≤ v(σ, σ), because σ ∈ ∆̃NE.
Moreover, by definition of σ1, we have v(s0, σ1) = v((m̃, h), σ). Now, the fact that
σ ∈ ∆̃NE implies that

v((m̃, h), σ) ≤ v(σ, σ) = v(σ1, σ1).

If v(s0, σ) < v(σ, σ), linearity in t implies that v(s0, σt) < v(σt, σt) for all t < 1. If
v(s0, σ) = v(σ, σ), then we must have w(s0, σ) ≤ w(σ, σ) because σ is a lexicographic
NE. However, we also have w(s0, σ1) = w(s0, σ) because, again, σ and σ1 send the
same messages, so

w(s0, σ1) = w(s0, σ) ≤ w(σ, σ) = w(σ1, σ1),

Again, by linearity in t, we are done. This proves the claim.31

Consider now the pure “secret handshake” strategy ŝ = (n, g), where g(n,m0) =
f̃(m̃,m0) if m0 6= n and g(n, n) = c. We then have v(ŝ, σ1) = v(s̃, σ) = v(σ, σ) =
v(σ1, σ1) and v(ŝ, ŝ) = α. However, v(σ1, ŝ) = v (σ, s̃) < α. Thus σ1 /∈ ∆NSS. But
σ1 ∈ X̄ and X̄ ⊂ ∆NSS since ∆NSS is closed, establishing that X is not neutrally
stable.
Secondly, we prove that α is the unique evolutionarily stable equilibrium outcome.
For any σ ∈ X (α) and τ ∈ ∆ (S), v (τ , σ) ≤ α = v (σ, σ), so condition (i) in the

definition of neutral stability holds. If v (τ , σ) = v (σ, σ), then τ must always play
c against σ, so v(σ, τ) = α ≥ v (τ , τ) and thus also condition (ii) in the definition
of neutral stability holds. In sum: X (α) ⊂ ∆NSS. We note that X (α) is non-
empty (send any null message and react to all messages by taking action c) and that
it is closed by continuity of v. It thus only remains to verify that if v (σ, σ) = α,
v (τ , σ) = v (σ, σ) and v (τ , τ) = v (σ, τ), then also v (τ , τ) = α. But this follows from
the above observation that v(σ, τ) = α.
Thirdly, it remains to prove that a component X of ∆̃NE is neutrally stable if it

results in material payoff α. However, this follows directly from the just proved fact
that α is an evolutionarily stable equilibrium outcome, which implies that any subset
of X (α) consists of neutrally stable strategies.

8.3. Proposition 2. We first prove that a component X of ∆̄NE is not neutrally
stable if it contains some strategy σ such that vS(σ, σ) < αS.
Let σ ∈ X. Using the same argument as in the proof of Lemma 3, it is not difficult

to show that there exists a message m ∈M such that σ assigns zero probability to all
pure strategies using m. We define σ1 in a similar way as in the proof of Proposition

31Note that, if σ in a dishonest component, σ1 does not necessarily belong to ∆̃NE because
we could have v((n, h), σ) < v(σ, σ), v((n, h), σ1) = v(σ1, σ1) and w((n, h), σ1) > w(σ1, σ1), see
Example 4.
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1: in the sender role, σ1 sends the same messages and takes the same actions as σ.
In the receiver role σ1 reacts to all messages but m in the same way as σ does. When
m is sent, σ1 reacts by taking action b∗. Let τ be the strategy that, in the sender
role, sends message m and takes action a∗, and, in the receiver role behaves like σ1.
For t ∈ [0, 1], let σt = (1− t)σ + tσ1. Suppose that vS(σ, σ) = β < αS. It is easy to
see that there is a t̄ < 1 such that, for all t ∈ [0, t̄], σt ∈ X. Let σ0 = (1− t̄)σ + t̄σ1.
Then vS(τ , σ

0) = vS(σ
0, σ0) = β. We claim that σ0 is not neutrally stable, because τ

is a successful mutant against it. First, τ is a material best reply to σ0 in H̄. Because
vR(τ , σ

0) = vR(σ
0, σ0) since τ , in the receiver role, reacts to σ0 exactly as σ0 does, and τ

does just as well as σ0 in the receiver role. Hence, v̄(τ , σ0) = v̄(σ0, σ0). Second, τ earns
more material payoff against itself than σ0 earns against it. To see this, first note
that vS(τ , τ) = αS while vS(σ0, τ) = vS(σ

0, σ0) = β, so vS(τ , τ) > vS(σ
0, τ). Secondly,

vR(τ , τ) = π(b∗, a∗) while vR(σ0, τ) ≤ π(b∗, a∗) because (a∗, b∗) is a Nash equilibrium.
Hence, v̄(τ , τ) > v̄(σ0, τ). Consequently, σ0 is not neutrally stable and therefore X is
not a neutrally stable component either.
Secondly, we prove that αS is the unique evolutionarily stable equilibrium sender-

outcome.
Let σ ∈ XS (αS). Since the maximum of vS is attained by play of the unique action

pair (a∗, b∗) in G, (σ, σ) induces play of (a∗, b∗) with probability one. In particular,
σ always plays a∗ in the sender role. Let τ be any mutant. By definition of XS (αS),
vS(τ , σ) ≤ vS(σ, σ). When τ is a receiver and σ the sender, σ takes action a∗ and τ
thus gets at most, π(b∗, a∗), the payoff to the best reply to a∗. So vR(τ , σ) ≤ vR(σ, σ).
The same argument, and the strictness of the Nash equilibrium (a∗, b∗) in G, implies
that if v̄(τ , σ) = v̄(σ, σ) then vS(τ , σ) = vS(σ, σ), vR(τ , σ) = vR(σ, σ) and the action
pair (a∗, b∗) is played with probability one when τ meets σ. The latter implies that
v̄(σ, τ) = v̄(σ, σ) and that τ always takes action a∗ in the sender role. But then the
best τ can do upon meeting itself is to play b∗ in the receiver role, so v(τ , τ) ≤ v(σ, τ),
with equality implying that τ ∈ XS (αS).
Thirdly, it remains to prove that a component X of ∆̄NE is neutrally stable if it

results in the maximal sender-payoff αS. However, this follows directly from the just
proved fact that αS is an evolutionarily stable equilibrium sender-outcome, which
implies that any subset of XS (αS) consists of neutrally stable strategies.
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