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Bifuration delay - the ase of the sequene:stable fous - unstable fous - unstable nodeEri Benoît∗January 19, 2009AbstratLet us give a two dimensional family of real vetor �elds. We suppose that there exists a stationary pointwhere the linearized vetor �eld has suessively a stable fous, an unstable fous and an unstable node.When the parameter moves slowly, a bifuration delay appears due to the Hopf bifuration. The studiedquestion in this artile is the ontinuation of the delay after the fous-node bifuration.AMS lassi�ation: 34D15, 34E15, 34E18, 34E20, 34M60Keywords: Hopf-bifuration, bifuration-delay, slow-fast, anard, Airy, relief.1 Introdution"Singular perturbations" is a studied domain from many years ago. Sine 1980, many ontributions were writtenbeause new tools were applied to the subjet. The main studied objets are the slow fast vetor �elds alsoknown as systems with two time-sales. We will give the problem here with a more partiular point of view:the bifuration delay , as in artiles [8, 2, 9, 7℄. We write the studied system: εẊ = f(t, X, ε), where ε is a realpositive parameter whih tends to zero. For a better understanding of the expression dynami bifuration it isbetter to write the system after a resaling of the variable:
{

Ẋ = f(a, X, ε)
ȧ = εwhere a is a "slowly varying" parameter.The main objets in this study are the eigenvalues of the linear part of equation Ẋ = f(a, X, 0) near thequasi-stationary point. Indeed, they give a haraterization of the stability of the equilibrium of the fast vetor�eld at this point. The aim of this study is to understand what happens when the stability of a quasi-stationarypoint hanges. A bifuration ours when at least one of the eigenvalues has a null real part.In this artile we restrit our study to two-dimensional real systems. In this situation, the generi bifurationsare: the saddle-node bifuration, the Hopf bifuration and the fous-node bifuration.The saddle-node bifuration is solved by the turning point theory: when the real part of one of the eigenvaluebeomes positive, there is no delay and a trajetory of the systems leaves the neighborhood of the quasi-stationary point when it reahes the bifuration. For this study, the study of one-dimensional systems issu�ient: we have a deomposition of the phase spae where only the one-dimensional fator is interesting.There exist many artiles on this subjet, we will be interested partiularly by [3℄ where the method of relief isused. The artile [6℄ introdues the geometrial methods of Fenihel's manifold.The Hopf delayed bifuration is well explained in [10℄, we will upgrade the results in paragraph 2 below.In a fous-node bifuration, the stability of the quasi stationary point does not hange, then, loally, thereis no problem of anards or bifuration delays. Indeed, when there is a bifuration delay at a Hopf-bifurationpoint, it is possible to evaluate the value of the delay, and the main question is to understand the in�uene ofthe fous node bifuration to this delay.In paragraph 2, the Hopf bifuration alone is studied, as well as the fous-node bifuration following a Hopfbifuration in paragraph 3.
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In paragraphs 2.1 and 3.1, we assume that there exists a solution of the system approximed by the quasisteady state in the whole domain, so this trajetory has an in�nite delay. The used methods are real, and thesystem has to be smooth (atually only C2). In paragraphs 2.2 et 3.2, we avoid this very speial hypothesis. Itis here supposed that the system is analyti, and we study the solutions on omplex domains. Unfortunately, Ihave not a proof for the main result of this artile. But it seems to me that the problem is interesting, and theresults are argumented.We use Nelson's nonstandard terminology (see for example [5℄). Indeed, almost all sentenes an be translatedin lassial terms, where ε is onsidered as a variable and not as a parameter. Often, the translation is givenon footnotes.2 The delayed Hopf bifurationThe problem is studied and essentially resolved in [10℄. We give here the proofs to improve the results and to�x the ideas for the main paragraph of the artile. The main tool is the relief 's theory of J.L. Callot, explainedin [4℄.The studied equation is
εẊ = f(t, X, ε) (1)where f is analyti on a domain D of C×C2 ×C.Hypothesis and notationsH1 The funtion f is analyti. It takes real values when the arguments are real.H2 The parameter ε is real, positive, in�nitesimal1.H3 There exists an analyti funtion φ, de�ned on a omplex domain Dt so that f(t, φ(t), 0) = 0. The urve

X = φ(t) is alled the slow urve of equation (1). We assume that the intersetion of Dt with the realaxis is an interval ]tm, tM [.H4 Let us denote λ(t) and µ(t) for the eigenvalues of the jaobian matrix DXf , omputed at point (t, φ(t), 0).We assume that , for t real, the signs of the real and imaginary parts are given by the table below :
t tm a tM

ℜ(λ(t)) - 0 +
ℜ(µ(t)) - 0 +
ℑ(λ(t)) - - -
ℑ(µ(t)) + + +Then, when t inreases from tm to tM , the quasi-steady state is �rst an attrative fous, then a repulsivefous, with a Hopf bifuration at t = a.2.1 Input-output funtion when there exists a big anardIn this setion, we assume that there exists a big anard X̃(t) i.e. a solution of equation (1) suh that2 X̃(t) ≃ φ(t)for all t in the S-interior of ]tm, tM [. We now want to study the others solutions of equation (1) by omparisonwith X̃.The main tool for that is a sequene of hange of unknowm: �rst, we perform a translation on X , dependingon t to put the big anard on the axis:

X = X̃(t) + YIt gives the system
εẎ = g(t, Y, ε) with g(t, Y, ε) = f(t, X̃(t) + Y, ε) − f(t, X̃(t), ε)1In lassial terms, we assume that ε leaves in a small omplex setor: |ε| bounded and arg(ε) ∈] − δ, δ[.2Without nonstandard terminology, a big anard is a solution of equation (1) depending on the parameter ε suh that

∀t ∈]tm, tM [, lim
ε>0,ε→0

X̃(t, ε) = φ(t)
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The matrix DXf(t, φ(t), 0) has two omplex onjugate distint eigenvalues (see hypothesis H4), then there existsa linear transformation P (t) whih transforms the jaobian matrix in a anonial form. We de�ne the hangeof unknown
Y = P (t)ZThe new system, has the following form (we wrote only the interesting terms):

εŻ = h(t, Z, ε) with h(t, Z, ε) =

(

α(t) −ω(t)
ω(t) α(t)

)

Z + O(ε)Z + O(Z2) , λ(t) = α(t) − iω(t)The next hange is given by the polar oordinates:
Z =

(

r cos θ

r sin θ

)

{

εṙ = r (α(t) + O(ε) + O(r))

εθ̇ = ω(t) + O(ε) + O(r)The last one is an exponential mirosope3:
r = exp

(ρ

ε

)

{

ρ̇ = α(t) + O(ε) + e
ρ
ε k1(r, θ, ε)

εθ̇ = ω(t) + O(ε) + e
ρ
ε k2(r, θ, ε)

(2)While ρ is non positive and non in�nitesimal, r is exponentially small and the equation (2) gives a goodapproximation of ρ with ρ̇ = α. When ρ beomes in�nitesimal, with a more subtle argument (see [1℄) usingdi�erential inequations, we an prove that r beomes non in�nitesimal. This gives the proposition below:Proposition 1 Let us assume hypothesis H1 to H4 (Hopf bifuration) for equation (1). However, we assumethat there exists a anard X̃(t) going along4 the slow urve at least on ]tm, tM [. Then if X(t) goes along theslow urve exatly5 on ]te, ts[ with [te, ts] ⊂]tm, tM [, then
∫ ts

te

ℜ(λ(τ))dτ = 0The input-output relation (between te and ts) is de�ned by ∫ ts

te
ℜ(λ(τ))dτ = 0. It is desribed by its graph(see �gure 1). In this ase, this relation is a funtion.

Figure 1: The input-output relation for equation (3) when there exists a big anard.3All the preeeding transformations were regular with respet to ε. This last one is singular at ε = 0.4A solution X̃(t, ε) goes along the slow urve at least on ]t1, t2[ if
∀t ∈]t1, t2[, lim

ε>0,ε→0

X̃(t, ε) = φ(t)5A solution X̃(t, ε) goes along the slow urve exatly on ]te, ts[ if it goes along the slow urve at least on ]te, ts[, and if theinterval ]te, ts[ is maximal for this property.
3



2.2 The bump and the anti-bumpIn this paragraph, t beomes omplex, in the domain Dt. We assume that for all t in Dt, the two eigenvalues
λ(t) and µ(t) are distint. It is a neessary ondition to apply Callot's theory of reliefs.We de�ne the reliefs Rλ and Rµ by:

Fλ(t) =

∫ t

a

λ(t)dt , Rλ(t) = ℜ(Fλ(t))

Fµ(t) =

∫ t

a

µ(t)dt , Rµ(t) = ℜ(Fµ(t))It is easy to see that λ(t) = µ(t), and Fλ(t) = Fµ(t), then Rλ(t) = Rµ(t). The two funtions Rλ and Rµoinide on the real axis. We will denote R(t).De�nition 1 We say that a path γ : s ∈ [0, 1] 7→ Dt goes down the relief Rλ if and only if d
ds

Rλ(γ(s)) < 0 forall s in [0, 1].De�nition 2 Let us give a point te suh that (te, φ(te), 0) ∈ D. We say that Dt is a domain below te if andonly if for all t in the S-interior of Dt, there exist two paths in Dt, from te to t, the �rst one goes down therelief Rλ and the seond one down Rµ.Theorem 2 (Callot) Let us assume that Dt is a domain below te. A solution X(t) of equation (1) withan initial ondition X(te) in�nitesimally lose to φ(te) is de�ned at least on the S-interior of Dt where it isin�nitesimally lose to φ(t).Let us apply this theorem to the following example, hosen as the typial example satisfying hypothesis H1to H4 (Hopf bifuration).
{

εẋ = tx + y + εc1

εẏ = −x + ty + εc2
(3)The eigenvalues are λ = t−i et µ = t+i. The level urves of the two reliefs Rλ(t) = 1

2
(t−i)2 and Rµ(t) = 1

2
(t+i)2are drawn on �gure 2.

Figure 2: The level urves of the two reliefs of equation (3), and a domain below teGenerially1 there is no surstability at point t = i (see [3℄ for the de�nition of surstability). Consequently,we have the following results for all equations suh that the reliefs are on the same type as those of �gure 2:De�nition 3 Let us give tc a point2 where the eigenvalue vanishes: λ(tc) = 0. The value of the relief at point
tc is a ritial value of the relief Rλ. The bump3 is the real number t∗ bigger than a, minimal suh that Rλ(t∗)is a ritial value. The anti-bump is the real number t∗∗ smaller than a, maximal suh that Rλ(t∗∗) is a ritialvalue.1I do not know the exat generi hypothesis. We have to ombine the onstraints given by the surstability theory of [3℄ and thefat that the equation (1) is real2In some ases, it is possible that tc is in�nite. For εẊ =

„

sin t cos t

− cos t sin t

«

X + O(X2) + O(ε) we have tc = +i∞.3The name "bump" is a translation of the frenh name "butée"4



For equation (3), the bump is t∗ = 1 and the anti-bump t∗∗ = −1.Theorem 3 A trajetory of equation (1) an go along the slow urve X = φ(t) exatly on ]te, ts[ if and only ifone of the following is veri�ed:
te < t∗∗ and ts = t∗

te = t∗∗ and ts > t∗

t∗∗ < te < a and a < ts < t∗ and R(te) = R(ts)This theorem is illustrated by the graph of the input-output relation, drawn on �gure 3.
Figure 3: The input-output relation for equation (3)3 Delayed Hopf bifuration followed by a fous-node bifurationThe studied equation is

εẊ = f(t, X, ε) (4)where f is analyti on a domain D of C×C2 ×C, and satis�es the following hypothesis:Hypothesis and notationsHFN1 The analyti funtion f takes real values when the arguments are real.HFN2 The parameter ε is real, positive, in�nitesimal.HFN3 There exists an analyti funtion φ, de�ned on a omplex domain Dt suh that f(t, φ(t), 0) = 0. Theurve X = φ(t) is alled the slow urve of equation 1. We assume that the intersetion of Dt with the realaxis is an interval ]tm, tM [.HFN4 Let us denote λ(t) and µ(t) for the eigenvalues of the jaobian matrix DXf , omputed at point (t, φ(t), 0).We assume that , for t real, the signs of the real and imaginary parts are given by the table below :
t tm a b tM

ℜ(λ(t)) - 0 + + +
ℜ(µ(t)) - 0 + + +
ℑ(λ(t)) - - - 0 0
ℑ(µ(t)) + + + 0 0Then, when t inreases on the real interval ]tm, tM [, we have suesively an attrative fous, a Hopfbifuration at t = a, a repulsive fous, a fous-node bifuration at t = b and a repulsive node. At point

t = b, the two eigenvalues oinide. We assume that λ(t) = µ(t) only at point b. Atually, in the omplexplane, the two eigenvalues are the two determinations of a multiform funtion de�ned on a Riemannsurfae with a square root singularity at point b.However, there is a symmetry: if the funtion √ is de�ned with a ut-o� on the positive real axis, itsatis�es √s = −
√

s and we then have
µ(t) = λ(t)5



HFN5 For the same reason, the two reliefs
Rλ(t) = ℜ

(∫ t

a

λ(t)dt

) and Rµ(t) = ℜ
(∫ t

a

µ(t)dt

)are the two determinations of a multiform funtion with a square root singularity at point t = b. However,there is a symmetry: if the funtion √ is de�ned with a ut-o� on the positive real axis, it satis�es
√

s = −
√

s and we have then: Rµ(t) = Rλ(t) exept on the ut-o� half line [b, +∞[. For real t > b,we hoose determinations of square root suh that λ(t) < µ(t). We assume that Rλ has a unique ritialpoint with ritial value Rc. We assume that Rλ(b) < Rc. An example is given and studied in paragraph3.2.1.3.1 Input-output funtion when there exists a big anardWe assume now that there exists a big anard X̃(t) i.e. a solution of equation (1) suh that X̃(t) ≃ φ(t) forall t in the S-interior of ]tm, tM [. The study below is similar to paragraph 2.1. The added di�ulty is theoinidene of the two eigenvalues at point b whih do not allow to diagonalize the linear part.The �rst hange of unknown is X = X̃(t) + Z whih moves the big anard on the axis X = 0:
εŻ = A(t)Z + O(ε)Z + O(Z2) , A(t) = DXf(t, φ(t), 0)Let us denote ( α(t) β(t)

γ(t) δ(t)

) the oe�ients of the matrix A(t). As in paragraph 2.1, the hange of unknowns
Z =

(

r cos θ

r sin θ

) , r = exp
(ρ

ε

)gives the new system:
{

ρ̇ = α(t) cos2 θ + (β(t) + γ(t)) cos θ sin θ + δ(t) sin2 θ + O(ε) + e
ρ
ε k1(r, θ, ε)

εθ̇ = γ(t) cos2 θ + (δ(t) − α(t)) cos θ sin θ − β(t) sin2 θ + O(ε) + e
ρ
ε k2(r, θ, ε)

(5)For nonpositive ρ (more preisely, for in�nitesimal r), the seond equation is a slow-fast equation. Its slow urveis given by
θ = arctan





δ(t) − α(t) ±
√

α(t)
2 − 2 α(t)δ(t) + δ(t)

2
+ 4 β(t)γ(t)

2β(t)



It has two branhes when λ and µ are reals, one is attrative, the other is repulsive: see �gure 4.When θ goes along a branh of the slow urve, (and when r is in�nitesimal), an easy omputation showsthat ρ̇ is in�nitely lose to one of the eigenvalues λ or µ. The repulsive branh orresponds to the smallesteigenvalue (whih is real positive). When t < b, the angle θ moves in�nitely fast, and an averaging proedureis needed to evaluate the variation of ρ:
〈ρ̇〉 =

∫ θ1+2π

θ1

ρ̇

θ̇
dθ

∫ θ1+2π

θ1

1
θ̇
dθAn easy omputation shows now that, in the S-interior of the domain t < b, ρ < 0, we have

〈ρ̇〉 ≃ α(t) + δ(t)

2
= ℜ(λ(t)) = ℜ(µ(t))Let us give an initial ondition (t, θ) between the two branhes of the slow urve and ρ negative nonin�nitesimal (in the example, we an take t = 0.8, θ = 0, ρ = −0.03). For inreasing t, the urve (t, θ(t)) goesalong the attrative branh of the slow urve, while ρ believes negative non in�nitesimal. For dereasing t, thesolution goes along the repulsive branh, then θ moves in�nitely fast while ρ believes negative non in�nitesimal.Consequently, we know the variation of ρ(t) (see �gure 4). As in paragraph 2.1, a more subtle argument isneeded to prove that when ρ beomes in�nitesimal, the variable r beomes non in�nitesimal and the trajetory

X leaves the neighborhood of the slow urve.From this study, all the behaviours of ρ(t) are known, depending on the initial ondition. They are drawnon �gure 5. 6



Figure 4: One of the trajetories of system 0.002Ẋ =

(

t 1
t − 0.3 t

)

X drawn with the variables (θ, ρ). Theslow urve is also drawn

Figure 5: The possible behaviours of ρ(t).Proposition 4 Let us give an equation of type (6) with hypothesis HFN1 to HFN5. Assume also that thereexists a big anard X̃(t) going along the slow urve on the whole interval ]tm, tM [. If a trajetory X(t) goesalong the slow urve exatly on an interval ]te, ts[ with [te, ts] ⊂]tm, tM [, then
∫ ts

te

ℜ(λ(τ))dτ ≤ 0 ≤
∫ ts

te

ℜ(µ(τ))dτConversely, if the inequalities above are satis�ed, there exists a trajetory going along the slow urve exatlyon ]te, ts[.The input-output relation is desribed by its graph, drawn on �gure 6.We ould give more preise results if we onsider the two variables r and θ for the input-output relation.Indeed, when the point (te, ts) is in the interior of the graph of the input-output relation, we know that, at timeof output, θ is going along the attrative slow urve whih orresponds to the unique fast trajetory tangent tothe eigenspae of the biggest eienvalue µ.3.2 The fous-node bifuration is a bumpHere is the main part of this artile. Today, I am not able to prove the expeting results, but I have propositionsin this diretion. To explain the problem, I will give onjetures.Let us de�ne the anti-bump t∗∗ and the two bumps t∗λ and t∗µ as in de�nition 3:
Rλ(tc) = Rµ(tc) = Rλ(t∗∗) = Rµ(t∗∗) = Rλ(t∗λ) = Rµ(t∗µ)7



Figure 6: The input-output relation for equation (6) when there exists a big anard.. We have t∗∗ < a < t∗µ = t∗λ ≤ b or t∗∗ < a < b < t∗µ < t∗λ. In the �rst ase, the bump is before thefous node bifuration, and the study of paragraph 2.2 is available. The interesting ase is the seond, wherethe omputed bump is after the fous node bifuration, this ase is assumed with hypothesis HFN5.Conjeture 5 With hypothesis HFN1 to HFN5, the following proposition is generially wrong:If a trajetory of (4) goes along the slow urve at least on ]t∗∗, a[, then it goes until the slow urve at leaston [t∗∗, t∗µ].To work on this onjeture, we will study an example whih is, in some sense, a normal form of the problem:the slow urve is moved on the t-axis and the fast vetor �eld is linearized. The example is
{

ε3ẋ = tx + y + ε3c1

ε3ẏ = (t − b)x + ty + ε3c2
(6)Proposition 6 A numerial simulation of equation (6) gave the �gure 7. It on�rms onjeture 5.

Figure 7: Trajetories X− and X+: the �rst goes along the horizontal axis from −∞ to b, where it jumps outsidethe neighborhood of the horizontal axis; the seond one goes along the horizontal axis from +∞ to −b where ithas big osillations. The parameters are b = 0.3, c1 = 0, c2 = −1, ε3 = 0.002, the trajetory is omputed witha RK4 method, with step 0.0001. Other methods and other steps were tried, and the results are always verysimilar.This proposition gives a good argument for the next onjeture, more preise than the �rst one:Conjeture 7 If a trajetory of system (4) goes along the slow urve in a neighborhood of a real t with t < aand R(t) > R(b), then it does not go along the slow urve after the fous-node bifuration point b.8



So, generially, the input-output relation of equation (4) has a graph similar to the graph of �gure 3; if R(t∗∗) >

R(b), we have to replae t∗ by b et t∗∗ par t∗∗b where R(t∗∗b ) = R(b). The delay of the Hopf bifuration is stoppedeither by the bump (as in ase of a Hopf bifuration alone) either by the fous-node bifuration.Proposition 8 If the onjeture 7 is true for one trajetory, then it is true for all of them.Proof Assume that equation (4) has a solution X̃ whih does not verify onjeture 7. Then, X̃ goes alongthe slow urve on an interval ]t1, t2[ with t1 < t∗∗b < a < b < t2. If the problem is onsidered on a restritedinterval ]t1, t2[, the equation has a big anard, and we an apply the proposition 4. Then all trajetories goingalong the slow urve before t∗∗b goes along the slow urve until b, and even a little more. �In this artile, we will now study only equation (6). We hanged ε into ε3 only to avoid frationnaryexponents. The analyti struture with respet to ε is obviously modi�ed, but does not matter for our purpose.To study the phase portrait of equation (4) or (6), two trajetories are very important. They are alleddistinguished trajetories by JL.Callot and they are very lassial. The �rst one, denoted X+ goes along theslow urve for t near tM . Similarly, X− goes along the slow urve for t near tm. These two trajetories areFenihel's manifolds, they are unique when tm = −∞ and tM = +∞. For the partiular equation (6), these twotrajetories are drawn on �gure 7. We have for this example a nie fat: X− and X+ have an expliit formula,using the Airy funtion (in an appendix (setion 4) , we give lassial needed results on Airy funtions and Airyequation).
X+(t) =

(

x+(t)
y+(t)

)

= −e
1

2

t2

ε3 M(t)

∫ +∞

t

e−
1

2

τ2

ε3 M−1(τ)dτ

(

c1

c2

) (7)
X−(t) =

(

x−(t)
y−(t)

)

= e
1

2

t2

ε3 M(t)

∫ t

−∞
e−

1

2

τ2

ε3 M−1(τ)dτ

(

c1

c2

) (8)where M(t) =

√

π

ε

(

A
(

j t−b
ε2

)

A
(

j2 t−b
ε2

)

εjA′ (j t−b
ε2

)

εj2A′ (j2 t−b
ε2

)

) with det(M(t)) =
i

2
(9)All the integrals are onvergent beause the Airy funtion is bounded at in�nity by C|t|− 3

2 e
2

3
|t|

3

2 .3.2.1 The reliefIn this paragraph, we want to explore the methods used in paragraph 2.2 when there is a fous-node bifuration.We also hek the hypothesis HFN1 to HFN5.Hypothesis HFN1 to HFN3 are obvious with the slow urve φ(t, X, 0) = 0 and the domain D = C×C2 ×C.The omputation of the eigenvalues of the jaobian matrix J(t) =

(

t 1
t − b t

) gives
λ(t) = t − (t − b)

1

2 µ(t) = t + (t − b)
1

2The determination of the square root is needed to allow the formula above. In all this paragraph, we hoosea ut-o� on the positive real axis:
(reiθ)

1

2 =
√

r e
iθ
2 θ ∈ [0, 2π[For the funtion ()

3

2 , we hoose the same ut-o�.The relation t
1

2 = −t
1

2 will be useful. Then, λ and µ are the two determinations of a multiform funtion.The ut-o� is the semi-axis [b, +∞[, and µ(t) = λ(t).For a = 0 and
b > 1

4
, (10)the hypothesis HFN4 is easy to hek.The two assoiated reliefs are given by

Fλ(t) = 1

2
t2 − 2

3
(t − b)

3

2 − 2

3
ib

3

2 Fµ(t) = 1

2
t2 + 2

3
(t − b)

3

2 + 2

3
ib

3

2

Rλ(t) = ℜ(Fλ(t)) Rµ(t) = ℜ(Fµ(t))9



Figure 8: Level urves of relief Rλ for b = 0.3, and path used in paragraph 3.2.4.Let us omment �gure 8: the value of Rλ is +∞ at both ends of the real axis. If a path goes from t = −∞to t = +∞, it has to go down at least until the mountain pass, whih is the unique ritial point of the reliefgiven by
tc = 1

2
+ i
√

b − 1

4
= 0.500 + 0.224 iThe value of the relief at this ritial point is

Rc = Rλ(tc) = 1

2
b − 1

12
= 0.067We solve now on the real axis the equation Rλ(t) = Rc. The solution are te and ts given by







if b > 1

2
+ 1

6

√
3 , te = −

√

b − 1

6
ts =

√

b − 1

6if b < 1

2
+ 1

6

√
3 , te = −

√

b − 1

6

{

ts1 = ...

ts2 = ...The symbols ... in the formula above are the solutions of a polynom in t of degree 4. The exat expression isnot needed. For b = 0.3, we have
te = −0.365 ts1 = 0.346 ts2 = 0.525The value ts1 is on the sheet right to the ut-o�: arg(ts1) = 2π. Besides, ts2 is on the sheet left to the ut-o�:

arg(ts2) = 0. When we look on the polynom whih has ts1 and ts2 as roots, we an prove that the hypothesisHFN5 is satis�ed for
1

4
< b < 1

2
+ 1

6

√
3 (11)3.2.2 Callot's domainsTo study the anards of equation (6), we introdue two speial solutions, alled distinguished solutions by J.L.Callot: X+ = (x+, y+) has an asymptoti1 ondition X+(+∞) = 0 and X− = (x−, y−) has an asymptotiondition X−(−∞) = 0. They are unique. In this paragraph we build a domain D+ where X+ is in�nitesimal(it orresponds in the omplex plane to the expression "going along a real interval"). In allmost all situations,the builded domain is the maximal domain with this property.1Here the things are easier than in the general ase beause the domain Dt ontains the whole real axis. In general ase, thereis no uniity of the distinguished solution, but the di�erene remains exponentially smaller than the omputed quantities.

10



For trajetory X+ In this paragraph, it is better to hange the ut-o�, and we de�ne (only in this paragraph)
(reiθ)

1

2 =
√

r e
iθ
2 θ ∈ [− 1

2
π, 3

2
π[We are looking for a omplex domain D+ suh that the real point +∞ is in D+, the singularity b is not in D+.We look for domains below +∞ (see de�nition 2) for the relief Rλ and also below +∞ for the relief Rµ.On �gure 9, suh domain is drawn2 in dark. Attention: at the left, the domain has a spike with a real partsmaller than −b and a nonzero imaginay part. The intersetion of D+ with the real axis is ] − b, b[∪]b, +∞[.The theorem of Callot (theorem 2) says that X+ is in�nitesimal on the whole S-interior of D+.Atually, a more preise study shows that the domain D+ is not the maximal domain where X+ is in�nites-imal: if we onsider domains on the the Riemann surfae (two sheets overing) we an add to D+ its onjugate(drawn in lightgray on the �gure 9). Beause the solution X+ is analyti without singularity at point b, it isin�nitesimal on the symetri domain.

Figure 9: The domain D+ for b = 0.3For trajetory X− A similar method gives the domain D− suh that X− is in�nitesimal on the S-interior of
D−. It is easier beause we do not need to onsider a two sheets overing. The domain D− is drawn on �gure10.3.2.3 Evaluation of X+(b)The slow urve x = y = 0 is repulsive for all positive t. Then the trajetory X+ is in�nitesimal at least for all tpositive non in�nitesimal (in fat it is in�nitesimal on a larger interval). Its asymptoti expansion in power of
ε3 is given by formal identi�ation in the equation: X+ =

∑

n≥0 Xn(t)ε3n has to verify the reurrene identities
{

ẋn−1 = txn + yn + δn−1c1

ẏn−1 = (t − b)xn + tyn + δn−1c2where δn−1 = 1 if n = 1 and vanishes for all others n. The omputation of the �rst terms is easy:
x(t) =

−c1t + c2

t2 − t + b
ε3 +

t(t2 + t − 3b)c1 + (−3t2 + t + b)c2

(t2 − t + b)3
ε6 + O(ε9)

y(t) =
(t − b)c1 − tc2

t2 − t + b
ε3 +

(−2t3 + 3bt2 + bt − b2)c1 + (t3 + 2t2 − 3bt − t + b)c2

(t2 − t + b)3
ε6 + O(ε9)and we we have now proved the2The piture is a little bit di�erent when b is greater or smaller than − 3

2
− 1

6

√
123. For this partiular value, we have Rµ(b) =

Rµ(tc). 11



Figure 10: The domain D− for b = 0.3Proposition 9
X+(b) =





(

− 1
b
c1 + 1

b2
c2

)

ε3 +
((

1
b3

− 2
b4

)

c1 +
(

− 3
b4

+ 2
b5

)

c2

)

ε6 + O(ε9)

− 1
b
c2ε

3 +
(

1
b3

c1 +
(

1
b3

− 1
b4

)

c2

)

ε6 + O(ε9)



3.2.4 Evaluation of X−(b)The simple method above is not onvenient to evaluate X−(b) beause we expet that X− does not go alongthe slow manifold in a neighborhood of b.We will use the expliit formula (8) to evaluate X−(b). The omputation is a little bit tedious. In all theformulae below, the symbol O/ represent a quantity whih goes to zero when ε > 0 goes to zero.The inverse of the matrix M is easy to ompute: we know the determinant of M (see the property 4 in theappendix on Airy's funtions).
M−1(τ) = −2i

√

π

ε

(

εj2A′ (j2 τ−b
ε2

)

−A
(

j2 τ−b
ε2

)

−εjA′ (j τ−b
ε2

)

A
(

j τ−b
ε2

)

)To ompute the integrals in formula (8), we hange the real path of integration ]−∞, b]. For some integralswe hoose a path whih goes down the relief Rλ from −∞ to b, for other integrals, we hoose the onjugatepath whih goes down the relief Rµ (the idea is the same as in Callot's proof of theorem 2). The path whihgoes down Rλ is drawn on �gure 8. The end of the path is a vertial segment from b + iβ to b. At point b, it istangent to the level urve of the relief, then, the path does not go down the relief with the preise de�nition 1.Thus, we have to be are with approximations at this point.Let us denote
f(τ) = e

1

2

b2−τ2

ε3 A

(

j2 τ − b

ε2

)It is one of the funtion we have to integrate to evaluate X−.Lemma 10 Let us give τ suh that τ − b is non in�nitesimal and 1

3
π < arg(τ − b) < π. Then

|f(τ)| = exp

(−1

ε3
(Rλ(τ) − Rλ(b) + O/ )

)Proof Using the asymptoti expansion of A (see in appendix), we have:
A

(

j2 τ − b

ε2

)

=
1

2
√

π
exp

(

−2

3

(

j2 τ − b

ε2

)
3

2

)

(

j2 τ − b

ε2

)− 1

4

(1 + O(ε3))12



Substituting in the formula of f , we have:
ε3 ln |f(τ)| = ℜ

(

1

2
b2 − 1

2
τ2 − 2

3
(j2(τ − b))

3

2 + O/ )We write τ − b in polar oordinates: τ − b = reiθ , with θ ∈] 1

3
π, π[. Then j2(τ − b) = rei(θ− 2

3
π). Beause θ − 2

3
πhas an argument between − 1

2
π and 1

2
π, the power 3

2
gives (j2(τ − b)

)
3

2 = r
3

2 ei( 3

2
θ−π). This expression an bewrited −(τ − b)

3

2 , with the same determination of t
3

2 as in Rλ. �The interesting onsequene of this lemma is that along the onsidered path, the funtion f is inreasing witha logarithmi derivative of type ε−3. To preise, we need the following lemma:Lemma 11 There exist two onstants k and δ standard3, positive suh that
∀σ ∈ [0,

β

ε2
] , ∣

∣f(b + iσε2)
∣

∣ < ke−δσ
3

2Proof By dé�nition of f , we have
f(b + iσε2) = e−

b
ε
σie

1

2
σ2εA(ij2σ) then ∣

∣f(b + iσε2)
∣

∣ = e
1

2
σ2ε
∣

∣A(ij2σ)
∣

∣For real positive in�nitely large σ, the asymptoti expansion of the Airy funtion give the estimation
|A(ij2σ)| =

1

2
√

π

∣

∣

∣

∣

e−
2

3
(ij2σ)

3

2

∣

∣

∣

∣

|ij2σ|− 1

4 (1 + O/ ) =
1

2
√

π
σ− 1

4 e−
√

2

3
σ

3

2 (1 + O/ )(we know that ℜ((ij2)
3

2 ) =
√

2
2 ). Then if δ1 is real standard, less than √

2
3 , we have the following inequality,true for all σ in�nitely large:

|A(ij2σ)| < e−δ1σ
3

2By permanene4, this inequality believes true for all real σ greater than some positive standard ω. We andedue the following majoration:
∀σ ∈ [ω,

β

ε2
] , ∣

∣f(b + iσε2)
∣

∣ < e
1

2
σ2εe−δ1σ

3

2For σ < ω, we have:
∀σ ∈ [0, ω] , ∣

∣f(b + iσε2)
∣

∣ < e
1

2
ω2εk1 < 2k1 with k1 = max

σ∈[0,ω]
|A(ij2σ)|Then we are looking for a onstant δ suh that

∀σ ∈ [0,
β

ε2
] , 1

2
σ2ε − δ1σ

3

2 < −δσ
3

2The inequality is equivalent to σ <
4(δ1−δ)2

ε2 . A hoie of δ less than δ1 − 1

2

√
β is onvenient. This hoie ispossible only if δ1 > 1

2

√
β what is true as soon as β < 8

9 and δ1 near enough from √
2

3 .To verify the majoration of the lemma for σ < ω, we an hoose
k = 2k1e

δω
3

2. �The next lemma is the more tehnial part of the artile. The purpose is to evaluate an osillating integralwith suessive integrations by parts.3here, it is the same to assume that k and δ are independent of ε4The non standard arguments in these proofs an be replaed by lassial arguments, but, for that, new quanti�ed variableshave to be added, and it seems to me that the idea of the proof is more understandable with nonstandard language.13



Lemma 12 We have the following expansion:
∫ b

b+iβ

f(τ)dτ = −1

b
A(0)ε3 − j2

b2
A′(0)ε4 − j

b3
A′′(0)ε5 +

(

1

b3
A(0) − 1

b4
A′′′(0)

)

ε6 +

(

3j2

b4
A′(0) − j2

b5
A′′′′(0)

)

ε7 + O/ ε7Proof Let us substitute τ by b + iε2σ in the integral. We have
∫ b

b+iβ

f(τ)dτ = −iε2

∫
β

ε2

0

f(b + iε2σ)dσ = −iε2

∫
β

ε2

0

e−
b
ε
σie

1

2
σ2εA(ij2σ)dσThe exponential e−

b
ε
σi is fast osillating. The exponential e

1

2
σ2ε is in�nitely lose to 1 for all non in�nitely large

σ and A(ij2σ) is dereasing. All properties are heked to apply the method of integrations by parts. But thereis a di�ulty: e
1

2
σ2ε is inreasing and does not believe lose to 1. Now, let us explain the omputations:

I =

∫ b

b+iβ

f(τ)dτ = I1 + I2 + I3 with
I1 =

ε3

b
(f(b + βi) − f(b)) I2 = −ε4

b

∫
β

ε2

0

σf(b + iε2σ)dσ

I3 = − ij2ε3

b

∫
β

ε2

0

f̂(b + iε2σ)dσ with f̂(b + iε2σ) = e−
b
ε
σie

1

2
σ2εA′(ij2σ)With lemma 11, we know that f(b + βi) is exponentially smaller than f(b) = A(0). Thus, we have

I1 = −1

b
A(0)ε3 + O/ ε7To estimate I2, we perform a new integration by parts:

I2 = J1 + J2 + J3 + J4 with
J1 = − iε5

b2

β

ε2
f(b + βi) J2 =

iε6

b2

∫
β

ε2

0

σ2f(b + iε2σ)dσ

J3 = − j2ε5

b2

∫
β

ε2

0

σf̂(b + iε2σ)dσ J4 =
iε5

b2

∫
β

ε2

0

f(b + iε2σ)dσBeause f(b + βi) is exponentially small, we have J1 = O/ ε7. We have also J4 = − ε3

b2
I. If you substitute A′ for

A the expression I3 is the same as j2ε
b

I. All the arguments are the same with funtion A′ and funtion A. Letus denote Îi, Ĵi the expressions obtained from Ii and Ji when A′ is substituted for A. Thus we have I3 = j2ε
b

Î.To estimate J2 we perform a new integration by parts exatly as for evaluation of I2 : J2 = K1 +K2 +K3 +K4.All the integrals are bounded by a non in�nitely large real number beause all the integrated funtions arebounded (see lemma 11) by a integrable standard funtion. To summarize:
I = I1 + I2 + I3 I2 = J1 + J2 + J3 + J4 J2 = K1 + K2 + K3 + K4

I1 = −1

b
A(0)ε3 + O/ ε7 J1 = O/ ε7 K1 = O/ ε7

I2 = O/ ε3 J2 = O/ ε5 K2 =
ε8

b3

∫
β

ε2

0

σ3f(b + iε2σ)dσ = O/ ε7

I3 =
j2ε

b
Î J3 =

j2ε

b
Î2 K3 =

j2ε

b
Ĵ2 J4 = −ε3

b2
I K4 = −2ε3

b2
I2 (12)Then, all the ingredients are given, and we an ompute the asymptoti expansion of I in powers of ε. To start,we have I = O/ ε. For similar reason, Î = O/ ε. Then, using formulae 12, we have I3 = O/ ε2, then I = O/ ε2. Weiterate the proess, inserting the known approximations in formulae 12, and we obtain a better approximation:

I3 = O/ ε3 then
I = −1

b
A(0)ε3 + O/ ε314



The next step:
I3 = − j2

b2
A′(0)ε4 + O/ ε4 J3 = O/ ε4 J4 =

1

b2
A(0)ε6 + O/ ε6 I2 = O/ ε4

I = −1

b
A(0)ε3 − j2

b2
A′(0)ε4 + O/ ε4The next step: (do not use the relation A′′(0) = 0, beause we have sometimes to substitute A′ for A):

I3 = − j2

b2
A′(0)ε4 − j

b3
A′′(0)ε5 + O/ ε5 J3 = O/ ε5 I2 = O/ ε5

I = −1

b
A(0)ε3 − j2

b2
A′(0)ε4 − j

b3
A′′(0)ε5 + O/ ε5The next step:

I3 = − j2

b2
A′(0)ε4 − j

b3
A′′(0)ε5 − 1

b4
A′′′(0)ε6 + O/ ε6 J3 = O/ ε6 K3 = O/ ε6

J4 =
1

b3
A(0)ε6 +

j2

b4
A′(0)ε7 + O/ ε7 K4 = O/ ε8

J2 = O/ ε6 I2 =
1

b3
A(0)ε6 + O/ ε6

I = −1

b
A(0)ε3 − j2

b2
A′(0)ε4 − j

b3
A′′(0)ε5 +

(

1

b3
A(0) − 1

b4
A′′′(0)

)

ε6 + O/ ε6The last step:
I3 = − j2

b2
A′(0)ε4− j

b3
A′′(0)ε5− 1

b4
A′′′(0)ε6+

(

j2

b4
A′(0) − j2

b5
A′′′′(0)

)

ε7+O/ ε7 J3 =
j2

b4
A′(0)ε7+O/ ε7 K3 = O/ ε7

J2 = O/ ε7 I2 =
1

b3
A(0)ε6 +

2j2

b4
A′(0)ε7 + O/ ε7

I = −1

b
A(0)ε3 − j2

b2
A′(0)ε4 − j

b3
A′′(0)ε5 +

(

1

b3
A(0) − 1

b4
A′′′(0)

)

ε6 +

(

3j2

b4
A′(0) − j2

b5
A′′′′(0)

)

ε7 + O/ ε7

�Lemma 13
∫ b+iβ

−∞
f(τ)dτ = exp

(−1

ε3
(Rλ(b + iβ) − Rλ(b) + O/ )

)Proof The hosen path goes down the relief Rλ, then the lemma is a orollary of the majoration of lemma10. �Lemma 14
∫ b

−∞
e

1

2

b2−τ2

ε3 A

(

j2 τ − b

ε2

)

dτ = −1

b
A(0)ε3 − j2

b2
A′(0)ε4 +

(

1

b3
− 1

b4

)

A(0)ε6 +

(

3j2

b4
− 2j2

b5

)

A′(0)ε7 + O/ ε7

∫ b

−∞
e

1

2

b2−τ2

ε3 A′
(

j2 τ − b

ε2

)

dτ = −1

b
A′(0)ε3 − j

b3
A(0)ε5 +

(

1

b3
− 2

b4

)

A′(0)ε6 + O/ ε7

∫ b

−∞
e

1

2

b2−τ2

ε3 A

(

j
τ − b

ε2

)

dτ = −1

b
A(0)ε3 − j

b2
A′(0)ε4 +

(

1

b3
− 1

b4

)

A(0)ε6 +

(

3j

b4
− 2j

b5

)

A′(0)ε7 + O/ ε7

∫ b

−∞
e

1

2

b2−τ2

ε3 A′
(

j
τ − b

ε2

)

dτ = −1

b
A′(0)ε3 − j2

b3
A(0)ε5 +

(

1

b3
− 2

b4

)

A′(0)ε6 + O/ ε715



Proof With lemmas 12 and 13, the �rs part of the lemma is proved. A similar omputation gives the seondpart, if we remember that A′′(0) = 0 but A′′′(0) 6= 0. So, the vanishing terms are not the same in the twoformulas. The two last formulas are the omplex onjugate of the two �rst one. �Proposition 15
X−(b) =





(

− 1
b
c1 + 1

b2
c2

)

ε3 +
((

1
b3

− 2
b4

)

c1 +
(

− 3
b4

+ 2
b5

)

c2

)

ε6 + O(ε9)

− 1
b
c2ε

3 +
(

1
b3

c1 +
(

1
b3

− 1
b4

)

c2

)

ε6 + O(ε9)



Proof Insert the estimations of lemma 14 in the expliit formula (8), and, after tedious simpli�ations, theproposition is proved. �Conjeture 16 The two values X−(b) and X+(b) have the same asymptoti expansion.With Maple, I heked that the two expansions oinide until terms in ε9.4 Appendix: Airy's funtionsThe Airy's equation is linear, non autonomous of seond order. It is
d2x

dt2
= tx (13)The pair (A(t), B(t)) of Airy's funtions is a fondamental system of solutions. The funtion satisfy the followingproperties (these results an be found in every book on speial funtions).1. The value at the origin are:

A(0) = 3−
2

3

1

Γ( 2

3
)

A′(0) = −3
1

6

2

Γ( 2

3
)

π
B(0) = 3−

1

6

1

Γ( 2

3
)

B′(0) =
3

2

3

2

Γ( 2

3
)

π2. On a setor of angle less than 2

3
π, around the positive real axis5, the Airy's funtions have an asymptotiexpansion for t going to in�nity:

A(t) =
1

2
√

π
e−

2

3
t
3

2

t−
1

4 (1 + O(t−
3

2 )) A′(t) = − 1

2
√

π
e−

2

3
t
3

2

t
1

4 (1 + O(t−
3

2 ))

B(t) =
1√
π

e
2

3
t
3

2

t−
1

4 (1 + O(t−
3

2 )) B′(t) =
1√
π

e
2

3
t
3

2

t
1

4 (1 + O(t−
3

2 ))The funtions A et B are osillating when t goes to −∞.3. Let us denote j = e
2

3
iπ = − 1

2
+

√
3

2 i. The Airy's equation is invariant by the hange of variable t 7→ jt,then A(jt) and B(jt) are also solutions. So they an be written as a linear ombination of A(t) and B(t).We perform an identi�ation at point 0 to �nd the oe�ients:
A(jt) = − 1

2
j2A(t) + 1

2
ij2B(t) B(jt) = 3

2
ij2A(t) − 1

2
j2B(t)

A(j2t) = − 1

2
jA(t) − 1

2
ijB(t) B(j2t) = − 3

2
ijA(t) − 1

2
jB(t)4. Classialy, the ouple (A(t), B(t)) is hosen for a base of the set of solutions. It ould be better (in astudy in the omplex plane) to hoose (A(jt), A(j2t)) for base. With Liouville's theorem, we prove thatthe following determinant is onstant, and we ompute its value at the origin.

det

(

A(jt) A(j2t)
jA′(jt) j2A′(j2t)

)

=
i

2π5Take are: the determination of t
3

2 is here the lassial determination with a ut o� on the negative real axis, not thedetermination hoose along all this artile 16



Figure 11: Graphs of Airy's real funtions A and BReferenes[1℄ E. Benoît. Canards et enlaements. Publiations de l'Institut des Hautes Etudes Sienti�ques, 72:63�91,1990.[2℄ E. Benoît, editor. Dynami Bifurations. Springer Verlag, 1991. Leture Notes in Mathematis, volume1493.[3℄ E. Benoît, A. Fruhard, R. Shaefke, and G. Wallet. Solutions surstables des équations di�érentielleslentes-rapides à point tournant. Annales de la Faulté des Sienes de Toulouse, VII(4):627�658, 1998.[4℄ J.L. Callot. Champs lents-rapides omplexes à une dimension lente. Annales sienti�ques de l'EoleNormale Supérieure, 26:149�173, 1993.[5℄ F. Diener and G. Reeb. Analyse Non Standard. Colletion Enseignement des Sienes. Hermann, Paris,1989.[6℄ N. Fenihel. Geometri singular perturbation theory for ordinary di�erential equations. J. Di�. Eq.,31:53�98, 1979.[7℄ A. Fruhard and R. Shäfke. Sur le retard à la bifuration. In T. Sari, editor, Colloque de Saint Louis(Sénégal). ARIMA, 2008.[8℄ C. Lobry. Dynami bifurations. In E. Benoît, editor, Dynami Bifurations, pages 1�13. Springer Verlag,1991. Leture Notes in Mathematis, volume 1493.[9℄ Claude Lobry. Sur le sens des textes mathematiques: Un exemple, la theorie des bifurations dynamiques.Annales de l'Institut Fourier, 42(1-2):327�351, 1992.[10℄ G. Wallet. Entrée-sortie dans un tourbillon. Annales de l'Institut Fourier, 36(4):157�184, 1986.
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