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Abstract

We consider a 11

2
degrees of freedom Hamiltonian dynamical system, which models

the chaotic dynamics of charged test-particles in a turbulent electric field, across the
confining magnetic field in controlled thermonuclear fusion devices. The external electric
field E = −∇V is modeled by a phenomenological potential V and the magnetic field B is
considered uniform. It is shown that, by introducing a small additive control term to the
external electric field, it is possible to create a transport barrier for this dynamical system.
The robustness of this control method is also investigated. This theoretical study indicates
that alternative transport barriers can be triggered without requiring a control action on the
device scale as in present Internal Transport Barriers (ITB).
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1 Introduction

It has long been recognised that the confinement properties of high performance plasmas with
magnetic confinement are governed by electromagnetic turbulence that develops in microscales [1].
In that framework various scenarios are explored to lower the turbulent transport and therefore
improve the overall performance of a given device. The aim of such a research activity is two-fold.
First, an improvement with respect to the basic turbulent scenario, the so-called L-mode (L for
low) allows one to reduce the reactor size to achieve a given fusion power and to improve the
economical attractiveness of fusion energy production. This line of thought has been privileged
for ITER that considers the H-mode (H for high) to achieve an energy amplification factor of 10
in its reference scenario [2]. The H-mode scenario is based on a local reduction of the turbulent
transport in a narrow regime in the vicinity of the outermoster confinement surface [3].
Second, in the so-called advanced tokamak scenarios, Internal Transport Barriers are considered
[2]. These barriers are characterised by a local reduction of turbulent transport with two important
consequences, first an improvement of the core fusion performance, second the generation of
bootstrap current that provides a means to generate the required plasma current in regime with
strong gradients [4]. The research on ITB then appears to be important in the quest of steady
state operation of fusion reactors, an issue that also has important consequences for the operation
of fusion reactors.
While the H-mode appears as a spontaneous bifurcation of turbulent transport properties in the
edge plasma [3], the ITB scenarios are more difficult to generate in a controlled fashion [5]. Indeed,
they appear to be based on macroscopic modifications of the confinement properties that are both
difficult to drive and difficult to control in order to optimise the performance.
In this paper, we propose an alternative approach to transport barriers based on a macroscopic
control of the E×B turbulence. Our theoretical study is based on a localized hamiltonian control
method that is well suited for E ×B transport. In a previous approach [6], a more global scheme
was proposed with a reduction of turbulent transport at each point of the phase space. In the
present work, we derive an exact expression to govern a local control at a chosen position in
phase space. In principle, such an approach allows one to generate the required transport barriers
in the regions of interest without enforcing large modification of the confinement properties to
achieve an ITB formation [5]. Although the application of such a precise control scheme remains
to be assessed, our approach shows that local control transport barriers can be generated without
requiring macroscopic changes of the plasma properties to trigger such barriers. The scope of
the present work is the theoretical demonstration of the control scheme and consequently the
possibility of generating transport barriers based on more specific control schemes than envisaged
in present advanced scenarios.
In Section 2, we give the general description of our model and the physical motivations for our
investigation. In Section 3, we explain the general method of localized control for Hamiltonian
systems and we estimate the size of the control term. Section 4 is devoted to the numerical
investigations of the control term, and we discuss its robustness and its energy cost. The last
section 5 is devoted to conclusions and discussion.

2 Physical motivations and the E × B model

2.1 Physical motivations

Fusion plasma are sophisticated systems that combine the intrinsic complexity of neutral fluid
turbulence and the self-consistent response of charged species, both electrons and ions, to magnetic
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fields. Regarding magnetic confinement in a tokamak, a large external magnetic field and a
first order induced magnetic field are organised to generate the so-called magnetic equilibrium
of nested toroidal magnetic surfaces [7]. On the latter, the plasma can be sustained close
to a local thermodynamical equilibrium. In order to analyse turbulent transport we consider
plasma perturbations of this class of solutions with no evolution of the magnetic equilibrium,
thus excluding MHD instabilities. Such perturbations self-consistently generate electromagnetic
perturbations that feedback on the plasma evolution. Following present experimental evidence,
we shall assume here that magnetic fluctuations have a negligible impact on turbulent transport
[8]. We will thus concentrate on electrostatic perturbations that correspond to the vanishing β
limit, where β = p/(B2/2µ0) is the ratio of the plasma pressure p to the magnetic pressure. The
appropriate framework for this turbulence is the Vlasov equation in the gyrokinetic approximation
associated to the Maxwell-Gauss equation that relates the electric field to the charge density.
When considering the Ion Temperature Gradient instability [9] that appears to dominate the ion
heat transport, one can further assume the electron response to be adiabatic so that the plasma
response is governed by the gyrokinetic Vlasov equation for the ion species.
Let us now consider the linear response of such a distribution function f̂ , to a given electrostatic

perturbation, typically of the form Te φ̂ e−iωt+i~k~r, (where f̂ and φ̂ are Fourier amplitudes of
distribution function and electric potential). To leading orders one then finds that the plasma
response exhibits a resonance:

f̂ =

(
ω + ω∗

ω − k|| v||
− 1

)
φ̂feq (1)

Here feq is the reference distribution function, locally Maxwellian with respect to v|| and ω∗ is
the diamagnetic frequency that contains the density and temperature gradient that drive the ITG
instability [9]. Te is the electronic temperature. This simplified plasma response to the electrostatic
perturbation allows one to illustrate the turbulent control that is considered to trigger off transport
barriers in present tokamak experiments.
Let us examine the resonance ω − k|| v|| = 0 where k|| = (n − m/q)/R with R being the major
radius, q the safety factor that characterises the specific magnetic equilibrium and m and n the
wave numbers of the perturbation that yield the wave vectors of the perturbation in the two
periodic directions of the tokamak equilibrium. When the turbulent frequency ω is small with
respect to vth/(qR), (where vth =

√
kBT/m is the thermal velocity), the resonance occurs for

vanishing values of k||, and as a consequence at given radial location due to the radial dependence
of the safety factor. The resonant effect is sketched on figure 1.

Figure 1: Resonances for q = m
n

and q = m+1

n
for two different widths, narrow resonances

empedding large scale turbulent transport and broad resonances favouring strong turbulent
transport.

In a quasilinear approach, the response to the perturbations will lead to large scale turbulent
transport when the width of the resonance δm is comparable to the distance between the resonances
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∆m,m+1 leading to an overlap criterion that is comparable to the well known Chirikov criterion
for chaotic transport σm = (δm + δm+1)/∆m,m+1 with σ > 1 leading to turbulent transport across
the magnetic surfaces and σ < 1 localising the turbulent transport to narrow radial regions in the
vicinity of the resonant magnetic surfaces.
The present control schemes are two-fold. First, one can consider a large scale radial electric field
that governs a Doppler shift of the mode frequency ω. As such the Doppler shift ω − ωE has no
effect. However a shear of the Doppler frequency ωE , ωE = ω̄E +δrω′

E will induce a shearing effect
of the turbulent eddies and thus control the radial extent of the mode δm, so that one can locally
achieve σ < 1 in order to drive a transport barrier.
Second, one can modify the magnetic equilibrium so that the distance between the resonant
surfaces is strongly increased in particular in a magnetic configuration with weak magnetic shear
(dq/dr ≈ 0) so that ∆m,m+1 is strongly increased, ∆m,m+1 ≫ δm, also leading to σ < 1.
Both control schemes for the generation of ITBs can be interpreted using the situation sketched
on figure 1. The initial situation with large scale radial transport across the magnetic surfaces (so
called L-mode) is indicated by the dashed lines and is governed by significant overlap between the
resonances. The ITB control scheme aims at either reducing the width of the islands or increasing
the distance between the resonances yielding a situation sketeched by the plain line in figure 1
where the overlap is too small and a region with vanishing turbulent transport, the ITB, develops
between the resonances.
Experimental strategies in advanced scenarios comprising Internal Transport Barriers are based on
means to enforce these two control schemes. In both cases they aim at modifying macroscopically
the discharge conditions to fulfill locally the σ < 1 criterion. It thus appears interesting to devise
a control scheme based on a less intrusive action that would allow one to modify the chaotic
transport locally by the choice of an appropriate electrostatic perturbation hence leading to a
local transport barrier.

2.2 The E × B model

For fusion plasmas, the magnetic field B is slowly variable with respect to the inverse of the Larmor
radius ρL i.e: ρL|∇ ln B| ≪ 1. This fact allows the separation of the motion of a charged test
particle into a slow motion (parallel to the lines of the magnetic field) and a fast motion (Larmor
rotation). This fast motion is named gyromotion, around some gyrocenter. In first approximation
the averaging of the gyromotion over the gyroangle gives the approximate trajectory of the charged
particle. This averaging is the guiding-center approximation.
In this approximation, the equations of motion of a charged test particle in the presence of a
strong uniform magnetic field B = Bẑ, (where ẑ is the unit vector in the z direction) and of an
external time-dependent electric field E = −∇V1 are:

d

dT




X

Y



 =
cE ×B

B2
=

c

B
E(X, Y, T ) × ẑ

=
c

B




−∂Y V1(X, Y, T )

∂XV1(X, Y, T )


 (2)

where V1 is the electric potential. The spatial coordinates X and Y play the role of canonically-
conjugate variables and the electric potential V1(X, Y, T ) is the Hamiltonian for the problem. Now
the problem is placed into a parallelepipedic box with dimensions L × ℓ × (2π/ω), where L and
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ℓ are some characteristic lengths and ω is a characteristic frequency of our problem, X is locally
a radial coordinate and Y is a poloidal coordinate. A phenomenological model [10] is chosen for
the potential:

V1(X, Y, T ) =
N∑

n,m=1

V0 cos χn,m

(n2 + m2)3/2
(3)

where V0 is some amplitude of the potential,

χn,m ≡
2π

L
nX +

2π

ℓ
mY + φn,m − ωT

ω is constant, for simplifying the numerical simulations and φn,m are some random phases
(uniformly distributed).
We introduce the dimensionless variables

(x, y, t) ≡ (2πX/L, 2πY/ℓ, ωT ) (4)

So the equations of motion (2) in these variables are:

d

dt

(
x
y

)
=

(
−∂yV (x, y, t)
∂xV (x, y, t)

)
(5)

where V = ε(V1/V0) is a dimensionless electric potential given by

V (x, y, t) = ε
N∑

n,m=1

cos (nx + my + φn,m − t)

(n2 + m2)3/2
(6)

Here
ε = 4π2(cV0/B)/(Lℓω) (7)

is the small dimensionless parameter of our problem. We perturb the model potential (6) in order
to build a transport barrier. The system modeled by Eqs.(5) is a 11

2
degrees of freedom system

with a chaotic dynamics [10, 6]. The poloidal section of our modeled tokamak is a Poincaré section
for this problem and the stroboscopic period will be chosen to be 2π, in term of the dimensionless
variable t.
The particular choice (3) or (6) is not crucial and can be generalized. Generally, ω can be chosen
depending on n, m. This would make the numerical computations more involved. In the following
section, V is chosen completely arbitrary.

3 Localized control theory of hamiltonian systems

3.1 The control term

In this section we show how to construct a transport barrier for any electric potential V . The
electric potential V (x, y, t) yields a non-autonomous Hamiltonian. We expand the two-dimensional
phase space by including the canonically-conjugate variables (E,τ),

H = H(E, x, y, τ) = E + V (x, y, τ) (8)
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The Hamiltonian of our system thus becomes autonomous. Here τ is a new variable whose
dynamics is trivial: τ̇ = 1 i.e. τ = τ0 + t and E is the variable canonically conjugate to τ . The
Poisson bracket in the expanded phase space for any W = W (E, x, y, τ) is given by the expression:

{W} ≡ (∂xW )∂y − (∂yW )∂x + (∂EW )∂τ − (∂τW )∂E . (9)

Hence {W} is a linear (differential) operator acting on functions of (E, x, y, τ). We call H0 = E
the unperturbed Hamiltonian and V (x, y, τ) its perturbation. We now implement a perturbation
theory for H0. The bracket (9) for the Hamiltonian H is

{H} = (∂xV )∂y − (∂yV )∂x + ∂τ − (∂τV )∂E (10)

So the equations of motion in the expanded phase space are:

ẏ = {H}y = ∂xV (x, y, τ) (11)

ẋ = {H}x = − ∂yV (x, y, τ) (12)

Ė = {H}E = − ∂τV (x, y, τ) (13)

τ̇ = {H}τ = 1 (14)

We want to construct a small modification F of the potential V such that

H̃ ≡ E + V (x, y, τ) + F (x, y, τ) ≡ E + Ṽ (x, y, τ) (15)

has a barrier at some chosen position x = x0. So the control term

F = Ṽ (x, y, τ) − V (x, y, τ) (16)

must be much smaller than the perturbation (e.g., quadratic in V ). One of the possibilities is:

Ṽ ≡ V (x + ∂yf(y, τ), y, τ) (17)

where

f(y, τ) ≡

∫ τ

0

V (x0, y, t)dt

Indeed we have the following theorem:

Theorem 1 The Hamiltonian H̃ has a trajectory x = x0 + ∂yf(y, τ) acting as a barrier in phase
space.

Proof

Let the Hamiltonian Ĥ ≡ exp({f})H̃ be canonically related to H̃ . (Indeed the exponential of any

Poisson bracket is a canonical transformation.) We show that Ĥ has a simple barrier at x = x0.
We start with the computation of the bracket (9) for the function f . Since f = f(y, τ), the
expression for this bracket contains only two terms,

{f} ≡ −f ′∂x − ḟ∂E (18)

where
f ′ ≡ ∂yf and ḟ ≡ ∂τf (19)

which commute:
[f ′∂x, ḟ∂E ] = 0 (20)
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Now let us compute the coordinate transformation generated by exp({f}):

exp({f}) ≡ exp(−f ′∂x) exp(−ḟ∂E), (21)

where we used (20) to separate the two exponentials.
Using the fact that exp(b∂x) is the translation operator of the variable x by the quantity b:
[exp(b∂x)W ](x) = W (x + b), we obtain

Ĥ = e{f}H̃ ≡ e{f}E + e{f}Ṽ (x, y, τ)

=
(
E − ḟ

)
+ Ṽ (x − f ′, y, τ)

= E − V (x0, y, τ) + V (x + f ′ − f ′, y, τ)

= E − V (x0, y, τ) + V (x, y, τ) (22)

This Hamiltonian has a simple trajectory x = x0, E = E0, i.e. any initial data x = x0, y =
y0, E = E0, τ = τ0 evolves under the flow of Ĥ into x = x0, y = yt, E = E0, τ = τ0 + t for some
evolution yt that may be complicated, but not useful for our problem. Hamilton’s equations for x
and E are now

ẋ = {Ĥ}x = ∂y [V (x0, y, τ) − V (x, y, τ)] (23)

Ė = {Ĥ}E = ∂τ [V (x0, y, τ) − V (x, y, τ)] (24)

so that for x = x0, we find ẋ = 0 = Ė. Then the union of all points (x, y, E, τ) at x = x0 E = E0:

B0 =
⋃

y,τ,E0




x0

y
E0

τ


 (25)

is a 3-dimensional surface T
2 × R, (T ≡ R/2πZ) preserved by the flow of Ĥ in the 4-dimensional

phase space. If an initial condition starts on B0, its evolution under the flow exp(t{Ĥ}) will
remain on B0.
So we can say that B0 act as a barrier for the Hamiltonian Ĥ: the initial conditions starting inside
B0 can’t evolve outside B0 and vice-versa.
To obtain the expression for a barrier B for H̃ we deform the barrier for Ĥ via the transformation
exp({f}). As

H̃ = e−{f}Ĥ (26)

and exp({f}) is a canonical transformation, we have

{H̃} = {e−{f}Ĥ} = e−{f}{Ĥ}e{f} (27)

Now let us calculate the flow of H̃ :

et{ eH} = et(e−{f}{ bH}e{f}) = e−{f}et{ bH}e{f} (28)

Indeed:

et(e−{f}{ bH}e{f}) =
∞∑

n=0

tn(e−{f}{Ĥ}e{f})n

n!
(29)
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For instance when n = 2:

t2(e−{f}{Ĥ}e{f})2 = t2e−{f}{Ĥ}e{f}e−{f}{Ĥ}e{f}

= t2e−{f}{Ĥ}
2

e{f} (30)

and so

et{ eH} =

∞∑

n=0

tne−{f}{Ĥ}ne{f}

n!
= e−{f}et{ bH}e{f} (31)

As we have seen before:

e{f}




x
y
E
τ


 =




x − f ′

y

E − ḟ
τ




and

et{ bH}




x0

y
E0

τ


 =




x0

yt

E0

τ + t


 (32)

Multiplying (28) on the right by e−{f} we obtain:

et{ eH}e−{f} = e−{f}et{ bH}

et{ eH}e−{f}




x0

y
E0

τ


 = et{ eH}




x0 + f ′(y, τ)
y

E0 + ḟ(y, τ)
τ


 (33)

and

e−{f}et{ bH}




x0

y
E0

τ


 = e−{f}




x0

yt

E0

τ + t




=




x0 + f ′(yt, τ + t)
yt

E0 + ḟ(yt, τ + t)
τ + t


 (34)

So the flow exp(t{H̃}) preserves the set

B =
⋃

y,τ,E0




x0 + f ′(y, τ)
y

E0 + ḟ(y, τ)
τ


 (35)

B is a 3 dimensional invariant surface, topologically equivalent to T
2 × R into the 4 dimensional

phase space. B separates the phase space into 2 parts, and is a barrier between its interior and
its exterior. B is given by the deformation exp({f}) of the simple barrier B0.
The section of this barrier on the sub space (x, y, t) is topologically equivalent to a torus T

2.

This method of control has been successfully applied to a real machine: a traveling wave tube to
reduce its chaos [11].
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3.2 Properties of the control term

In this Section, we estimate the size and the regularity of the control term (16).

Theorem 2 For the phenomenological potential (6) the control term (16) verifies:

‖F‖ 1

N
, 1

N
≤ ε2N2

e3

4π
(36)

if ε is small enough, i.e. if |ε| ≤
√

π

2Ne3/2
where N is the number of modes in the sum (6).

Proof The proof of this estimation is given in [12] and is based on rewriting

F = V (x + f ′) − V (x) =

∫
1

0

ds ∂xV (x + sf ′, y, τ)f ′(y, τ)

= O(V 2) (37)

and then use Cauchy’s Theorem.

4 Numerical investigations for the control term

In this Section, we present the results of our numerical investigations for the control term F .
The theoretical estimate presented in the previous section shows that its size is quadratic in the
perturbation. Figure 2 shows the contour plot of V (x, y, t) and Ṽ (x, y, t) (Ṽ = V + F ) at some
fixed time t, for example t = π

4
. One can see that the contours of both potentials are very similar.

But the dynamics of the systems with V and Ṽ are very different.
For all numerical simulations we choose the number of modes N = 25 in (6). In all plots the
abscissa is x and the ordinate is y.

Figure 2: Uncontrolled and controlled potential for ε = 0.6, t = π
4
, x0 = 2.

4.1 Phase portrait for the exact control term

To explore the effectiveness of the barrier, we plot (in Fig. 3) the phase portraits for the original
system (without control term) and for the system with the exact control term F . We choose
the same initial conditions. The time of integration is T = 2000, the number of trajectories:
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Ntraj = 200 (number of initial conditions, all taken in the strip −1 − π ≤ x ≤ −π; 0 ≤ y ≤ 2π)
and the parameter ε = 0.9. We choose the barrier at position x0 = 2. And to get a Poincaré
section, we plot the poloidal section when t ∈ 2πZ. Then we compare the number of trajectories
passing through the barrier during this time of integration for each system. We eliminate the
points after the crossing. For the uncontrolled system 68% of the initial conditions cross the
barrier at x0 = 2 and for the controlled system only 1% of the trajectories escape from the zone
of confinement. The theory announces the existence of an exact barrier for the controlled system:
these escaped trajectories (1%) are due to numerical errors in the integration.

Figure 3: Phase portraits without control term and with the exact control term, for ε = 0.9,
x0 = 2, Ntraj = 200.

One can observe that the barrier for the controlled system is a straight line. In fact this barrier
moves, its expression depends on time:

x = x0 + f ′(y, t) (38)

But when t ∈ 2πZ its oscillation around x = x0 vanishes: f ′(y, 2kπ) =
∫

2kπ

0
∂yV (x0, y, t)dt = 0.

This is what we see on this phase portrait. In fact we create 2 barriers at position x = x0, and
x = x0 − 2π (and also at x0 + 2nπ) because of the periodicity of the problem. We note that the
mixing increases inside the two barriers. The same phenomenon was also observed in the control
of fluids [13], where the same method was applied.

4.2 Robustness of the barrier

In a real Tokamak, it is impossible to know an analytical expression for electric potential V . So we
can’t implement the exact expression for F . Hence we need to test the robustness of the barrier
by truncating the Fourier decomposition (for instance in time) of the controlled potential.

Fourier decomposition

Theorem 3 The potential (17) can be decomposed as Ṽ =
∑

k∈Z
Ṽk, where

Ṽk = ε
N∑

n,m=1

Jk(nρ)

(n2 + m2)3/2
cos (η + kΘ + (k − 1)t) (39)
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with

ηn,m(y) = nx + my + φn,m + nεFc (40)

Fc(y) =

N∑

n,m=1

m cos(Kn,m,y)

(n2 + m2)3/2
(41)

Fs(y) =
N∑

n,m=1

m sin(Kn,m,y)

(n2 + m2)3/2
(42)

Km,n,y = nx0 + my + φn,m (43)

and Jk is the Bessel’s function

Jk(nρ) =
1

π

∫ π

0

cos (ku − nρ sin u) du (44)

Proof We rewrite explicitly the expression (17) for our phenomenological controlled potential

Ṽ (x, y, t):

Ṽ (x, y, t) =ε

N∑

n,m=1

cos
(
n(x + f ′(y, t)) + my + φn,m − t

)

(n2 + m2)3/2
(45)

with

f ′(y, t) = ε
N∑

n,m=1

m
(
cos Kn,m,y − cos(Kn,m,y − t)

)

(n2 + m2)3/2
(46)

With the definition (41) and (42) we have:

f ′(y, t) = ε(Fc(y) (1 − cos t) − Fs(y) sin t) (47)

Let us introduce
ρ = ε(F 2

c + F 2

s )1/2 (48)

and Θ by
ρ sin Θ ≡ −εFc(y) ρ cos Θ ≡ −εFs(y) (49)

so that

Ṽ = ε

N∑

n,m=1

cos (η − t + nρ sin(Θ + t))

(n2 + m2)3/2
(50)

Using Bessel’s functions properties [14]

cos(ρ sin Θ) =
∑

k∈Z

Jk(ρ) cos kΘ (51)

sin(ρ sin Θ) =
∑

k∈Z

Jk(ρ) sin kΘ (52)

we get

cos (η − t + nρ sin(Θ + t)) =
∑

k∈Z

Jk(nρ) cos (ξ) (53)

where ξ = η + kΘ + (k − 1)t, and we finally obtain (39). The theorem is proved. �
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During numerical simulations we truncate the controlled potential by keeping only its first 3
temporal Fourier’s harmonics:

Ṽtr=ε

N∑

n,m=1

A0 + A1 cos t + B1 sin t + A2 cos 2t + B2 sin 2t

(n2 + m2)3/2
(54)

A0 = J0(nρ) cos(η + Θ)

A1 = J0(nρ) cos η + J2(nρ) cos(η + 2Θ)

B1 = J0(nρ) sin η −J2(nρ) sin(η + 2Θ)

A2 = J3(nρ) cos(η + 3Θ) −J1(nρ) cos(η − Θ)

B2 = −J3(nρ) sin(η + 3Θ) − J1(nρ) sin(η − Θ)

Figure 4: Exact Control Term and Truncated Control Term with ε = 0.6, t = π
4
.

Figure 4 compares the two contour plots for the exact control term and the truncated control
term (54). Figure5 compares the two phase portraits for the system without control term and for

the system with the above truncated control term (54). The computation of Ṽtr on some grid has
been performed in Matlab and the numerical integration of the trajectories was done in C.

Figure 5: ε = 0.3, T = 2000, Ntraj = 50.
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Table 1: Squared ratios of the amplitudes of the control term and the uncontrolled electric potential
ζex, ζtr; ratios of electric energy of the control term and the uncontrolled electic potential ηex, ηtr;
for the system with exact and truncated control term.

ε ζex ζtr ηex ηtr

0.3 0.1105 0.1193 0.6297 0.1431
0.4 0.1466 0.1583 0.7145 0.2393
0.5 0.1822 0.1967 0.8161 0.3550
0.6 0.2345 0.2137 0.9336 0.4883
0.7 0.2518 0.2716 1.0657 0.6375
0.8 0.2858 0.3038 1.2119 0.8014
0.9 0.3191 0.3439 1.3722 0.9796
1.5 0.5052 0.5427 2.6247 2.3037

One can see a barrier for the system with the truncated control term. As for the system with the
exact control term we create two barriers at positions x = x0 and x = x0−2π and the phenomenon
of increasing the mixing inside the barriers persist.

4.3 Energetical cost

As we have seen before, the introduction of the control term into the system can reduce and even
stop the diffusion of the particles through the barrier. Now we estimate the energy cost of the
control term F and the truncated control term Ftr ≡ Ṽtr − V .

Definition 1 The average of any function W = W (x, y, τ) is defined by the formula:

< |W | >=

∫
2π

0

dx

∫
2π

0

dy

∫
2π

0

dt |W (x, y, t)| (55)

Now we calculate the ratio between the absolute value of the truncated control (electric potential)
or the exact control and the uncontrolled electric potential:

ζex =< |F |2 > / < |V |2 >

and
ζtr =< |Ftr|

2 > / < |V |2 >

We also compute the ratio between the energy of the control electric field and the energy of the
uncontrolled system in their exact and truncated version

ηex =< |∇F |2 > / < |∇V |2 >

and
ηtr =< |∇Ftr|

2 > / < |∇V |2 >

for different values of ε. Results are shown in Table 1.
One can see that the truncated control term needs a smaller energy than the exact control term.
In Table 2, we present the number of particles passing through the barrier in function of ε, after
the same integration time.
Let ∆N = Nwithout −Ntr be the difference between the number of particles passing through the
barrier for the system without control and with the truncated control and ∆η = ηex − ηtr the
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Table 2: Number of escaping particles without control term Nwithout, and for the system with the
exact control term Nexact and the truncated control term Ntr.

ε Nwithout Nexact Ntr

0.4 22% 0% 6%
0.5 26% 0% 18%
0.9 68% 1% 44%
1.5 72% 1% 54%

Table 3: Difference ∆N of the number of particles passing trough the barrier and difference of
relative electric energy ∆η for the controlled and uncontrolled system.

ε ∆N ∆η
0.3 8% 0.49
0.4 16% 0.47
0.5 8% 0.46
0.9 24% 0.39
1.5 18% 0.32

difference between the relative electric energy for the system with the exact control term and the
system with the truncated control term. In Table 3 we present ∆N and ∆η for differents values
of ε.
For ε below 0.2 the non controlled system is rather regular, there is no particles stream through
the barrier, so we have no need to introduce the control electric field. For ε between 0.3 and 0.9
the truncated control field is quite efficient, it allows to drop the chaotic transport through the
barrier by a factor 8% to 24% with respect to the uncontrolled system and it requires less energy
than the exact control field. For ε greater than 1 the truncated control field is less efficient than
the exact one, because the dynamics of the system is very chaotic. For example when ε = 1.5,
there are 72% of the particles crossing the barrier for the uncontrolled system and 54% for the
system with the truncated control field. At the same time the energetical cost of the truncated
control field is above 70% of the exact one, which allows to stop the transport through the barrier.
So for ε ≥ 1 we need to use the exact control field rather than the truncated one.

5 Discussion and Conclusion

In this article, we studied a possible improvement of the confinement properties of a magnetized
fusion plasma. A transport barrier conception method is proposed as an alternative to presently
achieved barriers such as the H-mode and the ITB scenarios. One can remark, that our method
differs from an ITB construction. Indeed, in order to build-up a transport barrier, we do not
require a hard modification of the system, such as a change in the q-profile. Rather, we propose
a weak change of the system properties that allow a barrier to develop. However, our control
scheme requires some knowledge and information relative to the turbulence at work, these having
weak or no impact on the ITB scenarios.

5.1 Main results

First of all we have proved that the local control theory gives the possibility to construct a transport
barrier at any chosen position x = x0 for any electric potential V (x, y, t). Indeed, the proof given

14



in section 3 does not depend on the model for the electric potential V . In Subsection 3.1, we
give a rigorous estimate for the norm of the control term F , for some phenomenological model
of the electric potential. The introduction of the exact control term into the system inhibits the
particle transport through the barrier for any ε while the implementation of a truncated control
term reduces the particle transport significantly for ε ∈ (0.3, 1.0).

5.2 Discussion, open questions

5.2.1 Comparison with the global control method

Let us now compare our approach with the global control method [6] which aims at globally
reducing the transport in every point of the phase space. Our approach aims at implementing
a transport barrier. However, one also observes a global modification of the dynamics since the
mixing properties seem to increase away from the barriers.
Furthermore, in many cases, only the first few terms of the expansion of the global control term
[6] can be computed explicitly. Here we have an explicit exact expression for the local control
term.

5.2.2 Effectiveness and properties of the control procedure

In subsection 2.2, we have introduced the dimensionless variables (4) and defined a dimensionless
control parameter ε ≡ 4π2(cV0/B)/(Lℓω). In the simplifying case where l = L = 2π/k is the
characteristic length of our problem, we have ε = ck2V0/(ωB). Let us consider a symmetric
vortex, hence with characteristic scale 1/k. Let us now consider the motion of a particle governed
by such a vortex. The order of magnitude of the drift velocity is therefore vE = kcV0/B and
the associated characteristic time τETT , τETT ≡ 1/(kvE), is the eddy turn over time. Let ω be
the characteristic evolution frquency of the turbulent eddies, here of the electric field, then the
Kubo number K is K = 1/ωτETT . This parameter is the dimensionless control parameter of this
class of problems, and we remark that in our case K = ε. It is also important to remark that
the parameter K also characterises the diffusion properties of our system. Indeed, let δ be a step
size of our particle in a random walk process and let τ be the associated characteristic time, the
diffusion coefficient is then D = δ2/τ . Since one can relate the characteristic step and time by the
velocity, δ = vEτ , on also finds:

D =
(vEτ)2

τ
=

k2c2V 2
0

B2
τ =

1

k2τ 2
ETT

τ =
K2

k2
ω2τ (56)

We also introduce the reference diffusion coefficient D̄ = k−2ω, so that:

D/D̄ ≡ K2ωτ (57)

They are two asymptotic regimes for our system. The first one, is the regime of weak turbulence,
characterised by ωτETT ≫ 1 and therefore K ≪ 1. In this regime, the electric potential evolution
is fast, the particle trajectories only follow the eddy geometry on distances much smaller than
the eddy size. The steps δ are small and the characteristic time τ of the random walk such that
ωτ ≈ 1. The particle diffusion (57) is then such that:

D/D̄ ≈ K2 for ωτETT ≫ 1 (58)

The second asymptotic regime is the regime of strong turbulence, with ωτETT ≪ 1 and K ≫ 1.
Particles then explore the eddies before decorrelation and the characteristic time of the random
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step is typically τ ≈ τETT and:

D/D̄ ≈ K for ωτETT ≪ 1 (59)

The first regime corresponds to the weak turbulence limit with weak Kubo number and particle
diffusion and the second to strong turbulence and large Kubo number and particle diffusion. The
control method developed in this article does not depend on K ≡ ε. There is always a possibility
to construct an exact transport barrier. However for the numerical simulations, we have remarked,
that for small ε one can observe a stable barrier without escaping particles, and for ε close or more
than 1 there is some leaking of particles across the barrier. The barrier is more difficult to enforce.
Also when considering the truncated control term, one finds that the control term is ineffective in
the strong turbulence limit.
Let us now consider the implementation of our method to turbulent plasmas where the turbulent
electric field is consistent with the particle transport. The theoretical proof of an hamiltonian
control concept is developped provided the system properties at work are completely known. For
example the analytic expression for the electric potential. This is impossible in a real system,
since the measurements take place on a finite spatio-temporal grid. This has motivated our
investigation of the truncated control term by reducing the actually used information on the
system. As pointed out previously, one finds that this approach is ineffective for strong turbulence.
Another issue is the evolution of the turbulent electric field following the appearance of a transport
barrier. This issue would deserve a specific analysis and very likely updating the control term on a
trasnport characteristic time scale. An alternative to such a process would be to use a retroactive
Hamiltonian approach (a classical field theory) [15] and to develop the control theory in that
framework.
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