
HAL Id: hal-00354112
https://hal.science/hal-00354112v2

Submitted on 22 Apr 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On using floating-point computations to help an exact
linear arithmetic decision procedure

David Monniaux

To cite this version:
David Monniaux. On using floating-point computations to help an exact linear arithmetic deci-
sion procedure. Computer-aided verification (CAV 2009), Jun 2009, Grenoble, France. pp.570-583,
�10.1007/978-3-642-02658-4_42�. �hal-00354112v2�

https://hal.science/hal-00354112v2
https://hal.archives-ouvertes.fr

On using floating-point computations to help an

exact linear arithmetic decision procedure∗

David Monniaux
CNRS / VERIMAG†

April 22, 2009

Abstract

We consider the decision problem for quantifier-free formulas whose
atoms are linear inequalities interpreted over the reals or rationals. This
problem may be decided using satisfiability modulo theory (SMT), using
a mixture of a SAT solver and a simplex-based decision procedure for
conjunctions. State-of-the-art SMT solvers use simplex implementations
over rational numbers, which perform well for typical problems arising
from model-checking and program analysis (sparse inequalities, small co-
efficients) but are slow for other applications (denser problems, larger
coefficients).

We propose a simple preprocessing phase that can be adapted to ex-
isting SMT solvers and that may be optionally triggered. Despite us-
ing floating-point computations, our method is sound and complete — it
merely affects efficiency. We implemented the method and provide bench-
marks showing that this change brings a naive and slow decision procedure
(“textbook simplex” with rational numbers) up to the efficiency of recent
SMT solvers, over test cases arising from model-checking, and makes it
definitely faster than state-of-the-art SMT solvers on dense examples.

1 Introduction

Decision procedures for arithmetic theories are widely used for computer-aided
verification. A decision procedure for a theory T takes as input a formula of T
and outputs a Boolean: whether the formula is satisfiable. For many decidable
and potentially useful theories, however, decision procedures are sometimes too
slow to process problems beyond small examples. This is for instance the case
of the theory of real closed fields (polynomial arithmetic over the real numbers).
Excessive computation times arise from two sources: the Boolean structure of
the formulas to be decided (propositional satisfiability is currently solved in ex-
ponential time in the worst case), and the intrinsic hardness of the theory. In
recent years, SAT modulo theory (SMT) techniques have addressed the former
source of inefficiency, by leveraging the power of efficient SAT (Boolean satisfia-
bility) solvers to deal with the Boolean structure. SMT solvers combine a SAT

∗This work was partially funded by the ANR ARPEGE project “ASOPT”.
†VERIMAG is a joint laboratory of CNRS, Université Joseph Fourier and Grenoble-INP.

1

http://www-verimag.imag.fr/~monniaux/
http://www.agence-nationale-recherche.fr/
http://www.agence-nationale-recherche.fr/?NodId=17&lngAAPId=159
http://asopt.inrialpes.fr/index.php/Main_Page
http://www-verimag.imag.fr/
http://www.cnrs.fr/
http://www.ujf-grenoble.fr/
http://www.grenoble-inp.fr/

solver with a decision procedure for conjunctions of atoms in T . If T is linear
real arithmetic (LRA), then this decision procedure must decide whether a set
of linear inequalities with rational or integer coefficients has rational solutions.

The problem of testing whether a set of linear inequalities has a solution
and, if it has, to find a solution that maximizes some linear combination of the
variables is known as linear programming and has been considerably studied in
operational research. Very efficient implementations exist, whether commercial
or not, and are able to solve very large problems. They are not directly appli-
cable to our problems, however, if only because they operate over floating-point
numbers and provide in general no assurance that their result is truthful, de-
spite elaborate precautions taken against numerical instabilities. As a result,
the decision procedures for LRA in SMT solvers are implemented with rational
arithmetic, which is slower than floating-point, especially if coefficients become
large, as often happens with dense linear problems: large coefficients force the
use of costly extended precision arithmetic. It thus would seem desirable to
leverage the speed and maturity of floating-point linear programming systems
to enhance exact decision procedures.

This article describes a simple preprocessing phase that can be added, with
minimal change, to existing rational simplex implementations used as decision
procedures inside SMT solvers. The procedure was implemented on top of a
naive and inefficient rational simplex implementation; the resulting procedure
rivals recent SMT solvers.

A similar method has been proposed in the operational research field [4],1

but there are reasons why it may perform less well for the typical optimization
tasks of operational research than for decision tasks. The novelty of this article
is the application of this technique as a simple modification of existing SMT
algorithms.

2 Simplex

SMT solvers need a decision procedure capable of:

• being used incrementally: adding new constraints to the problem, and re-
moving blocks of constraints, preferably without recomputing everything;

• telling whether the problem is satisfiable or not;

• if the problem is unsatisfiable, outputting a (preferably small or even min-
imal) unsatisfiable subset of the constraints;

• propagating theory lemmas, if possible at reasonable costs (from a con-
junction C1 ∧ . . .∧Cn, obtain literals L1, . . . , Lm that are consequences of
that conjunction: C1 ∧ . . . ∧ Cn ⇒ L1 ∧ . . . ∧ Lm).

All current SMT solvers seem to decide general linear real arithmetic (as
opposed to syntactic restrictions thereof such as difference logic) using the sim-
plex algorithm. This algorithm is exponential in the worst case, but tends to
perform well in practice; none of the current solvers seem to use a (polynomial-
time) interior point method. Our method is a variant of the simplex algorithm;
we shall thus first describe the “conventional” simplex.

1We were not aware of this article when we started our work, and we thank Bernd Gärtner
for pointing it to us.

2

2.1 Basic simplex

We shall first give a brief summary on the dual simplex algorithm on which the
LRA decision procedures in Yices2 [6, 5] and Z33 [3] are based. There otherwise
exist many excellent textbooks on the simplex algorithm [2, 15], though these
seldom discuss the specifics of implementations in exact precision or incremental
use.

Take a system of linear equations, e.g.

x − 2y ≤ 1
−y + 3z ≥ −1
x − 6z ≥ 4

(1)

The system is first made canonical. Inequalities are scaled so that each left
hand side only has integer coefficients with no common factors. Then, each
inequality is optionally negated so that the first coefficient appearing (using
some arbitrary ordering of the variables) is positive. This ensures that two
inequalities constraining the same direction in space (e.g. −y + 3z ≥ −1 and
2y− 6z ≥ 3) appear with the exact same left-hand side. For each left-hand side
that is not a variable, a new variable is introduced; the system is then converted
into a number of linear equalities and bound constraints on the variables. For
instance, the above system gets converted into:

α = x − 2y
β = y − 3z
γ = x − 6z

α ≤ 1
β ≤ 1
γ ≥ 4

(2)

The problem is thus formulated as deciding whether a product of intervals in-
tersects a linear subspace given by a basis.

The set of variables is partitioned into basic and nonbasic variables; the
number of basic variables stays constant throughout the algorithm. Basic vari-
ables are expressed as linear combinations of the nonbasic variables. The main
operation of the algorithm is pivoting: a basic variable is made nonbasic and a
nonbasic variable is made basic, without changing the linear subspace defined
by the system of equations. For instance, in the above example, α = x − 2y
defines the basic variable in term of the nonbasic variables x and y. If one wants
instead x to be made basic, one obtains x = α + 2y. The variable x then has
to be replaced by α + 2y in all the other equalities, so that the right-hand sides
of these equalities only refer to nonbasic variables. This replacement procedure
(essentially, replacing a vector u by v + ku) is the costly part of the algorithm.
A more formal description is given in Alg. 1.

Let us insist that pivoting does not change anything to the validity of the
problem: both the bounds and the linear subspace stay the same. The idea
behind the simplex algorithm is to pivot until a position is found where it is
obvious that the problem has a solution, or that it has not.

The algorithm also maintains a vector of “current” values for the variables.
This vector is fully defined by its projection on the nonbasic variables, since the
basic variables can be obtained from them. The current values of the nonbasic
variables always stay within their respective bounds. If all current values of the

2http://yices.csl.sri.com/
3http://research.microsoft.com/en-us/um/redmond/projects/z3/

3

http://yices.csl.sri.com/
http://research.microsoft.com/en-us/um/redmond/projects/z3/

basic variables also fit within the bounds, the current value is a solution to the
problem and the algorithm terminates.

If there are basic variables that fall outside the prescribed bounds, one of
them (say, α) is selected and the corresponding row (say, x − 2y) is examined.
Suppose for the sake of the explanation that the current value for α, cα, is
strictly greater than the maximal prescribed value Mα. One can try making
x smaller or y larger to compensate for the difference. If x is already at its
lower bound and y at its upper bound, it is impossible to make α smaller and
the system is unsatisfiable; the algorithm then terminates. In other words,
by performing interval arithmetic over the equation defining α in terms of the
nonbasic variables, one shows this equation to be unsatisfiable (replacing the
nonbasic variables by their interval bounds, one obtains an interval that does
not intersect the interval for α).

Let us now suppose that x is not at its lower bound; we can try making it
smaller. α and x are pivoted: x becomes basic and α nonbasic. α is set to its
lower bound and x is adjusted accordingly.

It can be shown that if there is a solution to the problem, then there is
one configuration where any nonbasic variable is either at its lower or upper
bound. Intuitively, if some nonbasic variables are “in the middle”, then this
means we have some “slack margin” available, so we should as well use it. The
simplex algorithm appears to move between numerical points taken in an infinite
continuous space, but in fact, its current configuration is fully defined by stating
which variables are basic and nonbasic, and, for the nonbasic variables, whether
they are at their lower or upper bound — thus the number of configurations is
finite.

Remark that we left aside how we choose which basic variable and which
basic variable to pivot. It can be shown that certain pivoting strategies (say,
choose the suitable nonbasic and basic variables of least index) necessarily lead,
maybe after a great number of pivots, to a configuration where either a solution
is obtained, or the constraints of a nonbasic variable are clearly unsatisfiable.

The idea of our article is based on the following remark: the simplex al-
gorithm, with a suitable pivoting strategy, always terminates with the right
answer, but its execution time can vary considerably depending on the initial
configuration. If it is started from a configuration where it is obvious that the
system has a solution or does not have one, then it terminates immediately.
Otherwise, it may do a great deal of pivoting. Our idea is to use the output of
some untrusted floating-point simplex algorithm to direct the rational simplex
to a hopefully good starting point.

2.2 Modifications and extensions

The above algorithm is a quick description of “textbook simplex”. It is not suf-
ficient for obtaining a numerically stable implementation if implemented over
floating-point; this is why, after initial trials with a naive floating-point imple-
mentation, we moved to a better off-the-shelf implementation, namely Glpk

(GNU Linear Programming Kit) [9].
So far, we have only considered wide inequalities. A classical method to con-

vert problems with strict inequalities into problems with only wide inequalities
is to introduce infinitesimals : a coordinate is no longer one single rational num-
ber, but a pair of rational numbers a and b, denoted a + bε, with lexicographic

4

ordering. ε is thus a special number, greater than zero but less than all positive
rationals. x < y is rewritten into x+ε ≤ y. The “current” values in the simplex
algorithm are thus pairs (a, b) of rationals, noted a + bε, the upper bounds are
either +∞ or a + bε, the lower bounds either −∞ either a + bε. The “current”
vector, a vector of pairs, can be equivalently represented as a pair of vectors of
rationals (u,v), written u + εv — if v 6= 0, it designates a point infinitely close
to u in the direction of v, if v = 0 it only means the point u.

In addition to a yes/no answer, decision procedures used in SMT need to
provide:

• In case of a positive answer, a solution point. If only wide inequalities are
used, this is given straightforwardly by the “current” values. For points
of the form u + εv, one considers the half-line u + tv, t > 0, inject it into
the system of inequalities, and solve it for t — the solution set will be an
interval of the form (0, t0). A suitable solution point is thus u + t0

2
v.

• In case of a negative answer, a contradiction witness: nonnegative coef-
ficients such that by multiplying the original inequalities by those coeffi-
cients, one gets a trivially unsatisfiable inequality (0 < c where c ≤ 0, or
0 ≤ c where c < 0). This contradiction witness is obtained by using an
auxiliary tableau tracking how the equalities b −

∑

n tb,nn = 0 defining
the basic variables were obtained as linear combinations of the original
equalities defined at the initialization of the simplex, as described in [6,
Sec. 3.2.2].

3 Mixed floating-point / rational strategy

Our procedure takes as input a rational simplex problem in the format de-
scribed at Sec. 2.1: a tableau of linear equalities and bounds on the variables.
It initializes a floating-point simplex by converting the rational problem: the
infinitesimals are discarded and the rationals rounded to nearest. It then calls,
as a subroutine, a floating-point simplex algorithm which, on exit, indicates
whether the problem is satisfiable (at least according to floating-point compu-
tation), and a corresponding configuration (a partition into basic and nonbasic
variables, and, for each nonbasic variable, whether it is set to its upper or lower
bound). There are several suitable packages available; in order to perform ex-
periments, we implemented our method using the GNU Linear programming
toolkit (Glpk) [9].

In order for the resulting mixed procedure to be used incrementally, the
floating-point solver should support incremental use. Commercial linear pro-
gramming solvers are designed for large problems specified as a whole; there
may be a large overhead for loading the problem into the solver, even if the
problem is small. Instead, we need solvers capable of incrementally adding and
withdrawing constraint bounds at minimal cost. Glpk supports incremental
use, since it keeps the factorization of the basis in memory between calls [9,
p. 20]; this factorization is costly to compute but needs to be computed only if
the basis matrix changes: in our case, this basis stays the same.

At this point, if successful, and unless there has been some fatal numeric
degeneracy, the floating-point simplex outputs a floating-point approximation
to a solution point. However, in general, this approximation, converted back

5

into a rational point, is not necessarily a true solution point. The reason is that
simplex produces solution points at a vertex of the solution polyhedron, and,
numerically speaking, it is in general impossible to be exactly on that point; in
general, the solution point obtained is found to be very slightly outside of the
polyhedron when membership is tested in exact arithmetic. It is therefore not
feasible to simply take this solution point as a witness.

The rational simplex tableau is then “forcefully pivoted”, using Algorithm 2,
until it has the same basic/nonbasic partition as the floating-point output. This
amounts to a pass of Gaussian elimination for changing the basis of the linear
subspace. This phase can partially fail if the final basic/nonbasic partition re-
quested is infeasible in exact precision arithmetic — maybe because of bugs in
the floating-point simplex algorithm, or simply because of floating-point inac-
curacies.

The “current” values of the nonbasic variables are then initialized according
to the output of the floating-point simplex: if the floating-point simplex selected
the upper bound for nonbasic variable n then its current value in the rational
simplex is set to its upper bound, and similarly for lower bounds. If the final ba-
sic/nonbasic partition produced by the floating-point simplex is infeasible, then
there are nonbasic variables of the rational simplex for which no information is
known: these are left untouched or set to arbitrary values within their bounds
(this does not affect correctness). The current values of the basic variables are
computed using the rational tableau.

The rational simplex is then started. If things have gone well, it terminates
immediately by noticing that it has found either a solution, or a configuration
showing that the system is unsatisfiable. If things have gone moderately well,
the rational simplex does a few additional rounds of pivoting. If things have
gone badly, the rational simplex performs a full search.

The rational simplex algorithms are well known, and we have already pre-
sented them in Sect. 2.1. The correctness of our mixed algorithm relies on the
correctness of the rational simplex and the “forced pivoting” phase maintaining
the invariant that the linear equalities define the same solutions as those in the
initial system.

Algorithm 1 Pivot(tableau, b, n): pivot the basic variable b and the nonbasic
variable n. tv is the line defining basic variable v, tv,w is the coefficient of tv
corresponding to the nonbasic variable w. The ai are the optional auxiliary
tableau described in Sec. 2.2.
Require: b basic, n nonbasic, tb,n 6= 0

p := −1/tb,n; tn := p.tb; tn,n := 0; tn,b := −p; an = p.ab

B := B ∪ {n} \ {b}
for all b′ ∈ B do

p := tb′,n; tb′,n := 0; tb′ := tb′ + p.tb; ab′ := ab′ + p.ab

end for

tb := 0

The “for all” loop is the most expensive part of the whole simplex algorithm.
Note that, depending on the way the sparse arrays and auxiliary structures are
implemented, this loop may be parallelized, each iteration being independent of
the others. This gives a performance boost on dense matrices.

6

Algorithm 2 ForcedPivot(tableau, Bf): force pivoting until the set of basic
variables is Bf

B := Bi

repeat

hasPivotedSomething := false

for all b ∈ B \ Bf do

if ∃n ∈ Bf \ B tb,n 6= 0 then

Choose n in Bf \ B such that tb,n 6= 0
Pivot(tableau, b, n) {This involves B := B ∪ {n} \ {b}}
hasPivotedSomething := true

end if

end for

until ¬hasPivotedSomething
return B = Bf

We shall now describe in more detail the “forced pivoting” algorithm (Alg. 2).
This algorithm takes as input a simplex tableau, with associated partition of
the set V of variables into basic (Bi) and nonbasic variables (B̄i), and a final
partition of basic (Bf) and nonbasic variables (B̄f). For each basic variable b,
the tableau contains a line b =

∑

n∈B̄ tb,nn. Additional constraints are that
the tableau is well-formed (basic variables are combination of only the nonbasic
variables) and that |Bi| = |Bf | (since |B| is a constant).

Assuming that all arithmetic operations take unit time (which is not true
when one considers dense problems, since coefficient sizes quickly grow, but
is almost true for sparse problems with small coefficients), the running time
of the forced pivoting algorithm is at most cubic in the size of the problem.
This motivates our suggestion: instead of performing an expensive and poten-
tially exponential-time search directly with rational arithmetic, we perform it
in floating-point, with all the possibilities of optimization of floating-point lin-
ear arithmetic offered by modern libraries and compilers, and then perform a
cubic-time pass with rational arithmetic.

Not all final configurations are feasible: it is possible to ask ForcedPivot

to perform an impossible transformation, in which case it returns “false”. For
instance, if the input system of equations is x = a + b ∧ y = a + b, thus with
Bi = {x, y}, then it is impossible to move to Bf = {a, b}, for there is no way
to express a and b as linear functions of x and y. More precisely, we say that
a configuration is feasible if it is possible to write the basic variables of the
configuration as linear function of the nonbasic variables and obtain the same
solutions as the initial system.

Lemma 1. ForcedPivot succeeds (and returns “true”) if and only if the final
partition defined by Bf is feasible, otherwise it returns “false”.

Proof. Let S denote the space of solutions of the input system of equations. At
all iterations, S is exactly defined by the system of equations, and dim S = |B̄|.
The only way the procedure fails is when B 6= Bf and yet, for all basic variable
b ∈ B \ Bf and nonbasic variable n ∈ Bf \ B, it is impossible to pivot b and
n because tb,n = 0. In other words, all such b are linear combinations of the
nonbasic variables in B̄ ∩ B̄f . All variables in B̄f are thus linear combinations

7

 0

 5000

 10000

 15000

 20000

 25000

 0 1000 2000 3000 4000 5000 6000

cu
m

ul
at

ed
 ti

m
e

(s
)

number of benchmarks

naive rational Simplex
mixed Simplex

Yices 1.0.9
Z3 SMT-COMP 2008

Figure 1: Benchmarks on unsatisfiable conjunctions extracted from vSMT verification prob-
lems. Even though our implementation of sparse arithmetic and the rational simplex are not
up to those in state-of-the-art solvers (as shown by the lack of performance on the “easy”
examples on the left), and our procedure is not geared towards the sparse problems typical of
verification applications, it still performs faster than Yices 1. In 4416 cases out of 5736 (77%),
no additional simplex pivots are needed after ForcePivot.

of variables in B̄ ∩ B̄f , and since we have supposed that B 6= Bf , B̄ ∩ B̄f (B̄
thus |B̄ ∩ B̄f | < |B̄| = dimS. But then, |B̄f | < dimS and Bf cannot be a
feasible configuration.

One can still add a few easy improvements:

• Before embarking into any simplex, we first test that the original prob-
lem does not contain a trivially unsatisfiable tableau row: one where
the bounds obtained by interval arithmetic on the right-hand side of
b =

∑

n tb,nn the equality have an empty intersection with those for b.

• During the forced pivoting procedure, we detect whether the new equality
obtained is trivially unsatisfiable, in which case we terminate immediately.

• Forced pivots can be done in any order. At the beginning of the procedure,
we sort the variables in Bi \Bf according to the number of nonzero coef-
ficients in the corresponding equation. When choosing the basic variable
to be pivoted, we take the least one in that ordering. The idea is that the
pivoting steps are faster when the equation defining the basic variable to
be pivoted has few nonzero coefficients.

• Similarly, one can pre-sort the variables in Bf \ Bi according to their
number of occurrences in equations.

8

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 10 20 30 40 50 60 70 80

cu
m

ul
at

ed
 ti

m
e

(s
)

number of benchmarks

naive rational Simplex
mixed Simplex

Yices 1.0.9
Z3 SMT-COMP 2008

Figure 2: Benchmarks on systems of 100 inequalities with 50 variables, where all coefficients
are taken uniformly and independently distributed integers in [−100, 100]. 31 are unsatisfiable,
46 are satisfiable. For each solver, benchmarks sorted by increasing time spent. In 58 cases
out of 82 (71%), no additional simplex pivots are needed after ForcePivot.

The SMT procedure may have at its disposal, in addition to the “exact”
theory test a partial and “fast” theory test, which may err on the side of sat-
isfiability: first test satisfiability in floating-point, and test in exact arithmetic
only if negative. The “fast” theory test may be used to test whether it seems
a good idea to investigate a branch of the search tree or to backtrack, while
the “exact” results should be used for theory propagation or when it seems a
good idea to check whether the current branch truly is satisfiable. Various sys-
tems are possible, depending on how the SAT and theory parts interact in the
solver [8].

Note that after an “exact” theory check, we have an exact rational simplex
tableau corresponding to the constraints, from which it is possible to extract
theory propagation information. For instance, if interval analysis on a row
x = 3y + 5z, using intervals from y and z, shows that x < 3, then one can
immediately conclude that in the current SAT search branch, the literal x ≥ 4
is false.

4 Implementation and benchmarks

We implemented the above algorithm into a toy SMT solver.4 The SAT part is
handled by Minisat [7]. Implementing a full SMT solver for LRA was useful

4Benchmarks and implementation are available from
http://www-verimag.imag.fr/∼monniaux/simplexe/.

9

http://www-verimag.imag.fr/~monniaux/simplexe/

for testing the software, against the SMT-LIB examples.5 We however did not
use SMT-LIB for benchmarking: the performance of a complete SMT solver is
influenced by many factors, including the performance of the SAT solver, the
ease of adding new clauses on the fly, etc., outside of the pure speed of the
decision procedure.

The floating-point simplex used is the dual simplex implemented by option
GLP_DUALP in Glpk [9], with default parameters. The rational simplex tableau
is implemented using sparse vectors.6 Rational numbers are implemented as
quotients of two 32-bit numbers; in case of overflow, extended precision rationals
from the GMP library [10] are used.7 The reason behind a two-tier system is that
GMP rationals inherently involve some inefficiencies, including dynamic memory
allocation, even for small numerator and denominator. In many examples arising
from verification problems, one never needs to call GMP. The simplex algorithm,
including the pivot strategy, is implemented straight from [6, 5]. It is therefore
likely that our system can be implemented as a preprocessor into any of the
current SMT platforms for linear real arithmetic, or even those for linear integer
arithmetic, since these are based on relaxations to rationals with additional
constraints (branch-and-bound or Gomory cuts).

We benchmarked four tools:

• Our “naive” implementation of rational simplex.

• The same, but with the floating-point preprocessing and forced pivoting
phase described in this article (“mixed simplex”).

• Bruno Dutertre and Leonardo de Moura’s (SRI International) Yices 1.0.9

• Nikolaj Bjørner and Leonardo de Moura’s (Microsoft Research) Z3, as
presented at SMT-COMP ’08.

We used two groups of benchmarks:

• Benchmarks kindly provided to us by Leonardo de Moura, extracted from
SMT-LIB problems. Each benchmark is an unsatisfiable conjunction, used
by Z3 as a theory lemma. These examples are fairly sparse, with small
coefficients, and rational simplex seldom needs to use extended precision
rational arithmetic. Despite this, the performance of the “mixed” imple-
mentation is better than that of Yices 1 (Fig. 1). Since the source code
of neither Yices nor Z3 are available, the reasons why Z3 performs better
than Yices 1 and both perform much better than our own rational sim-
plex implementation are somewhat a matter of conjecture. The differences
probably arise from both a better sparse matrix implementation, and a
better pivoting strategy.

• Random, dense benchmarks. On these, our mixed implementation per-
forms faster than all others, including the state-of-the-art SMT solvers
(Fig. 2).

5http://goedel.cs.uiowa.edu/smtlib/benchmarks/QF LRA.tar.gz
6More precisely, using boost::numeric::ublas::compressed vector from the Boost li-

brary, available at http://www.boost.org/ .
7http://gmplib.org/

10

http://goedel.cs.uiowa.edu/smtlib/benchmarks/QF_LRA.tar.gz
http://www.boost.org/
http://gmplib.org/

On a few examples, Glpk crashed due to an internal error (failed assertion).
We are unsure whether this is due to a bug inside this library or our misusing
it — in either case, this is rather unsurprising given the complexity of current
numerical packages. It is also possible that the numerical phase outputs incor-
rect results in some cases, because of bugs or loss of precision in floating-point
computations. Yet, this has no importance — the output of the numerical phase
does not affect the correction of the final result, but only the time that it takes
to reach this result.

5 Related work

The high cost of exact-arithmetic in linear programming has long been recog-
nized, and linear programming packages geared towards operational research
applications seldom feature the option to perform computations in exact arith-
metic. In contrast, most SMT solvers (e.g. Yices, Z3) or computational geom-
etry packages implement exact arithmetic.

Faure et al. have experimented with using commercial, floating-point SMT
solvers such as CPLEX8 inside an SMT solver [8]. Their approach is different
from ours in that they simply sought to reuse the yes/no return value produced
by the inexact solver, while we also reuse the basis structure that it produces.
Many of the difficulties they report — for instance, not being able to reuse
the output of the inexact solver for theory propagation — disappear with our
system. Some of their remarks still apply: for instance, the floating-point solver
should allow incremental use, which means that, for instance, it should not
perform LU matrix factorization every time a bound is changed but only at
basis initialization.

The idea of combining exact and floating-point arithmetic for the simplex
algorithm is not new. Gärtner proposed an algorithm where most of the compu-
tations inside the simplex algorithm are performed using ordinary floating-point,
but some are performed using extended precision arithmetic (floating-point with
an arbitrary number of digits in the mantissa), and reports improvements in pre-
cision compared to the industrial solver CPLEX at moderate costs [11]. It is
however difficult to compare his algorithm to ours, because they are geared to-
wards different kinds of problems. Our algorithm is geared towards the decision
problem, and is meant to be potentially incremental, and to output both sat-
isfiability and unsatisfiability witnesses in exact rational arithmetic. Gärtner’s
is geared towards optimization problems in computational geometry, and does
not provide optimality or unsatisfiability witnesses.

The work that seems closest to ours seems to be LPex [4], a linear pro-
gramming solver that first obtains a floating-point solution, then recreates the
solution basis inside an exact precision solver and then verifies the solution
and possibly does additional iterations in exact precision in order to repair a
“wrong” basis. The original intent of the authors was to apply this technique
to optimization, not decision problems, and there are in fact arguments against
using this technique for optimization that do not apply to using it for decision.
A simplex-based optimization solver actually runs two optimization phases:

8CPLEX is a professional optimization package geared towards large operational research
problem, published by ILOG. http://www.ilog.com/products/cplex/

11

http://www.ilog.com/products/cplex/

1. A search for a feasible solution (e.g. the algorithm from Sec. 2.1), which
can be equivalently presented as an optimization problem. A new variable
δ is added, and all inequalities

∑

ai,jxj ≤ b are replaced by
∑

ai,jxj −
δ ≤ b. By taking δ sufficiently large, one can find a solution point of
the modified problem. Optimization iterations then reduce δ until it is
nonnegative. Intuitively, δ measures how much afar we are from a solution
to the original problem.

2. Once a solution point to the original problem is found, the original objec-
tive function f is optimized.

There are therefore two objective functions at work: one for finding a solution
point, and the “true” objective function. The floating-point simplex process,
optimizes δ, then f . Then, the rational simplex, seeking to “repair” the resulting
basis, starts optimizing δ again; then it has to move back to optimizing f . In
general, changing objective functions in the middle of an optimization process
is bad for efficiency. However, since we are interested in decision, we optimize
a single function and the objection does not hold.

This approach was later improved to computing exact solutions for all prob-
lems in NETLIB-LP, a popular benchmark library for linear programming prob-
lems [14]. One improvement was to re-run the floating-point simplex in higher
precision rather than attempt to repair the “wrong” output basis using ex-
act arithmetic — thus the suggestion to use extended-precision floating-point
arithmetic9 with increasing precisions until the solution found can be checked
in exact precision. This last algorithm was implemented inside the QSopt ex
solver [1].10

These proposals are however different from ours in that they involve more
modifications to the underlying exact arithmetic solver. For once, they compute
exact precision factorizations of the input matrices, which probably saves time
for the large operational research problems that they consider but may have a
too high overhead for the smaller problems that arise in SMT applications. In
contrast, our algorithm can be adapted as a preprossessing step to the simplex
procedure used in existing SMT solvers with hardly any modification to that
procedure.

6 Conclusion and future work

Our work leverages the maturity and efficiency of floating-point simplex solver
(inherent efficiency of hardware floating-point versus rationals, advanced pricing
and pivoting strategies...) in order to speed up exact decision procedures in cases
where these perform poorly.

The main application of SMT solvers so far has been program or specification
verification. Such problems are typically sparse, with small coefficients. On such
problems, recent SMT solvers such as Yices and Z3 typically perform well using
the simplex algorithm over rational numbers. Performance, however, decreases
considerably if they are used over dense problems, since the size of numerators
and denominators involved can become prohibitively large. In this case, running
our preprocessing phase before embarking on costly extended precision simplex

9Available through GNU MP’s mpf type or the MPFR library, for instance.
10http://www2.isye.gatech.edu/∼wcook/qsopt/index.html

12

http://www2.isye.gatech.edu/~wcook/qsopt/index.html

can save significant time. We suggest that our procedure be added to such
implementations and activated, as a heuristic, when the rational coefficients
become too large.

Allowing SMT solvers to scale beyond program analysis examples may prove
useful if they are used for some other applications than program proofs, for in-
stance, formal mathematical proofs. As an example of the use of formal arith-
metic proofs outside of program verification, Hales proved Kepler’s conjecture
using many lemmas obtained by optimization techniques [13], but mathemati-
cians objected that it was unclear whether these lemmas truly held. As a result,
Hales launched a project to formally prove his theorem, including all lemmas
obtained using numerical optimization. He proposed transformations of his orig-
inal linear programming problems into problems for which it is possible to turn
the bounds obtained by numerical techniques into numerical bounds [12]. This
suggests that there are potential mathematical applications of efficient decision
procedures for linear arithmetic.

The applications of our improvements are not limited to the linear theory
of the reals or rationals. They also apply to the linear theory of integers, or
the mixed linear theory of rationals/reals and integers. In most SMT solvers,
decision for integer and mixed linear problems is implemented by relaxing the
problem to the real case. If there is no real solution, then there is no integer so-
lution; if there is a solution where the variables that are supposed to be integers
are integers, then the integer or mixed problem has a solution. Otherwise, the
search is restarted in parts of the state space, delimited by “branch and bound”
or Gomory cuts. Any efficiency improvement in the rational simplex can thus
translate into an improvement to the integer or mixed linear decision procedure.

The reason why we still have to perform expensive rational pivots even after
computing a floating-point solution is that the floating-point solutions produced
by the simplex algorithm almost always lie outside of the solution polyhedron
when tested over exact arithmetic, as explained in Sec. 3. We therefore think of
investigating interior point methods, searching both for a satisfiability witness
and for an unsatisfiability witness.

References

[1] David Applegate, William Cook, Sanjeeb Dash, and Daniel Espinoza. Exact
solutions to linear programming problems. Oper. Res. Lett., 35(6):693–699,
2007.

[2] George Dantzig. Linear Programming and Extensions. Princeton University
Press, 1998.

[3] Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In
TACAS, pages 337–340, 2008.

[4] Marcel Dhiflaoui, Stefan Funke, Carsten Kwappik, Kurt Mehlhorn, Michael
Seel, Elmar Schömer, Ralph Schulte, and Dennis Weber. Certifying and
repairing solutions to large LPs: how good are LP-solvers? In SODA ’03:
Proceedings of the fourteenth annual ACM-SIAM symposium on Discrete
algorithms, pages 255–256. SIAM, 2003.

13

[5] Bruno Dutertre and Leonardo de Moura. A fast linear-arithmetic solver for
DPLL(T). In Thomas Ball and Robert B. Jones, editors, Computer-aided
verification (CAV), volume 4144 of LNCS, pages 81–94. Springer, 2006.

[6] Bruno Dutertre and Leonardo de Moura. Integrating simplex with
DPLL(T). Technical Report SRI-CSL-06-01, SRI International, May 2006.

[7] Niklas Eén and Niklas Sörensson. An extensible SAT-solver. In Theory
and Applications of Satisfiability Testing (SAT ’03), volume 2919 of LNCS,
pages 333–336. Springer, 2004.

[8] Germain Faure, Robert Nieuwenhuis, Albert Oliveras, and Enric
Rodŕıguez-Carbonell. SAT modulo the theory of linear arithmetic: Ex-
act, inexact and commercial solvers. In 11th Int. Conf. on Theory and
Applications of Satisfiability Testing (SAT), volume 4996 of LNCS, pages
77–90. Springer, May 2008.

[9] Free Software Foundation. GNU Linear Programming Kit Reference Man-
ual, version 4.34, December 2008.

[10] Free Software Foundation. GNU MP The GNU Multiple Precision Arith-
metic Library, 4.2.4 edition, September 2008.

[11] Bernd Gärtner. Exact arithmetic at low cost — a case study in linear
programming. In SODA ’98: Proceedings of the ninth annual ACM-SIAM
symposium on Discrete algorithms, pages 157–166. SIAM, 1998.

[12] Thomas C. Hales. Some algorithms arising in the proof of the Kepler
conjecture. Available as arXiv:math/0205209v1.

[13] Thomas C. Hales. A proof of the Kepler conjecture. Ann. Math., 162:1065–
185, 2005.

[14] Thorsten Koch. The final NETLIB-LP results. Op. Res. Letters, 32(2):138–
142, March 2004.

[15] Alexander Schrijver. Theory of Linear and Integer Programming. Wiley,
April 1998.

14

	Introduction
	Simplex
	Basic simplex
	Modifications and extensions

	Mixed floating-point / rational strategy
	Implementation and benchmarks
	Related work
	Conclusion and future work

