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Abstract : In [AT05], the multifractional Brownian (mBm) motion is obtained by

replacing the constant parameter H of the fractional Brownian motion (fBm) by

a smooth enough functional parameter H(.) depending on the time t. Here, we

consider the process Z obtained by replacing in the wavelet expansion of the fBm

the index H by a function H(.) depending on the dyadic point k/2j . This process

was introduced in [BBCI00] to model fBm with piece-wise constant Hurst index

and continuous paths. In this work, we investigate the case where the functional

parameter satisfies an uniform Hölder condition of order β > sup
t∈IR H(t) and ones

shows that, in this case, the process Z is very similar to the mBm in the following

senses: i) the difference between Z and a mBm satisfies an uniform Hölder condition

of order d > sup
t∈IR H(t); ii) as a by product, one deduces that at each point t ∈ IR

the pointwise Hölder exponent of Z is H(t) and that Z is tangent to a fBm with

Hurst parameter H(t).

1 Introduction and statement of the main results

Throughout this article we denote by H(·) a function defined on the real line
and with values in an arbitrary fixed compact interval [a, b] ⊂ (0, 1). We will
always assume that H(·) satisfies a uniform Hölder condition of order β > b
on each compact K ⊂ IR i.e. there is a constant c1 > 0 (which a priori depends
on K) such that for every t1, t2 ∈ K one has,

|H(t1) − H(t2)| ≤ c1|t1 − t2|
β . (1)

We will also assume that a = inf{H(t) : t ∈ IR} and b = sup{H(t) : t ∈
IR}. Recall that the multifractional Brownian motion (mBm) of functional
parameter H(·), which we denote by X = {X(t) : t ∈ IR}, is the continuous
and nowhere differentiable Gaussian process obtained by replacing the Hurst
parameter in the harmonizable representation of fractional Brownian motion
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(fBm) by the function H(·); namely, the process X can be represented for
each t ∈ IR as the following stochastic integral

X(t) =

∫

IR

eitξ − 1

|ξ|H(t)+1/2
dŴ (ξ), (2)

where dŴ is “the Fourier transform” of the real-valued white-noise dW in the
sense that for any function f ∈ L2(IR) one has a.s.

∫

IR
f(x) dW (x) =

∫

IR
f̂(ξ) dŴ (ξ). (3)

Observe that (3) implies that (see [C99, ST06]) the following equality holds
a.s., for every t, up to a deterministic smooth, bounded and non-vanishing
deterministic function

∫

IR

eitξ − 1

|ξ|H(t)+1/2
dŴ (ξ) =

∫

IR

{
|t − s|H(t)−1/2 − |s|H(t)−1/2

}
dW (s).

Therefore X is a real-valued process. Mbm was introduced independently in
[PLV95] and [BJR97]; its main three features of mBm are the following:

(a) X reduces to a fBm when the function H(·) is constant.
(b) Contrarily to fBm, αX = {αX(t) : t ∈ IR} the pointwise Hölder exponent

of X may depend on the location and can be prescribed via the functional
parameter H(·); actually one has (see [PLV95, BJR97, AT05, AJT07]) a.s.
for each t,

αX(t) = H(t). (4)

Recall that αX the pointwise Hölder exponent of an arbitrary continuous
and nowhere differentiable process X is defined for each t ∈ IR, as

αX(t) = sup

{
α ∈ IR+ : lim sup

h→0

|X(t + h) − X(t)|

|h|α
= 0

}
. (5)

(c) At any point t ∈ IR, there is an fBm of Hurst parameter H(t), which is
tangent to mBm [BJR97, F02, F03] i.e. for each sequence (ρn) of positive
real numbers converging to 0, one has,

lim
n→∞

law

{
X(t + ρnu) − X(t)

ρ
H(t)
n

: u ∈ IR

}
= law{BH(t)(u) : u ∈ IR}, (6)

where the convergence holds in distribution for the topology of uniform
convergence on compact sets.

The main goal of our article is to give a natural wavelet construction of a
continuous and nowhere differentiable Gaussian process Z = {Z(t)}t∈IR which
has the same features (a), (b) and (c) as mBm X and which differs from it by
a smoother stochastic process R = {R(t) : t ∈ IR} (see Theorem 1).
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In order to be able to construct Z, first we need to introduce some no-
tations. In all the sequel we denote by {2j/2ψ(2jx − k) : (j, k) ∈ ZZ 2} a
Lemarié-Meyer wavelet basis of L2(IR) [LM86] and we denote by Ψ , the func-
tion defined for each (x, θ) ∈ IR × (0, 1) as

Ψ(x, θ) =

∫

IR
eixξ ψ̂(ξ)

|ξ|θ+1/2
dξ. (7)

By using the fact that ψ̂ is a compactly supported C∞-function vanishing on
a neighborhood of the origin, it follows that Ψ is a well-defined C∞-function
satisfying the following localization property (see [AT05]): For any (l,m, n) ∈
IN 3 with l ≥ 2, there is a constant c2 > 0 only depending on (l, m, n), such
that one has

sup
θ∈[a,b], x∈IR

|(∂m
x ∂n

θ Ψ)(x, θ)| ≤ c2(2 + |x|)−l, (8)

where ∂m
x ∂n

θ Ψ denotes the function obtained by differenciating the function
Ψ , n times with respect to the variable θ and m times with respect to the
variable x. For the sake of the convenience, let us introduce the Gaussian field
B = {B(t, θ) : (t, θ) ∈ IR × (0, 1)} defined for each (t, θ) ∈ IR × (0, 1) as

B(t, θ) =

∫

IR

eitξ − 1

|ξ|θ+1/2
dŴ (ξ). (9)

Observe that for every fixed θ, the Gaussian process B(·, θ) is a fBm of Hurst
parameter θ on the real line. Also observe that the mBm X satisfies for each
t ∈ IR,

X(t) = B(t,H(t)). (10)

By expanding for every fixed (t, θ), the kernel function ξ 7→
eitξ − 1

|ξ|θ+1/2
in the

orthonormal basis of L2(IR), {2−j/2(2π)1/2ei2−jkξψ̂(−2−jξ) : (j, k) ∈ ZZ 2}
and by using the isometry property of the stochastic integral in (9), it follows
that

B(t, θ) =

∞∑

j=−∞

∞∑

k=−∞

2−jθεj,k

{
Ψ(2jt − k, θ) − Ψ(−k, θ)

}
, (11)

where {εj,k : (j, k) ∈ ZZ 2} is a sequence of independent N (0, 1) Gaussian
random variables and where the series is, for every fixed (t, θ), convergent in
L2(Ω), throughout this article Ω denotes the underlying probability space (in
fact this series is also convergent in a much stronger sense, see part (i) of the
following remark).

Remark 1. The field B has already been introduced and studied in [AT05]; let
us here recall some its useful properties:



4 Antoine Ayache and Pierre R. Bertrand

(i) The series in (11) is a.s. uniformly convergent in (t, θ) on each compact
subset of IR × (0, 1), B is therefore a continuous Gaussian field.

(ii) The low frequency component of B, namely the field Ḃ = {Ḃ(t, θ) :
(t, θ) ∈ IR × (0, 1)} defined for all (t, θ) ∈ IR × (0, 1) as

Ḃ(t, θ) =

−1∑

j=−∞

∞∑

k=−∞

2−jθεj,k

{
Ψ(2jt − k, θ) − Ψ(−k, θ)

}
, (12)

is a C∞ Gaussian field. Therefore (1) and (10) imply that the low frequency
component of the mBm X, namely the Gaussian process Ẋ = {Ẋ(t)}t∈IR
defined for each t ∈ IR as

Ẋ(t) =

−1∑

j=−∞

∞∑

k=−∞

2−jH(t)εj,k

{
Ψ(2jt − k, H(t)) − Ψ(−k, H(t))

}
, (13)

satisfies a uniform Hölder condition of order β on each compact subset of
IR. Thus, in view of (b) and the assumption sup{H(t) : t ∈ IR} < β the
pointwise Hölder exponent of X is only determined by its high frequency
component, namely the continuous Gaussian process Ẍ = {Ẍ(t)}t∈IR de-
fined for each t ∈ IR as

Ẍ(t) =

+∞∑

j=0

∞∑

k=−∞

2−jH(t)εj,k

{
Ψ(2jt − k,H(t)) − Ψ(−k, H(t))

}
. (14)

Definition 1. The process Z = {Z(t) : t ∈ IR} is defined for each t ∈ IR as

Z(t) =

∞∑

j=−∞

∞∑

k=−∞

2−jH(k/2j)εj,k

{
Ψ(2jt − k, H(k/2j)) − Ψ(−k,H(k/2j))

}
.

(15)

In view of (11) it is clear that the process Z reduces to a fBm when the
function H(·) is constant; this means that the process Z has the same feature
(a) as mBm.

Remark 2. Using the same technics as in [AT05] one can show that:

(i) The series in (15) is a.s. uniformly convergent in t on each compact interval
of IR; therefore Z is a well-defined continuous Gaussian process.

(ii) The low frequency component of the process Z, namely the process Ż =
{Ż(t) : t ∈ IR} defined for all t ∈ IR as

Ż(t) =

−1∑

j=−∞

∞∑

k=−∞

2−jH(k/2j)εj,k

{
Ψ(2jt−k, H(k/2j))−Ψ(−k, H(k/2j))

}
,

(16)
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is a C∞ Gaussian process. The pointwise Hölder exponent of Z is therefore
only determined by its high frequency component, namely the continuous
Gaussian process Z̈ = {Z̈(t) : t ∈ IR} defined for all t ∈ IR as

Z̈(t) =

+∞∑

j=0

∞∑

k=−∞

2−jH(k/2j)εj,k

{
Ψ(2jt − k, H(k/2j)) − Ψ(−k, H(k/2j))

}
.

(17)

It is worth noticing that if one replaces in (17) the Hölder function H(·) by
a step function then one recovers the step fractional Brownian motion which
has been studied in [BBCI00, ABLV07].

Let us now state our main results.

Theorem 1. Let R = {R(t) : t ∈ IR} be the process defined for any t ∈ IR as

R(t) = Z(t) − X(t) (18)

and let us assume that a = inf{H(t) : IR} and b = sup{H(t) : IR} verify the
following condition:

1 − b > (1 − a)(1 − ab−1). (19)

Then there exists a constant d ∈ (b, 1], such that the process R satisfies a uni-
form Hölder condition of order d on each compact subset of IR. More precisely,
there is Ω∗ an event of probability 1 such that all ω ∈ Ω, for any positive real
number K and for each t0, t1 ∈ [−K,K], one has

|R(t1, ω) − R(t0, ω)| ≤ C1(ω)|t1 − t0|
d, (20)

where C1 is a nonnegative random variable of finite moment of any order only
depending on Ω∗ and K.

Corollary 1. The process Z has the same features (a), (b) and (c) as mBm.

Let us precise some notations: one will denote c1, . . . , c12 some deterministic
constants, C1(ω), C2(ω) some random constants and by [x] the entire part of
the real number x.

2 Proofs of the main results

The following lemma is the key tool for the obtention of results on an event
Ω∗ of probability 1. It is a classical result, we refer for example to [MST99]
or [AT03] for its proof.

Lemma 1. [MST99, AT03] There are an event Ω∗ of probability 1 and a non-
negative random variable C2 of finite moment of any order such the inequality

|εj,k(ω)| ≤ C2(ω)
√

log(3 + |j| + |k|), (21)

holds for all ω ∈ Ω∗ and j, k ∈ ZZ.
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Proof. (of Theorem of 1) In view of Remark 1 (ii) and of Remark 2 it is
sufficient to prove that the theorem holds when the process R is replaced
by its high frequency component, namely the process R̈ = {R̈(t) : t ∈ IR}
defined for each t ∈ IR as

R̈(t) = Z̈(t) − Ẍ(t). (22)

To lighten the notations, for all j ∈ IN and k ∈ ZZ, let gj,k be the function
defined on IR × (0, 1) as

gj,k(t, θ) = 2−jθ
{

Ψ(2jt − k, θ) − Ψ(−k, θ)
}

. (23)

One first gives a useful upper bound of the quantity |R̈(t1, ω) − R̈(t0, ω)|. It
follows from (22), (14), (17), (23) and (21) that for any ω ∈ Ω∗,

|R̈(t1, ω) − R̈(t0, ω)| ≤ C2(ω)

+∞∑

j=0

+∞∑

k=−∞

√
log(3 + j + |k|) (24)

×
∣∣∣gj,k(t1,H(k/2j)) − gj,k(t0,H(k/2j)) − gj,k(t1, H(t1)) + gj,k(t0,H(t0))

∣∣∣.

Next, one expands the term gj,k

(
ti,H(τ)

)
with i = 0 or 1 and τ = t1 or k/2j

with respect to the second variable in the neighborhood of H(t0) by using the
Taylor-Lagrange formula of order 1 with an integral reminder. Indeed, since
the function Ψ is C∞, the functions gj,k are also C∞. Thus, one gets,

gj,k(t1,H(t1)) = gj,k(t1,H(t0)) + (H(t1) − H(t0))(∂θgj,k)(t1,H(t0)) (25)

+(H(t1) − H(t0))
2

∫ 1

0

(1 − τ)(∂2
θgj,k)(t1, H(t0) + τ(H(t1) − H(t0))) dτ,

gj,k(t0,H(k/2j)) = gj,k(t0,H(t0)) + (H(k/2j) − H(t0))(∂θgj,k)(t0,H(t0)) (26)

+(H(k/2j) − H(t0))
2

∫ 1

0

(1 − τ)(∂2
θgj,k)(t0,H(t0) + τ(H(k/2j) − H(t0))) dτ.

and

gj,k(t1,H(k/2j)) = gj,k(t1,H(t0)) + (H(k/2j) − H(t0))(∂θgj,k)(t1,H(t0)) (27)

+(H(k/2j) − H(t0))
2

∫ 1

0

(1 − τ)(∂2
θgj,k)(t1,H(t0) + τ(H(k/2j) − H(t0))) dτ.

By adding or subtracting Relations (25), (26) and (27) the constant terms
disappear and one gets the following upper bound
∣∣∣gj,k(t1,H(k/2j)) − gj,k(t0,H(k/2j)) − gj,k(t1,H(t1)) + gj,k(t0,H(t0))

∣∣∣ (28)

≤ |H(t1) − H(t0)|
∣∣∣(∂θgj,k)(t1,H(t0))

∣∣∣
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+
∣∣H(t1) − H(t0)

∣∣2
∫ 1

0

(1 − τ)
∣∣∣(∂2

θgj,k)(t1,H(t0) + τ(H(t1) − H(t0)))
∣∣∣ dτ,

+|H(k/2j) − H(t0)|
∣∣∣(∂θgj,k)(t1,H(t0)) − (∂θgj,k)(t0,H(t0))

∣∣∣

+
∣∣H(k/2j) − H(t0)

∣∣2
∫ 1

0

(1 − τ)
∣∣∣(∂2

θgj,k)(t1,H(t0) + τ(H(k/2j) − H(t0)))

−(∂2
θgj,k)(t0, H(t0) + τ(H(k/2j) − H(t0)))

∣∣∣ dτ.

Then, one plugs the previous bound into the inequality (24). One stresses that

the quantities |H(t1)−H(t0)| and
∣∣H(t1)−H(t0)

∣∣2 can be factorized outside

the sum whereas the quantities |H(k/2j) − H(t0)| and
∣∣H(k/2j) − H(t0)

∣∣2

remain inside the sum. Moreover, since the function H(.) satisfies an uniform
Hölder condition of order β > b, the two first terms also satisfy the same
Hölder condition provided one can proved an uniform bound of the sums
which multiply these terms. This is the aim of lemma 3 in which one shows
that for n = 1 or 2

An(K) := sup
(t,θ)∈[−K,K]×[a,b]

+∞∑

j=0

+∞∑

k=−∞

|(∂n
θ gj,k(t, θ)|

√
log(3 + j + |k|) < ∞.

From the other hand, the Hölder condition mainly follows from the localization
property and the regularity of the function gj,k(t, θ) with respect to the first
variable t. Indeed, from (23) and (8), the functions gj,k inherit the localization
and regularity properties from the function Ψ . This is the aim of Lemma 4
which shows that when condition (19) is fulfilled there exists a real number
d ∈ (b, 1] and a deterministic constant c4 > 0 such that for n = 1 or 2, one
has

sup
(t0,θ)∈[−K,K]×[a,b],|h|<1/4

Bn(t0, h, θ) ≤ c4|h|
d

where

Bn(t0, h, θ) :=

+∞∑

j=0

+∞∑

k=−∞

|H(k/2j) − H(t0)|
n ×

√
log(3 + j + |k|)

×
∣∣∣(∂n

θ gj,k)(2j(t0 + h) − k, θ) − (∂n
θ gj,k)(2jt0 − k, θ)

∣∣∣

With these notations, by putting together the inequalities (28), (24), (32),
(33) and (37) one obtains that

|R̈(t1, ω) − R̈(t0, ω)| ≤ C2(ω)
{
|H(t1) − H(t0)|A1(K) +

∣∣H(t1) − H(t0)
∣∣2A2(K)

+ sup
θ∈[a,b]

B1(t0, t1 − t0, θ) + sup
θ∈[a,b]

B2(t0, t1 − t0, θ)
}

. (29)

Finally, combining (29) with (1), Lemma 3 and Lemma 4 one gets Theorem
1. Note in passing that there is no restriction to assume that |t1 − t0| ≤ 1/4
since the function R̈(·, ω) is continuous.
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To complete the proof of Theorem 1, it remains to prove Lemma 3 and
Lemma 4. To begin with, the following lemma conveniently express the
∂n

θ gj,k’s.

Lemma 2. For any integer n ≥ 0 and any (t, θ) ∈ IR × (0, 1) one has

(∂n
θ gj,k)(t, θ) (30)

=

n∑

p=0

Cp
n(−j log 2)p2−jθ

{
(∂n−p

θ )Ψ(2jt − k, θ) − (∂n−p
θ Ψ)(−k, θ)

}
.

Proof. (of Lemma 2) The lemma can easily be obtained by applying the Leib-
niz formula for the n’s derivative of a product of two functions.

In the calculations, one will use many times that

log(3 + x + y) ≤ log(3 + x) × log(3 + y) for all (x, y) ∈ IR2
+ (31)

By using these two ingredients, one can prove the following Lemma:

Lemma 3. For any integer n ≥ 0 and (t, θ) ∈ IR × (0, 1) one sets

An(t, θ) :=
+∞∑

j=0

+∞∑

k=−∞

|(∂n
θ gj,k(t, θ)|

√
log(3 + j + |k|). (32)

Then, for any real K > 0 one has

An(K) := sup
{

An(t, θ) : (t, θ) ∈ [−K, K] × [a, b]
}

< ∞. (33)

Proof. (of Lemma 3) From Lemma 2, one can deduce

An(t, θ) ≤
n∑

p=0

Cp
n| log 2|p

+∞∑

j=0

+∞∑

k=−∞

jp2−jθ
√

log(3 + j + |k|) (34)

×
{∣∣(∂n−p

θ Ψ)(2jt − k, θ)
∣∣ +

∣∣(∂n−p
θ Ψ)(−k, θ)

∣∣
}

Remark that the deepest bracket in (34) contains two terms: the first one
is depending on t ∈ [−K, K] when the second one no more depends on t.
Therefore, it suffices to obtain a bound of the supremum for t ∈ [−K, K] of
the sum corresponding to the first term, next one can use it in the special
case K = 0 to bound the sum corresponding to the second term. By using
(8) and the convention that 00 = 1, then by making the change of variable
k = k′+[2jt] and by using |t| ≤ K, eventually by using (31) and by remarking
that z = 2jt − [2jt] belongs to [0, 1] , one has the following calculations for
each p ∈ {0, . . . , n} and (t, θ) ∈ [−K, K] × [a, b],
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+∞∑

j=0

+∞∑

k=−∞

jp2−jθ
√

log(3 + j + |k|)
∣∣(∂n−p

θ Ψ)(2jt − k, θ)
∣∣

≤ c2

+∞∑

j=0

+∞∑

k=−∞

jp2−ja
√

log(3 + j + |k|) · (2 + |2jt − k|)−l

≤ c2

+∞∑

j=0

+∞∑

k′=−∞

jp2−ja
√

log(3 + j + |k′| + 2jK) · (2 + |2jt − [2jt] − k′|)−l

≤ c2c3

+∞∑

j=0

jp2−ja
√

log(3 + j + 2jK) < ∞, (35)

where

c3 = sup
{ +∞∑

k=−∞

(2 + |z − k|)−l
√

log(3 + |k|) : z ∈ [0, 1]
}

< ∞. (36)

Clearly, (35) combined with (34) implies that (33) holds. This finishes the
proof of Lemma 3.

Lemma 4. For any integer n ≥ 1 and (t, h, θ) ∈ IR × IR × (0, 1) one sets

Bn(t0, h, θ) :=

+∞∑

j=0

+∞∑

k=−∞

|H(k/2j) − H(t0)|
n ×

√
log(3 + j + |k|)

×
∣∣∣(∂n

θ gj,k)(2j(t0 + h) − k, θ) − (∂n
θ gj,k)(2jt0 − k, θ)

∣∣∣

Assume that the condition (19) holds. Then, for any real K > 0, for any
integer n ≥ 1, there are two constants d ∈ (b, 1] and c4 > 0 such that

sup
(t0,θ)∈[−K,K]×[a,b],|h|<1/4

Bn(t0, h, θ) ≤ c4|h|
d. (37)

To prove Lemma 4, one splits the set of indices (j, k) ∈ IN × ZZ in three
different subsets, namely V(t0, h, η), W(t0, h, η, γ), Wc(t0, h, η, γ), and one
obtains three different upper bounds for the corresponding sums. This is the
aim of Lemma 5, Lemma 6 and Lemma 7.

The subset V(t0, h, η) corresponds to the indices (j, k) for which the dyadic
number k/2j stays in a neighborhood of size |h|η of t0. The second and the
third subsets correspond to the indices (j, k) for which the dyadic number k/2j

stay outside this neighborhood with a splitting following wether the index j
is greater or smaller than a critical index j1.

This critical index j1 depends on the parameter γ with 0 < η < γ < 1.
Eventually, when Condition (19) is fulfilled, one shows that a ”good choice”
of the parameters (η, γ) is possible in order to obtain Lemma 4.
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To begin with, let fix η ∈ (0, 1) (η will be defined more precisely later) and
let V(t0, h, η) and Vc(t0, h, η) be the sets of indices defined as

V(t0, h, η) = {(j, k) ∈ IN × ZZ : |k/2j − t0| ≤ |h|η} (38)

and
Vc(t0, h, η) = {(j, k) ∈ IN × ZZ : |k/2j − t0| > |h|η}. (39)

Lemma 5. For any integer n ≥ 1 and (t, h, θ) ∈ IR × IR × (0, 1) one sets

B1,n,p(t0, h, θ) :=
∑

(j,k)∈V(t0,h,η)

jp2−jθ|H(t0) − H(k/2j)|n ×
√

log(3 + j + |k|)

×
∣∣∣(∂n−p

θ Ψ)(2j(t0 + h) − k, θ) − (∂n−p
θ Ψ)(2jt0 − k, θ)

∣∣∣

Then, for any real K > 0, for any integers n ≥ 1 and 0 ≤ p ≤ n, there exists
a constant c5 > 0 such that

sup
(t0,h,θ)∈[−K,K]×IR×[a,b]

B1,n,p(t0, h, θ) ≤ c5|h|
a+nηβ logp+1/2(1/|h|). (40)

Proof. (of Lemma 5) It follows from (1) and (38) that

∑

(j,k)∈V(t0,h,η)

jp2−jθ|H(t0) − H(k/2j)|n ×
√

log(3 + j + |k|) (41)

×
∣∣∣(∂n−p

θ Ψ)(2j(t0 + h) − k, θ) − (∂n−p
θ Ψ)(2jt0 − k, θ)

∣∣∣

≤ c1|h|
nβη

∑

(j,k)∈V(t0,h,η)

jp2−ja ×
√

log(3 + j + |k|)

×
∣∣∣(∂n−p

θ Ψ)(2j(t0 + h) − k, θ) − (∂n−p
θ Ψ)(2jt0 − k, θ)

∣∣∣.

Now let j0 ≥ 2 be the unique integer such that

2−j0−1 < |h| ≤ 2−j0 . (42)

By using (8), (42), the change of variable k = k′ + [2jy], (31) and |t0| ≤ K,
one has that for any y ∈ [t0 − 1, t0 + 1],

+∞∑

j=j0+1

+∞∑

k=−∞

jp2−ja|(∂n−p
θ Ψ)(2jy − k, θ)|

√
log(3 + j + |k|)

≤ c2

+∞∑

j=j0+1

+∞∑

k′=−∞

jp2−ja(2 + |2jy − [2jy] − k′|)−l
√

log(3 + j + 2j(|t0| + 1) + |k′|)

≤ c2c3

+∞∑

j=j0+1

jp2−ja
√

log(3 + j + 2j(K + 1))

≤ c6|h|
a logp+1/2(1/|h|), (43)
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where c3 is the constant defined by (36) and the last inequality follows from
(42) and some straightforward but tedious calculations. Remark that the con-
stant c6 depends on K.

From the other hand, by using the Mean-value Theorem applied to the
function ∂n−p

θ gj,k with respect to the first variable combined with (8), the
fact that for all 2j |h| ≤ 1 for all j ∈ {0, . . . , j0}, (42), (31), (36) and |t0| ≤ K,
one gets that

j0∑

j=0

+∞∑

k=−∞

jp2−ja ×
√

log(3 + j + |k|)

×
∣∣∣(∂n−p

θ Ψ)(2j(t0 + h) − k, θ) − (∂n−p
θ Ψ)(2jt0 − k, θ)

∣∣∣

≤ c2|h|

j0∑

j=0

+∞∑

k=−∞

jp2j(1−a)(1 + |2jt0 − [2jt0] − k|)−l
√

log(4 + j + 2j |t0| + |k|)

≤ c2c3|h|

j0∑

j=0

jp2j(1−a)
√

log(4 + j + 2jK)

≤ c7|h|
a logp+1/2(1/|h|), (44)

Where the constant c7 depends on K. Finally, by combining (41) with (43)
and (44), one can deduce (40). This finishes the proof of Lemma 5.

Let us now fix γ ∈ (η, 1) (γ will be defined more precisely later) and denote
by j1 the unique nonnegative integer satisfying

2−j1−1 < |h|γ ≤ 2−j1 . (45)

Let W(t0, h, η, γ) and Wc(t0, h, η, γ) be the sets of indices defined as

W(t0, h, η, γ) = {(j, k) ∈ Vc(t0, h, η) : 0 ≤ j ≤ j1} (46)

and
Wc(t0, h, η, γ) = {(j, k) ∈ Vc(t0, h, η) : j ≥ j1 + 1}. (47)

Observe that

Vc(t0, h, η) = W(t0, h, η, γ) ∪Wc(t0, h, η, γ). (48)

Lemma 6. For any integer n ≥ 1 and (t, h, θ) ∈ IR × IR × (0, 1) one sets

B2,n,p(t0, h, θ) :=
∑

(j,k)∈W(t0,h,η,γ)

jp2−jθ|H(t0) − H(k/2j)|n ×
√

log(3 + j + |k|)

×
∣∣∣(∂n−p

θ Ψ)(2j(t0 + h) − k, θ) − (∂n−p
θ Ψ)(2jt0 − k, θ)

∣∣∣

Then, for any real K > 0, for any integers n ≥ 1 and 0 ≤ p ≤ n, there exists
a constant c8 > 0 such that

sup
(t0,θ)∈(−K,K]×[a,b],|h|<1/4

B2,n,p(t0, h, θ) ≤ c8|h|
(1−γ)+γa logp+1/2(1/|h|). (49)
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Proof. (of Lemma 6) To begin with, remark that for any pair of real numbers
(θ0, θ1) ∈]0, 1[2, one has |θ1 − θ0| < 1. Therefore,

for all (j, k) ∈ IN × ZZ, |H(t0) − H(k/2j)|n ≤ 1 (50)

Next, by using the Mean-value Theorem applied to the function ∂n−p
θ gj,k with

respect to the first variable combined with (8), the fact that for all 2j |h| ≤ 1
for all j ∈ {0, . . . , j1}, the change of variable k = k′ +[2jt0] and (45), one gets
that

∑

(j,k)∈W(t0,h,η,γ)

jp2−jθ ×
√

log(3 + j + |k|)

×
∣∣∣(∂n−p

θ Ψ)(2j(t0 + h) − k, θ) − (∂n−p
θ Ψ)(2jt0 − k, θ)

∣∣∣

≤ c2|h|

j1∑

j=0

+∞∑

k=−∞

jp2j(1−a)(1 + |2jt0 − k|)−l
√

log(4 + j + 2j |t0| + |k|)

≤ c2|h|

j1∑

j=0

+∞∑

k′=−∞

jp2j(1−a)(1 + |2jt0 − [2jt0] − k′|)−l

×
√

log(4 + j + 2j+1|t0| + |k′|)

≤ c2c3|h|

j1∑

j=0

jp2j(1−a)
√

log(4 + j + 2j+1K)

≤ c9|h|
(1−γ)+γa logp+1/2(1/|h|), (51)

where the constant c9 depends on K. Finally, by combining (51) and (50),
one can deduce (49). This finishes the proof of Lemma 6.

Lemma 7. For any integer n ≥ 1 and (t, h, θ) ∈ IR × IR × (0, 1) one sets

B3,n,p(t0, h, θ) :=
∑

(j,k)∈Wc(t0,h,η,γ)

jp2−jθ|H(t0) − H(k/2j)|n ×
√

log(3 + j + |k|)

×
∣∣∣(∂n−p

θ Ψ)(2j(t0 + h) − k, θ) − (∂n−p
θ Ψ)(2jt0 − k, θ)

∣∣∣

Then, for any arbitrarily small real ε > 0 and for any integers l ≥ 2, n ≥ 1
and 0 ≤ p ≤ n, there exists a constant c10 > 0 such that, one has

sup
(t0,θ)∈IR×[a,b],|h|<1/4

B2,n,p(t0, h, θ) ≤ c10|h|
(γ−η)(l−1−ε)+γa logp+1/2(|h|−1).(52)

Proof. (of Lemma 7) By using the triangular inequality combined with (47)
and (39), one gets, for any real h verifying |h| ≤ 1/4 and all (j, k) ∈
Wc(t0, h, η, γ),

|2j(t0 + h) − k| ≥ |2jt0 − k| − 2j |h| ≥ 2j |h|η − 2j |h|

≥ c112
j |h|η (53)
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where c11 = 1 − 4η−1 > 0. More precisely, (53) is a lower bound, for a fixed
index j ∈ IN, when k varies with (j, k) ∈ Wc(t0, h, η, γ), one has

k = c112
j |h|η + z + q or k = −c112

j |h|η − z − q

for a fixed real number z ∈]0, 1[ and q ∈ IN. By combining this remark with

(8), (53), the inequality (2 + x)−l
√

log(4 + x) ≤ c12(2 + x)−l+ε valid for all
nonnegative real number x (here ε is a fixed arbitrarily small positive real
number and c12 is a constant only depending on ε), l ≥ 2 and (45) that

∑

(j,k)∈Wc(t0,h,η,γ)

jp2−jθ
∣∣∣(∂n−p

θ Ψ)(2j(t0 + h) − k, θ)
∣∣∣
√

log(3 + j + |k|)

≤ 2c2

+∞∑

j=j1+1

+∞∑

q=0

jp2−ja
(
2 + q + c112

j |h|η
)−l

×
√

log(4 + j + q + c112j |h|η)

≤ 2c2

+∞∑

j=j1+1

+∞∑

q=0

jp2−ja
√

log(3 + j)

×
(
2 + q + c112

j |h|η
)−l

×
√

log(4 + q + c112j |h|η)

≤ 2c2c12

+∞∑

j=j1+1

jp2−ja
√

log(3 + j) ×

(∫ +∞

0

(
1 + y + c112

j |h|η
)−l+ε

dy

)

≤ c13

+∞∑

j=j1+1

jp2−ja
√

log(3 + j) ×
(
1 + c112

j |h|η
)−(l−1−ε)

≤ c14|h|
−η(l−1−ε)

+∞∑

j=j1+1

jp2−j(a+l−1−ε)
√

log(3 + j)

≤ c15|h|
(γ−η)(l−1−ε)+γa logp+1/2(1/|h|). (54)

Stress that the constant c15 does not depends on t0. Then, remark that when
one replace 2j(t0 + h) by 2jt0, one has |2jt0 − k| ≥ 2j |h|η, which is the same
lower bound than (53) with c11 replace by 1. Thus, one can repeat the same
calculations and one obtains (54) with a different constant. Eventually, by
using triangular inequality, (50) and (54), one can deduce (52). This finishes
the proof of Lemma 7.

We are now in position to prove Lemma 4.

Proof. (of Lemma 4) It follows from Lemmas 4 to 6 that for any integer n ≥ 1
and reals 0 < η < γ < 1, one has

Bn(t0, h, θ) ≤
n∑

p=0

3∑

m=1

Cp
n(log 2)pBm,n,p(t0, h, θ) (55)

≤ c15

(
|h|a+ηβ + |h|(1−γ)+γa + |h|(γ−η)(l−1−ε)+γa

)
logn+1/2(1/|h|).
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Moreover, the condition (19) is equivalent to (1 − a)−1(1 − b) > b−1(b − a).
Thus, assuming that it is verified then there exist 3 reals η0, γ0 and β0 such
that β0 ∈ (b, β] and

1 > (1 − a)−1(1 − b) > γ0 > η0 > β−1
0 (b − a).

One has therefore,

a + η0β0 > b and (1 − γ0) + γ0a > b.

From the other hand, assuming that l0 is big enough, then one has that

(γ0 − η0)(l0 − 1 − ε) + γ0a > b.

Finally, taking in (55) η = η0, γ = γ0 and l = l0 one obtains the lemma.

Let us now prove that Corollary 1 holds.

Proof. (of Corollary 1) Let us first show that Z has the same feature (b) as
mBm. In view of Theorem 1, it is clear that αR the pointwise Hölder exponent
of R satisfies a.s. for all t ∈ IR,

αR(t) ≥ d. (56)

Next putting together (56), the fact that d > b, (18) and (4) it follows that
a.s. for all t ∈ IR,

αZ(t) = H(t).

Let us now show that Z has the same feature (c) as mBm. Let (ρn) be an
arbitrary sequence of positive real numbers converging to 0. In view of (18)
and (6), for proving that for each t ∈ IR one has

lim
n→∞

law

{
Z(t + ρnu) − Z(t)

ρ
H(t)
n

: u ∈ IR

}
= law{BH(t)(u) : u ∈ IR}, (57)

in the sense of finite dimensional distribution, it is sufficient to prove that for
any u ∈ IR one has

lim
n→+∞

E

{(R(t + ρnu) − R(t)

ρ
H(t)
n

)2
}

= 0. (58)

Observe that for all n big enough one has ρn|u| ≤ 1. Therefore, setting in
Theorem 1, K = |t| + 1, it follows that for n big enough,

E

{(R(t + ρnu) − R(t)

ρ
H(t)
n

)2
}

≤ ρ2(d−H(t))
n E(C2

1 ) (59)

and the latter inequality clearly implies that (58) holds. To have in (57) the
convergence in distribution for the topology of the uniform convergence on
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compact sets it is sufficient to show that for any positive real L, the sequence
of continuous Gaussian processes,

{
Z(t + ρnu) − Z(t)

ρ
H(t)
n

: u ∈ [−L,L]

}
, n ∈ IN,

is tight. This tightness result can be obtained (see [B68]) by proving that there
exists a constant c16 > 0 only depending on L and t such that for all n ∈ IN
and each u1, u2 ∈ [−L,L] one has

E

{(Z(t + ρnu1) − Z(t)

ρ
H(t)
n

−
Z(t + ρnu2) − Z(t)

ρ
H(t)
n

)2
}

≤ c16|u1 − u2|
2H(t).

(60)
There is no restriction to assume that for every n ∈ IN, ρn ∈ (0, 1]. Then
by using the fact that (60) is verified when Z is replaced by X (see [BCI98]
Proposition 2) as well as the fact it is also verified when Z is replaced by
R (this can be done similarly to (59)), one can establish that this inequality
holds.
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