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Abstract: In this paper, a quantitative modelling with UML is presented and a
translation from concurrent extended UML statecharts into continuous time Markov
chains (CTMCs) is proposed. These are widely used in the context of performance
and reliability evaluation of various systems. Our aim is to carry out a probabilistic
model checking of properties related to dependability of probabilistic systems. A
semantics based on stochastic clocks is used to easily translate from UML
statecharts augmented with stochastic time to CTMCs. Temporal probabilistic
properties related to system dependability are specified with continuous stochastic

logic (CSL). Copyright © 2004 IFAC

Keywords: Probabilistic systems, UML, CTMCs, Dependability properties,

Probabilistic model checking.

1. INTRODUCTION

Recently, the analysis of functional system
requirements in combination with quantitative
aspects of system behaviour have come into focus.
Several approaches have already been explored to
introduce a quantitative information in the dynamic
UML models. A stochastic extension of UML
statechart diagrams is proposed in (Gnesi et al,
2000). It is based on a set of stochastic clocks which
can be used as guards for transitions. The clock value
is given by a random variable with specified
distribution function. A probabilistic extension of
UML statecharts is presented in (Jansen et al., 2002).
The probabilistic UML statecharts describe
probabilistic choice and nondeterministic system
behaviour. Their formal semantics is given in terms
of Markov decision process as defined in
(Kwiatkowska, 2003). To evaluate system
performance, other approaches are also proposed.
Dynamic UML models are formalised with
stochastic Petri nets in (King and Pooley, 1999;
Merseguer and Campos, 2002) or with stochastic
process algebra in (Pooley, 1999; Canevet et al.,
2002). In order to take into account either real-time
constraints and probabilistic behaviour (undesired
signals, lost signals, etc.), a profile called DAMRTS
(Dependability Analysis Models for Real-Time
Systems) is defined by (Addouche et al., 2004). A
translation from UML statecharts used in this profile
to probabilistic timed automata is also proposed.

In this paper, another approach intended to
quantitative dependability analysis is presented.
Adding to evaluate system performance using the
several existing tools, the formalisation of combined

collaboration statechart diagrams using continuous
time Markov chains contains tree fault information.
Introduction of this type of information allows to
verify formally properties related to system
dependability. In our works, we focus on UML
statechart diagrams, which allow to describe dynamic
aspects of system behaviour. In section 2, semantics
of extended UML statecharts using stochastic clocks
is presented. Dependability information excerpted
from faults trees analysis (failures with their causes)
are included in these statecharts. A set of extended
UML statecharts describing the behaviour of an
assembly chain is presented in section 3. In this
example, the activities duration are considered as
distributed exponentially. That make possible to
translate UML models into continuous time Markov
chains as given in section 4. To verify formally
temporal probabilistic properties, we finally propose
to use the probabilistic model checker Prism. In
section 5, the formal model which represents the
chain example is given with CTMCs. Dependability
properties are specified with CSL and some results
are presented before the conclusion.

2. EXTENDED UML STATECHARTS

In UML, each class of the class diagram has an
optional statechart which describes the behaviour of
its instances (the objects). This statechart receives
events from other ones and reacts to them. The
reactions can include the sending of new events to
other objects and the execution of internal methods
on the object. Communications between system
components are generally modelled as events. In
proposed UML statecharts, exchanged signals, orders



and random events (e.g. undesired and lost signals)
are represented as events. Syntax of UML statecharts
defined in the standard UML of the (OMG, 2003) is
extended with integrating rates on transitions. A
dependability information related to faults trees
analysis are also introduced as defined in (Addouche
et al., 2004). Semantics of extended statecharts is
presented in section 2.2.

2.1 Syntax

This section describes informal interpretation of
extended UML  statecharts. The  graphical
representation is based on a set of nodes and a set of
edges. An edge is presented by the following syntax:
Edge:= Event [Guard] | Action.

Event: = Event name.

Guard: = Boolean Expression.

Action: = Operation name[Rate].

Event represents either received signals or orders or
random events. Guard is a boolean expression that
represents AND-composition and OR-composition
states of different objects. The compositions can be a
particular qualitative information which represent the
causes of undesirable events. In this case, when
guard is TRUE, a mode of failure appears on the
system. This type of information is available in
dependability analysis based on faults trees. Action
expresses operation execution or sending messages
to other objects. The considered time on duration is
stochastic and exponentially distributed.

2.2 Semantics

The semantic model used in our extended UML
statecharts is inspired by stochastic automata defined
in (D’Argenio et al., 1999). These are a variant of
timed automata proposed by (Alur and Dill, 1994).
Stochastic automata are defined with a set of random
clocks and a clock setting function that determines
for each state, called location, with clocks are set to
which value. The transitions of stochastic automata,
called edges, are labelled by an action and a finite set
of clocks. A stochastic automaton can perform a
transition from location s to location s’ labelled by
action a and clock set C by performing action a as
soon as all the clocks in the set C have expired. A
global time is assumed and all clocks are decreased
at the same speed. Immediately after the transition
takes place all clocks associated to s’ by the clock
setting function are randomly set according to their
probability distributions.

Stochastic automata has been chosen by (D’ Argenio
et al, 1999) to express semantics of stochastic
process algebra and by (Jansen et al., 2003) to extend
UML statecharts with randomly varying duration
associated to arbitrary probability distribution (e.g.
exponential, uniform, etc.). In our case, the random
variables are exponentially distributed. Translation
from proposed UML statecharts to continuous time

Markov chains requires this choice. UML statechart
diagrams are a variant of classical statecharts of
(Harel, 1987). Semantics of UML statecharts is
defined in (Latella et al., 1999). The associated
extension is defined by adding to each action name, a
distribution function that determines the stochastic
timing of the transition. A single extended UML
statechart consists of :
e A finite set of nodes with a tree structure,
described by the function children;
Nodes, —>P(N0des,)

e A finite set of events,

e A set of guard expressions. Guard expressions
are boolean combinations,

e A set of actions. A set of clocks is defined on
actions. We consider that actions are executed in
their correspondent states,

e A E-edge, an extended edge with event e, guard
g, action aand set of clocks is denoted as an

e[g]/ a,C

arrow —=——— . (Cis as set of stochastic
clocks assigned to action a.

As in the case of stochastic automata, when entering
a state, the clocks listed in the state are set to values
which are determined by random variables associated
to the clocks. We also assume a global time and all
clocks decreased at the same time.

3. EXAMPLE : ASSEMBLY CHAIN OF
MICRO-MOTORS

This example presents an automated chain for
assembly of electrical micro-motors. It is excerpted
from a European project named PABADIS (Plant
Automation Based on DlIstributed Systems) and
presented in (Liider ef al., 2004). This one deals with
flexible and reconfigurable system designed for
production of different types of micro-motors. Fig 1
presents the controlled system. Micro-motors consist
to stators and rotors. The firsts are transported to
assembly robots, on pallets via a conveyor system
and seconds are available into stocks near each robot.
A set of pallets containing stators moves along the
conveyor belt. These are detected by pallet sensors
PSi at different levels of the conveyor system.

Assembly Robot X Assembly Robot Y
(=) @ PS3
Xeo) X
7 L N
<Lutput ®* <« <*
flow PS2 A
Input ® ™ psi
flow —>» Xe

Detection Stators

> = O [ -
Conveyor Elevator ~ Main Fault  Pallet
Sense Functions Detector Detector

Fig. 1. Assembly chain



When assembly of micro-motors is completed, the
pallets then move into a fault detection station where
a camera detects the possible assembly faults. Set of
PLC (Programmable Logic Controller) and PC
composes the control system. Let us consider the
mode of failure "Assembly fault". Among the causes
of this mode of failure, there are undesired signals
sent by the sensors, undesired orders sent by the
controller and material failures of elevator.

To represent dynamic aspects of the system,
extended UML statecharts and collaboration
diagrams are used. Combination of these two
diagrams allows to represent all system interactions.
Indeed, the collaboration model describes external
interactions between objects whereas UML
statecharts diagrams represent how an instance of a
class reacts to an event occurrence.

3.1. Collaboration diagram

Interactions between objects of classes are presented
in fig 2. Exchanged messages describe signals sent
from Sensors (S.PPi for sensor i) and Fault detector
objects (S.Fault) to controller. They also represent
orders sent from Controller to Robot and Elevator
objects. Our example presents a distributed system
such that several PLC interact to control the system
functioning. To simplify, one controller object is
presented in the collaboration diagram.

Sensor 1
S.PP1 Elevator

Sensor 2

Sensor 3

Fault
Detector

Fig. 2. Collaboration diagram
3.2 Statechart diagrams

Robot and Controller objects behaviour are
respectively modelled as given in fig 3 and 4. In
Robot statechart, orders are modelled as events. In
the example: “O.Ass[PS1.Ds OR PS2.Ds)/
Assembly()[0,03] ”, guard expresses that the edge is
enabled if one of sensors PS2 or PS3 is in degraded
state Ds. The rate of executing assembly tasks
represents constant of exponential distribution
function associated to the clock C=EXP (0,03). The
guard “S.Active AND E.Active” represents the
condition to leave the state Emergency stop: sensors
and elevator must be in the state Active of their
respective ~ UML  statecharts. = Among  the
malfunctions of controller, sending of undesired

orders or lost orders are modelled in Controller
statechart as a fault which arrives randomly.

0O.Ass [PS2.Ds OR
PS3..Ds] / Ass() [0,03]

O.Ass/
Ass()[0,03]

End.Ass
Faulty
[S.Active
AND o
E.Active]
O.Stop /

Stop() [0,3]

Emergency
stop
Fig. 3. Robot statechart

In the example “UO/ Send.O ()[0.001]”, an undesired
order (UO) can arrives randomly. After which an
order with a rate of 0.001 is sent to the
corresponding component of controlled system. The
received sensor signals are presented as events and
the sending of orders as actions. The edge “SPP1/
0.Go up()”, expresses that when PS1 detects a pallet,
the order go up is sent from controller to elevator.

SPP1/ S.Fault/
0.Go up()[0.2] 0.Stop()[0.4]

UO: SendO()[0.001]

Degraded state

End.O

spp3/ V SPP2/0.Godown()[0.2]

0.Ass()[0.4]

Fig. 4. Controller statechart

4. TRANSLATION OF UML MODELS WITH
CTMCs

System behaviour is composed by a set of scenario.
A scenario is composed by signal, order and
executing tasks. It is presented with a set of
combined collaboration and extended statecharts
diagrams. Formalisation of this behavioural UML
models is given as follow:

e Each scenario is modelled by a set of combined
collaboration extended statecharts diagrams.
Number of combined diagrams varies according
scenario,

e At any time the combined diagram must have
each of its objects in exactly one state. These
combinations of active states are called
“marking” and represent in a continuous time
Markov chains the reachable states,

e It is assumed that the rates associated to sent
messages are exponentially distributed.

Let us consider the following scenario : when a pallet
arrives in the detection station and sensor PS2 send
an undesired signal to controller. This make
erroneous, position stator data sent to the controller.



Then a fault assembly will appear and will be
detected in fault detection station.

Translation of behavioural UML models to its
correspondent continuous time Markov chain is
explained in fig 5 and 6 such that first one presents a
scenario of assembly chain example described above
with behavioural UML models and second one
shows a possible translation to CTMCs.
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Fig. 5. Direct marking of combined collaboration
statechart diagrams

4.1 Application

The fig 5 describes a faulty assembly due to sending
of undesired signal by sensor 2. This scenario is
described by eight combined diagrams. In each one
from up to down and from right to left are
respectively presented, statecharts of sensor i,
elevator i, controller and robot objects. To simplify
fig 5, Default detector object is deliberately omitted,
one sensor statecharts and one elevator statecharts
are shown, index (i) used on signals and orders gives
which sensor or elevator is modelled in combined
diagrams. Transition from a marking to another
results of exchanging signals or orders between
objects. Active states of each marking are grey
tented in the figure.

The scenario of faulty assembly begins in marking 1
and takes end in marking 8. From marking 1 to
marking 5 tasks of stators detection station (go up,
go down) are executed with undesired signal sent
from sensor 2 to controller. Malfunctioning of
sensors 2 leads erroneous detection of stator position

on pallet. Consequently, robot do not put rotors in
good pallet compartments. From marking 5 to
marking 8, the faulty assembly and the emergency
stop are modelled.

If we assume an initial marking, such as all objects
are in /Idle state and elevator in Down state, it is
possible to derive all markings by following the
exchanging messages between objects. The CTMC
reachable states are thus formed. Fig 6 shows the
continuous time Markov chain derived from model
of fig 5. The numbers on reachable states are related
to numbers on markings of fig 5.

Fig. 6. Continuous time Markov chain

4.2 Principle of translation

A continuous time Markov chain is composed by set
of states and set of edges subject to an exponentially
distributed random delay. Each state of CTMC
represents a combination of active states of extended
UML statecharts. A CTMC edge is fired when an
action is executed by an extended UML statechart.
Rates associated to actions are directly translated as
rate of firing edges. In fig 6, the rates are related
either to orders sent by controller (O.Stop, O.Ass,
etc.) or to signals sent by sensors (SPP1, SPP2 and
SPP3). They are also related to stochastic events such
as random passage of pallets (PP1 and PP3), operator
intervention or repairing system (Rep). Guards are
used to model AND-composition and OR-
composition of degraded or normal states. Abnormal
or normal functioning scenarios are obtained
according to whether these guards are true or false.
So, Guards are implicitly expressed in the CTMC.

4.3 Comments

The global system behaviour is obtained from the set
of continuous time Markov chains related to
different scenario. Combination of these models
gives global continuous time Makov chains. This
method represents an intuitive proposition for
formalisation. It is not applied in this paper because
it is not necessary to construct it while Prism tool is
used for probabilistic model checking. This one is
based on a modular modelling of the system. It does
not require a global CTMC but rather a set of
CTMCs, where each represents one “module” of the
system, as given in section 5.1.



5. PROBABILISTIC MODEL CHECKING

The model checking is an algorithmic method
designed to check if a system satisfies the
specifications. A model checker is a software tool
which introduces a system model (e.g. automata) and
specifications (e.g. logic formula), as well as the
return yes or no depending on whether the system
satisfy or not the specifications. In a probabilistic
model checking, the return yes or no are replaced by
probabilities evaluations. The probabilities are
introduced in two cases:

e The first case is related to probabilistic systems,
i.e. which include probabilistic information such
as the mean time between failures of a material
device or in transmission protocols, the
probability of message transmission,

e The second case concerns non-probabilistic
systems whose complexity makes exhaustive
verification practically impossible. So, a
probabilistic description is used for unavailable
information or for the information whose the too
complex representation would be not
exploitable.

To verify dependability properties, the model
checker Prism is adopted (Kwiatkowska et al.,
2002). This tool is designed for analysis of
probabilistic models and supports various models
such as Markov decision processes, discrete time
Markov chains and continuous time Markov chains.
Prism is a tool developed at the University of
Birmingham which supports the model checking
described before. The tool takes as input a
description of a system written in Prism language. It
constructs the model from this description and
computes the set of reachable states. It accepts
specification in either the logic PCTL or CSL
(Kwiatkowska, 2003) depending on the model type.
It then determines which states of the system satisfy
each specification.

5.1 Model analysis

In order to model check a system with Prism tool, it
must be specified in the Prism language, based on
the Reactive Modules formalism of (Alur and
Henzinger, 1996). This formal model is designed for
concurrent systems and represents synchronous and
asynchronous components in a uniform framework
that supports compositional and hierarchical design
and verification.

The fundamental components of Prism language are
modules and variables. A system is composed of a
number of modules which can interact with each
other. A module contains a number of /ocal
variables. The values of these variables at any given
time constitute state of the module. Global state of
the system is determined by local states of all
modules.

The translation from UML statechart diagrams to

reactive modules is given as follow :

e The modules are defined for each UML object,

e The states of extended UML statecharts are
modelled by one or several local variables
(integer or boolean),

e  The signals, orders and random events are given
by one local boolean variable that determine
their presence,

e The rates associated to actions (as given in our
extended statecharts) are modelled by a set of
constants proposed in reactive modules to assign
stochastic information to the transition,

e The guards of extended UML statecharts are
expressed with constraints. These are predicates
over the local variables of other modules and are
proposed in Prism language in order to
condition the transition firing,

e The actions of UML models are also defined as
actions in reactive modules.

The behaviour model of assembly chain is proposed
such that each presented object in collaboration
diagram of section 3.1 is taken into account. Part of
the model is presented in fig. 7.

[merisvza =
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Fig. 7. Prism interface: Editing a model

5.2. Properties in Prism specification language

Some probabilistic properties related to our example
are presented. Their informal specifications is given
as follow:

Property 1: “In the long run, the probability the robot
carries out a faulty assembly is less than 1%”.
Property 2: “In initial state, the probability that the
robot remains in emergency stop until the elevator
and the sensors are reactivated is at least 0,95”.
Property 3: “Elevator remains in down position less
than & units of time until the sensorl detects a pallet
presence with a probability > p .

These dependability requirements are formally
specified with the temporal logic CSL. The following
are their Prism specification language.



Property 1: S<0.1 [(r=2)]

Property 2: “init”’= P>0.95[(r=3) U (e=0) & (y1=0)
& (y2=0) & (y3=0)]

Property 3: P=? [(e=0)U>* SPP1= true]

5.3. Experimental results

The results of our experiments are shown in fig. 8.
Dependability properties 1 and 2 are verified (true).
The verification of property 3 is presented with a
curve. The CSL requirement are evaluated for
increasing time points k& and the boundary
probabilities p at which the requirement turns from
being true to being false are calculated. We plotted a
graph generated by Prism where a pair (t, p) above a
plot the requirement is FALSE, while for pairs below
it is TRUE.

=
File Edit Model Froperties Options
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Fig. 8. Prism interface: Properties specification

6. CONCLUSION

The paper presents UML models to analyse the
system dependability. The aim is to verify formally
dependability properties of probabilistic systems.
Extended UML statecharts are proposed with
semantics related to stochastic automata. Duration of
activities are expressed with stochastic clocks. The
time is exponentially distributed, that make possible
translation to continuous time Markov chains. As
example, an assembly chain is described with
extended statecharts. A translation method from
combined collaboration statechart diagrams to
CTMCs is proposed. Using the Prism tool, some
dependability properties related to the example are
specified with the temporal logic CSL and verified
by probabilistic model checking.
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