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Abstract - In this paper, we present the UML profile called 
DAMRTS (Dependability Analysis Models for Real-Time 
Systems) representing an extension to the reference 
metamodels of the OMG profile for “Schedulability 
Performance and Time” (SPT). The aim is to provide 
concepts that enable to specify a real-time system with 
stochastic and probabilistic information allowing 
dependability analysis. A behavioural UML models are 
also proposed with a formal semantics designed for 
probabilistic model checking. An extension of statecharts 
semantics is developed with probabilities and real-time 
requirements, resulting in probabilistic timed automata 
(PTAs) as semantics models. These models are used to 
verify probabilistic temporal properties related to the 
dependability of real-time systems. 

Keywords: Real-time systems, UML, dependability 
analysis, probabilistic model Checking. 

1 Introduction 
 The use of UML for developing real-time systems is 
widely adopted in industry. Other steps are also important 
in the development of real-time systems. Performance and 
dependability evaluations are based on separate models: 
queuing files, stochastic Petri nets [4], stochastic process 
algebras [2] and Markov processes are generally used. The 
formal verification is done on system models developed in 
other formalisms. In particular, for verifying temporal 
properties, timed automata [1] or timed Petri nets are used. 
In the case of the probabilistic temporal properties, 
formalisms like probabilistic timed automata or continuous 
time Markov chains are used [6]. However, these 
mathematical models are too fine grained to be directly 
specified by a real-time system designer. In order to have 
UML accepted by the real-time development community, 
the OMG group has proposed a profile called 
“Schedulability, Performance and Time” [10] for real-time 

systems. In this profile, some supports are introduced in 
UML to capture a maximum of real-time requirements and 
to perform the real-time development tasks directly on 
UML models. Beside the usual analysis and design stages, 
scheduling analysis, performance evaluation and formal 
verification of critical properties are included. However, 
the two last activities are partially covered because “quality 
of service” requirements are introduced without a clear 
indication about the formal verification of this type of 
properties. Adapted tools to formal verification or 
performance evaluation on these UML models are not yet 
available. The profile is too general as it covers all real-
time problems both soft and hard. For all these reasons, a 
new profile is proposed to analyse and verify dependability 
properties of real-time systems. Our proposal has the 
following aims: 

• To be compliant with the standard OMG’s SPT 
profile, 

• To give a UML quantitative models of real-time 
system : the model must cover functioning and 
malfunctioning with probabilistic aspects, 

• To propose a formalisation of behavioural UML 
models with probabilistic timed automata in order 
to verify dependability properties. A probabilistic 
model checker requires specification of these 
properties with a suitable temporal logic. 

2 Modelling process 
 Before defining proposed profile, it is important to 
follow a modelling process which allows collect of 
qualitative and quantitative information. This one is needed 
to dependability analysis. Modelling steps are defined as 
follow: 



• Resources identification: among different real-
time systems, we focused on automated systems 
of production. We must identify the set of sensors 
and effectors (all components in contact with raw 
material such robots, conveyor belt, etc.) which 
compose the controlled system. We also consider 
the set of PLC (Programmable Logic Controller) 
composing the controller system. These 
components are modelled as system resources. 
Real-time data are also identified (e.g. response 
time, deadlines, duration, etc.), 

• Malfunctions analysis: quantitative information 
related to resource dependability is collected (e.g.  
reliability, maintainability, etc.). It is generally 
represented by rates related to a probabilistic 
distribution [11]. Particular qualitative 
information is also taken into account. It concerns 
a set of undesirable events being able to occur on 
system components. For each one of them the 
causes are defined with one or several logical 
combinations of components faults. This type of 
information is available in a dependability 
analysis based on faults trees (a model of faults 
combinations leading to undesired events) [11]. 
We introduce it in the dynamic UML models, 

• Static modelling: the static aspect of system is 
modelled with a class diagram. Classes represent 
resources system. Real-time and dependability 
features collected in first steps are associated to 
resource classes, 

• Dynamic modelling: it is based on collaboration 
diagram and extended UML statecharts defined in 
section 3.2.2. Malfunctions are introduced in these 
models using dependability information collected 
in dependability analysis step, 

• Properties identification: After modelling real-
time system, dependability analysis consists to 
verify some properties on the model. Those are 
defined in the profile SPT as required quality of 
services (QoS). In our profile they are not 
represented in UML model.  After translating 
UML models to a formal model, properties are 
specified in a suitable temporal logic and verified 
with probabilistic model checking [6]. 

3 The DAMRTS profile 
 A profile is composed by a set of UML diagrams 
selected in the UML metamodel. The extension 
mechanisms (stereotypes, tagged values, constraints) make 
it possible to add a new elements specific to the application 
domain [9]. The UML profile SPT specialises the UML 
reference metamodel in a specific metamodel dedicated to 

domain of real-time systems analysis. The DAMRTS 
profile is a specific profile designed for dependability 
analysis of a real-time system (see figure1). It is based on 
concepts defined in the profile SPT with new stereotypes. 
Those are added to the metamodel in order to introduce 
particular dependability information. The malfunctions 
considered as undesirable events and their possible causes 
are modelled with stereotypes. 

 
Figure1. Standard and specific profiles 

3.1 Static view  
 The static aspect of the system is described by a class 
diagram. It is based on general resources model proposed 
in the profile SPT. The resources model provides 
quantitative information to UML specifications. It mainly 
represents a client/server model with quality of service 
offered by these resources and required by the client. The 
quality of service can represents performances (response 
time, deadline, etc) and/or dependability (reliability, 
availability, etc) features relating to the real-time systems. 
In DAMRTS profile, static aspect of the system is given by 
a class diagram representing both controller and controlled 
systems. Each component is modelled with a resource 
class. 

3.1.1 Resource type 
 A part of general resources model presented in [10] 
deals with different categorisations of resources. They are 
based either on purpose or on activeness or on protection.  
A given resource instance may belong to more than one 
type, although it can be classified by at most one type from 
each category (See categorisations of resources in section 
4.1.6 of [10]). In DAMRTS profile, two types of resource 
are taken into account. Based on purpose, resource related 
to a controlled system component (sensors and effectors) is 
classified as device. The second one representing a PLC is 
classified as processor resource.  

3.1.2 Quality of service 
 In general resource modelling of the profile SPT, a 
generic notion of a “QoS characteristic” is presented, but 
there is no particular correspondent stereotype. QoS 
characteristic can be presented as different ways (either as 
tagged values or as stereotypes) [10]. In proposed profile, 
the QoS is represented as attributes when it is about actions 
of resource classes (e.g. duration of actions, response time 
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for a call action, etc.). It is also represented as a tagged 
value when it is about general QoS, like reliability and 
maintainability of resources (see figure 3). The modelled 
QoS are those offered by resources and not required by the 
client. They can take as value a nonnegative real related to 
dense time [5] or rates [11]. The rates represent constants 
related to probabilistic distributions. In our case, there are 
associated to random events (e.g. undesired or lost signals, 
failures of effectors, etc.). 

3.1.3 Indicator and Cause stereotypes 
Indicator Class. Each resource class is associated to a 
Indicator class. One or several variables (booleans or 
integers) are defined as attributes of Indicator class. These 
variables are related to dynamic aspect of the resource 
class objects and represent their degraded or failure states. 
When evaluation of variable became true, it means that the 
object is in a malfunction state. 

Cause Class. Attributes of Cause class is defined in terms 
of the corresponding Indicator class attributes. They 
represent one or several logical expressions composed by 
an elementary logical conditions linked by conjunctive and 
disjunctive connectors. Variables used in the elementary 
conditions are those defined in Indicator classes. Actions of 
Cause stereotype consist to evaluate the logical 
expressions. When one of them is true, it indicates that 
associated failure became true. 

3.2 Dynamic view 
 To represent dynamic aspects of the system, extended 
UML statecharts and collaboration diagrams are used. 
Combination of these two diagrams allows representing all 
system interactions. Indeed, the collaboration model 
describes external interactions between objects whereas 
UML statechart diagrams represent how an instance of a 
class reacts to an event occurrence. The proposed 
statecharts allow expressing events with probabilities and 
the real-time constraints of actions. 

3.2.1 UML Collaboration diagram 
 A collaboration diagram consists of objects and 
associations that describe how the objects communicate. It 
represents the structural organisation of objects which 
exchanges messages. In the DAMRTS profile two types of 
messages: signals and orders. The first ones are sent from 
objects of Sensor classes to objects of Controller class. The 
second ones are sent from instances of Controller class to 
instances of Effector classes (see figure 4). 

3.2.2 Extended UML Statecharts  
 In UML, each class has an optional statechart which 
describes the behaviour of its instances (the objects). This 
statechart receives events from other statecharts and reacts 

to them. The reactions include sending of the new events to 
other objects and executing of internal methods on the 
object. The communications between components of the 
system are modelled as events. Exchanged signals and 
orders as well as random events (e.g. undesired and lost 
signals) are represented as events associated to a discrete 
probability distribution. The syntax of UML statecharts, 
defined in the standard UML [8] is extended. The 
operational semantics of UML statechart, given in [3] is 
also extended with real-time and probabilistic aspects. A 
new type of dependability information excerpted from 
faults trees analysis is also introduced. 

Syntax. This section describes the informal interpretation of 
extended UML statecharts. Graphical representation of 
UML statecharts is based on a set of nodes and a set of 
edges. An edge is presented by the following syntax:  
Edge: = Event [Guard] / Action. 
Event: = Event name (Probability). 
Guard: = Boolean Expression. 
Action: = Operation name (Arguments) [Duration, 

deadline].  
Event represents either received signals or random events 
with their associated probability, 
Guard is a boolean expression of predicates defined on the 
set of attributes of the corresponding Cause classes. These 
attributes represent AND-composition and OR-composition 
states of different objects. The compositions are excerpted 
from a faults tree analysis of the system. 
Action expresses operation execution or sending messages 
to other objects. They are not instantaneous but have 
duration or deadline. Transitions between states are 
probabilistic. When two transitions are enabled, the choice 
is nondeterministic.  

Semantics. Before presenting the extended semantics, 
some notations are fixed: the power set of a set E  is 
denoted by ( )EP . A probability space is denoted ( )PE,,Ω , 
where Ω  is the set of possible outcomes of the 
probabilistic experiments, ( )Ω⊆ PE is a σ -algebra of 
measurable sets and P: [ ]1,0→E  is a probability measure. 
A discrete probability space is denoted ( )( )P,, ΩΩ P . A 
system consists of a finite collection of communicating 
statecharts. In the following, we assume a given finite 
collection of extended statecharts, denoted by {ESC1, …, 
ESCn}. 

 A single extended UML statechart ESCi consists of 
the following elements: 

• A finite set Nodesi of nodes with a tree structure, 
described by the function childreni : 

( )ii NodesNodes P→ .  

• A finite set Eventsi of events. A discrete 
probability distribution is associated to events, 



• A set Guardsi of guard expressions. Guard 
expressions are boolean combinations. We use the 
symbol g⊥ to denote “no guard required”,  

ig Guards∉⊥ .  

• A set Actionsi of actions. The symbol a⊥  is used 
to denote “no action required”, ia Actions∉⊥ . A 
set of clocks is defined on actions. We consider 
that actions are executed in their correspondent 
nodes. So, these clocks dictates when UML 
statechart may remain in a node, letting time pass, 

 In semantics proposed in [3], probability is defined on 
actions. Events are considered as instantaneous. In our 
case, we introduce some changes which consist to associate 
probabilities to events and not for actions. 

 Let a finite set E-Edgesi of Extended edges. A E-edge 
is a tuple ( )PYageX ,,,,,  where iNodesX ⊆  is a non-
empty set of source state nodes, { }giGuardsg ⊥∪∈ , 

{ }aiActionsa ⊥∪∈ and P  is a probability measure in the 
discrete probability space: 

( ) ( ) { }( )\ ,iEvents Nodes Pφ×P P . 

iEventsE ⊆ is a set of events and iNodesY ⊆ is a set of 
target nodes. The set E-Edgesi is defined as: 
( ){ YageX ,,,, ( ) ( )∈=∃ PagXPagXPagX ,,,,,,:,,, ν  

E-Edgesi ∧ ( ){ }( )YEP , > }0  

 Let a finite set of clocks K . C is a function assigning 
to each element i

j
i Actionsa ∈ a clock Kk j

i ∈ , Nj ∈ ; 
KActionsC i →: . 

V is a function assigning to j
ik , a values in the dense time 

domain; 0: j
iV k ≥→ R . 

We define a function: DActionsi →  which assigns a 

value j
id ∈ +R to each action i

j
i Aa ∈ . 

Given an E-edge ( )ii yPagex ,,,,,  where 

Xxi ∈ and Yyi ∈ . We associate the clock j
ik  to the 

action j
ia , when the E-edge is enable; the node yi becomes 

active and remains as long as j
ii Kd ≥ 〉  0. 

4 Example: Assembly chain of micro-
motors 

 This example presents an automated chain assembly 
of electrical micro-motors. It is excerpted from a European 
project named PABADIS (Plant Automation BAsed on 
DIstributed Systems). This one deals with a flexible and a 

reconfigurable system designed for production of different 
types of micro-motors. Figure 2 represents the controlled 
system. 

 
Figure 2. Assembly chain 

 Micro-motors consist to stators and rotors. The first 
are transported to assembly robots, on pallets via a 
conveyor system and seconds are available into stocks near 
each robot. A set of pallets containing stators moves along 
the conveyor belt. These are detected by pallet sensors PSi 
at different levels of the conveyor system. When assembly 
of micro-motors is completed, the pallets then move into a 
fault detection station where a camera detects the possible 
assembly faults. Set of PLC (Programmable Logic 
Controller) and PC composes the control system. 
 Let us consider an undesirable event such an 
Assembly fault. Among the causes of this mode, there are 
undesired signals sent by the sensors, undesired orders sent 
by the controller and material failures of elevator. To 
simplify model and make it easy to understand, some 
components (conveyor belt, stators detector, etc) are 
implicitly omitted in the following models. 

4.1 Static UML model 
 Figure 3 describes the static aspect of the assembly 
chain example. A set of classes which represent the 
controlled system and the system controller are linked with 
associations. Stochastic and real-time attributes are given. 
Such defined in the profile DAMRTS, the proposed QoS is 
given either as tagged values or as operations attributes. 
For example, Robot Class represents the assembly robots. 
The operations Ass () and Stop () are called by Controller 
class. Their proposed execution times are associated as 
attributes. Controller Class reacts to signals coming from 
Sensor class or Default detector class by sending orders 
(O.Go up, O.Go down, O.Ass, O.Stop) to Elevator and 
Robot classes. The deadline to send these Orders represents 
the operations attributes. Robot class is associated to the 
stereotypes Indicator and Cause. They represent 
respectively the failure state “Faulty Assembly” and its 
cause. 
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Figure 3. Class diagram 

4.2 Collaboration diagram 
 Interactions between objects of classes are presented 
in figure 4. Exchanged messages describe signals sent from 
Sensors (S.PPi for sensor i) and Fault detector objects 
(S.Fault) to controller. They also represent orders sent 
from Controller to Robot and Elevator objects. Our 
example presents a distributed system such that several 
controllers (PLC) interact to control the system 
functioning. To simplify, we represent in the collaboration 
diagram one controller object. 

 
Figure 4. Collaboration diagram 

4.3 Statecharts diagram 
 Robot and Controller objects behaviour are 
respectively modelled as given in figure 5 and figure 6. In 
Robot statechart, Orders are modelled as events. In the 
example: “O.Ass (0,10) [PS1.Ds OR PS2.Ds]/ 
Assembly()[10s]”, guard expresses that the edge is enabled 
if one of sensors PS2 or PS3 is in degraded state Ds. The 
probability of sent an assembly order when one of sensors 
are in degraded state is evaluate to 0,10. The execution of 
the operation of assembly Ass () lasts 10s. The guard 
“S.Active AND E.Active” represents the condition to leave 
the state Emergency stop: sensors and elevator must be in 

the state Active of their respective UML statecharts. When 
probability is not represented, it means it is equal to 1. 

 
Figure 5. Robot statechart 

 Among the malfunctions of controller, sending of 
undesired orders or lost orders are modelled in Controller 
statechart as random events, e.g. “Fault (0.05)/ Order [5s]”. 
The received sensor signals are presented as events and the 
sending of orders as actions with their associated deadlines. 
The edge “After 3s[SPP2=True]/ O.Go down().RT=5s”, 
expresses that when PS2 detects a pallet (S.PP2=true), 
order to go down from controller to elevator must be sent 
after 3 seconds. 

 

 
Figure 6. Controller statechart 

5 Translating UML models to PTAs 
 Timed automata are automata extended with clocks, 
positive real valued variables which increase uniformly 
with time, and whose nodes and edges are labelled with 
clocks constraints, respectively called invariants and 
guards. The invariant dictate when the automaton may 
remain in a node, letting time pass, and guards when the 
corresponding edge can be taken [1]. Probabilistic timed 
automata are a variant of timed automata extended with 
discrete probability distributions [6]. This type of automata 
has been chosen for formalising extended UML statecharts 
because it takes into account dense time, nondeterminism 
and probabilistic choice as defined in the extended UML 
statecharts. They are also amenable to model check 
probabilistic temporal properties. In figure 7, we give 
probabilistic timed automaton describing a sub-system of 
the assembly chain example: the robot behaviour reacting 
to controller orders. The probabilities used in the example 
should in practice be obtained from statistical analysis of 
observed behaviour. 
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Figure7. Probabilistic timed automaton  

 In the probabilistic timed automaton, the sub-system 
consists to robot, controller and two clocks x and y. Atomic 
propositions, related to probabilistic timed automata of 
elevator and sensor, are included in nodes. “s:Ds, e:Active 
and s:Active” express guards of UML statecharts in figure 
5. In initial state, both clocks x and y set to 0. The 
controller send assembly order to robot in 5 time units. 
Then, the robot effect the assembly tasks with probability 
0,90. After assembly takes 10 time units, the robot becomes 
idle. When one sensor is in degraded state, then robot 
perform a fault assembly with probability 0,10. When an 
order stop is send by the controller, the robot stop. It 
becomes idle when sensors and elevator are in active state. 

6 Conclusion 
 The paper presents the profile DAMRTS designed for 
dependability analysis of real-time systems. The static 
model is based on the metamodels of the OMG group 
profile called “Schedulability, Performance and Time”. 
Some concepts such as Indicator and Cause stereotypes are 
defined in the metamodel in order to introduce new 
dependability information excerpted from dependability 
analysis based on faults trees. The dynamic models are 
based on collaboration and extended UML statecharts such 
proposed in our modelling process. 

 The UML statecharts are extended by introduction of 
probabilities and real-time aspects using clocks, an 
example of assembly chain with real-time features is well 
given. We proposed an extended semantics of UML 
statecharts related to probabilistic timed automata. The 
UML statecharts are then easily convertible to probabilistic 
timed automata. The aim is to verify formally probabilistic 
temporal properties related to the dependability of real-time 
systems. 

 In future works, the formal model will be integrated 
in the probabilistic model checker PRISM [7]. The 
probabilistic properties will be specified in PTCTL 
(Probabilistic Timed Computation Tree Logic). This one is 
suitable when the formal model is described with 
probabilistic timed automata. 
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