
HAL Id: hal-00354034
https://hal.science/hal-00354034

Submitted on 17 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

UML Models for Dependability Analysis of Real-Time
Systems

Nawal Addouche, Christian Antoine, Jacky Montmain

To cite this version:
Nawal Addouche, Christian Antoine, Jacky Montmain. UML Models for Dependability Analysis of
Real-Time Systems. SMC04, IEEE International Conference on Systems, Man and Cybernetics, 2004,
La Hague, Netherlands. �hal-00354034�

https://hal.science/hal-00354034
https://hal.archives-ouvertes.fr

UML Models for Dependability Analysis of Real-Time
Systems*

N. Addouche, C. Antoine and J. Montmain

URC- CEA/EMA
Laboratoire de Génie Informatique et d’Ingénierie de Production

Site EERIE de L’Ecole des Mines d'Alès
Parc Scientifique Georges Besse – 30035 Nîmes Cedex 1 – France

nawal.addouche@ema.fr, christian.antoine@ema.fr, jacky.montmain@ema.fr

* 0-7803-8566-7/04/$20.00 2004 IEEE.

Abstract - In this paper, we present the UML profile called
DAMRTS (Dependability Analysis Models for Real-Time
Systems) representing an extension to the reference
metamodels of the OMG profile for “Schedulability
Performance and Time” (SPT). The aim is to provide
concepts that enable to specify a real-time system with
stochastic and probabilistic information allowing
dependability analysis. A behavioural UML models are
also proposed with a formal semantics designed for
probabilistic model checking. An extension of statecharts
semantics is developed with probabilities and real-time
requirements, resulting in probabilistic timed automata
(PTAs) as semantics models. These models are used to
verify probabilistic temporal properties related to the
dependability of real-time systems.

Keywords: Real-time systems, UML, dependability
analysis, probabilistic model Checking.

1 Introduction
 The use of UML for developing real-time systems is
widely adopted in industry. Other steps are also important
in the development of real-time systems. Performance and
dependability evaluations are based on separate models:
queuing files, stochastic Petri nets [4], stochastic process
algebras [2] and Markov processes are generally used. The
formal verification is done on system models developed in
other formalisms. In particular, for verifying temporal
properties, timed automata [1] or timed Petri nets are used.
In the case of the probabilistic temporal properties,
formalisms like probabilistic timed automata or continuous
time Markov chains are used [6]. However, these
mathematical models are too fine grained to be directly
specified by a real-time system designer. In order to have
UML accepted by the real-time development community,
the OMG group has proposed a profile called
“Schedulability, Performance and Time” [10] for real-time

systems. In this profile, some supports are introduced in
UML to capture a maximum of real-time requirements and
to perform the real-time development tasks directly on
UML models. Beside the usual analysis and design stages,
scheduling analysis, performance evaluation and formal
verification of critical properties are included. However,
the two last activities are partially covered because “quality
of service” requirements are introduced without a clear
indication about the formal verification of this type of
properties. Adapted tools to formal verification or
performance evaluation on these UML models are not yet
available. The profile is too general as it covers all real-
time problems both soft and hard. For all these reasons, a
new profile is proposed to analyse and verify dependability
properties of real-time systems. Our proposal has the
following aims:

• To be compliant with the standard OMG’s SPT
profile,

• To give a UML quantitative models of real-time
system : the model must cover functioning and
malfunctioning with probabilistic aspects,

• To propose a formalisation of behavioural UML
models with probabilistic timed automata in order
to verify dependability properties. A probabilistic
model checker requires specification of these
properties with a suitable temporal logic.

2 Modelling process
 Before defining proposed profile, it is important to
follow a modelling process which allows collect of
qualitative and quantitative information. This one is needed
to dependability analysis. Modelling steps are defined as
follow:

• Resources identification: among different real-
time systems, we focused on automated systems
of production. We must identify the set of sensors
and effectors (all components in contact with raw
material such robots, conveyor belt, etc.) which
compose the controlled system. We also consider
the set of PLC (Programmable Logic Controller)
composing the controller system. These
components are modelled as system resources.
Real-time data are also identified (e.g. response
time, deadlines, duration, etc.),

• Malfunctions analysis: quantitative information
related to resource dependability is collected (e.g.
reliability, maintainability, etc.). It is generally
represented by rates related to a probabilistic
distribution [11]. Particular qualitative
information is also taken into account. It concerns
a set of undesirable events being able to occur on
system components. For each one of them the
causes are defined with one or several logical
combinations of components faults. This type of
information is available in a dependability
analysis based on faults trees (a model of faults
combinations leading to undesired events) [11].
We introduce it in the dynamic UML models,

• Static modelling: the static aspect of system is
modelled with a class diagram. Classes represent
resources system. Real-time and dependability
features collected in first steps are associated to
resource classes,

• Dynamic modelling: it is based on collaboration
diagram and extended UML statecharts defined in
section 3.2.2. Malfunctions are introduced in these
models using dependability information collected
in dependability analysis step,

• Properties identification: After modelling real-
time system, dependability analysis consists to
verify some properties on the model. Those are
defined in the profile SPT as required quality of
services (QoS). In our profile they are not
represented in UML model. After translating
UML models to a formal model, properties are
specified in a suitable temporal logic and verified
with probabilistic model checking [6].

3 The DAMRTS profile
 A profile is composed by a set of UML diagrams
selected in the UML metamodel. The extension
mechanisms (stereotypes, tagged values, constraints) make
it possible to add a new elements specific to the application
domain [9]. The UML profile SPT specialises the UML
reference metamodel in a specific metamodel dedicated to

domain of real-time systems analysis. The DAMRTS
profile is a specific profile designed for dependability
analysis of a real-time system (see figure1). It is based on
concepts defined in the profile SPT with new stereotypes.
Those are added to the metamodel in order to introduce
particular dependability information. The malfunctions
considered as undesirable events and their possible causes
are modelled with stereotypes.

Figure1. Standard and specific profiles

3.1 Static view
 The static aspect of the system is described by a class
diagram. It is based on general resources model proposed
in the profile SPT. The resources model provides
quantitative information to UML specifications. It mainly
represents a client/server model with quality of service
offered by these resources and required by the client. The
quality of service can represents performances (response
time, deadline, etc) and/or dependability (reliability,
availability, etc) features relating to the real-time systems.
In DAMRTS profile, static aspect of the system is given by
a class diagram representing both controller and controlled
systems. Each component is modelled with a resource
class.

3.1.1 Resource type
 A part of general resources model presented in [10]
deals with different categorisations of resources. They are
based either on purpose or on activeness or on protection.
A given resource instance may belong to more than one
type, although it can be classified by at most one type from
each category (See categorisations of resources in section
4.1.6 of [10]). In DAMRTS profile, two types of resource
are taken into account. Based on purpose, resource related
to a controlled system component (sensors and effectors) is
classified as device. The second one representing a PLC is
classified as processor resource.

3.1.2 Quality of service
 In general resource modelling of the profile SPT, a
generic notion of a “QoS characteristic” is presented, but
there is no particular correspondent stereotype. QoS
characteristic can be presented as different ways (either as
tagged values or as stereotypes) [10]. In proposed profile,
the QoS is represented as attributes when it is about actions
of resource classes (e.g. duration of actions, response time

SPT Profile
Standard Profiles

End User Specific Profiles

UML

Real-Time

Real-Time
DAMRTS Profile

for a call action, etc.). It is also represented as a tagged
value when it is about general QoS, like reliability and
maintainability of resources (see figure 3). The modelled
QoS are those offered by resources and not required by the
client. They can take as value a nonnegative real related to
dense time [5] or rates [11]. The rates represent constants
related to probabilistic distributions. In our case, there are
associated to random events (e.g. undesired or lost signals,
failures of effectors, etc.).

3.1.3 Indicator and Cause stereotypes
Indicator Class. Each resource class is associated to a
Indicator class. One or several variables (booleans or
integers) are defined as attributes of Indicator class. These
variables are related to dynamic aspect of the resource
class objects and represent their degraded or failure states.
When evaluation of variable became true, it means that the
object is in a malfunction state.

Cause Class. Attributes of Cause class is defined in terms
of the corresponding Indicator class attributes. They
represent one or several logical expressions composed by
an elementary logical conditions linked by conjunctive and
disjunctive connectors. Variables used in the elementary
conditions are those defined in Indicator classes. Actions of
Cause stereotype consist to evaluate the logical
expressions. When one of them is true, it indicates that
associated failure became true.

3.2 Dynamic view
 To represent dynamic aspects of the system, extended
UML statecharts and collaboration diagrams are used.
Combination of these two diagrams allows representing all
system interactions. Indeed, the collaboration model
describes external interactions between objects whereas
UML statechart diagrams represent how an instance of a
class reacts to an event occurrence. The proposed
statecharts allow expressing events with probabilities and
the real-time constraints of actions.

3.2.1 UML Collaboration diagram
 A collaboration diagram consists of objects and
associations that describe how the objects communicate. It
represents the structural organisation of objects which
exchanges messages. In the DAMRTS profile two types of
messages: signals and orders. The first ones are sent from
objects of Sensor classes to objects of Controller class. The
second ones are sent from instances of Controller class to
instances of Effector classes (see figure 4).

3.2.2 Extended UML Statecharts
 In UML, each class has an optional statechart which
describes the behaviour of its instances (the objects). This
statechart receives events from other statecharts and reacts

to them. The reactions include sending of the new events to
other objects and executing of internal methods on the
object. The communications between components of the
system are modelled as events. Exchanged signals and
orders as well as random events (e.g. undesired and lost
signals) are represented as events associated to a discrete
probability distribution. The syntax of UML statecharts,
defined in the standard UML [8] is extended. The
operational semantics of UML statechart, given in [3] is
also extended with real-time and probabilistic aspects. A
new type of dependability information excerpted from
faults trees analysis is also introduced.

Syntax. This section describes the informal interpretation of
extended UML statecharts. Graphical representation of
UML statecharts is based on a set of nodes and a set of
edges. An edge is presented by the following syntax:
Edge: = Event [Guard] / Action.
Event: = Event name (Probability).
Guard: = Boolean Expression.
Action: = Operation name (Arguments) [Duration,

deadline].
Event represents either received signals or random events
with their associated probability,
Guard is a boolean expression of predicates defined on the
set of attributes of the corresponding Cause classes. These
attributes represent AND-composition and OR-composition
states of different objects. The compositions are excerpted
from a faults tree analysis of the system.
Action expresses operation execution or sending messages
to other objects. They are not instantaneous but have
duration or deadline. Transitions between states are
probabilistic. When two transitions are enabled, the choice
is nondeterministic.

Semantics. Before presenting the extended semantics,
some notations are fixed: the power set of a set E is
denoted by ()EP . A probability space is denoted ()PE,,Ω ,
where Ω is the set of possible outcomes of the
probabilistic experiments, ()Ω⊆ PE is a σ -algebra of
measurable sets and P: []1,0→E is a probability measure.
A discrete probability space is denoted ()()P,, ΩΩ P . A
system consists of a finite collection of communicating
statecharts. In the following, we assume a given finite
collection of extended statecharts, denoted by {ESC1, …,
ESCn}.

 A single extended UML statechart ESCi consists of
the following elements:

• A finite set Nodesi of nodes with a tree structure,
described by the function childreni :

()ii NodesNodes P→ .

• A finite set Eventsi of events. A discrete
probability distribution is associated to events,

• A set Guardsi of guard expressions. Guard
expressions are boolean combinations. We use the
symbol g⊥ to denote “no guard required”,

ig Guards∉⊥ .

• A set Actionsi of actions. The symbol a⊥ is used
to denote “no action required”, ia Actions∉⊥ . A
set of clocks is defined on actions. We consider
that actions are executed in their correspondent
nodes. So, these clocks dictates when UML
statechart may remain in a node, letting time pass,

 In semantics proposed in [3], probability is defined on
actions. Events are considered as instantaneous. In our
case, we introduce some changes which consist to associate
probabilities to events and not for actions.

 Let a finite set E-Edgesi of Extended edges. A E-edge
is a tuple ()PYageX ,,,,, where iNodesX ⊆ is a non-
empty set of source state nodes, { }giGuardsg ⊥∪∈ ,

{ }aiActionsa ⊥∪∈ and P is a probability measure in the
discrete probability space:

() () { }()\ ,iEvents Nodes Pφ×P P .

iEventsE ⊆ is a set of events and iNodesY ⊆ is a set of
target nodes. The set E-Edgesi is defined as:
(){ YageX ,,,, () ()∈=∃ PagXPagXPagX ,,,,,,:,,, ν

E-Edgesi ∧ (){ }()YEP , > }0

 Let a finite set of clocks K . C is a function assigning
to each element i

j
i Actionsa ∈ a clock Kk j

i ∈ , Nj ∈ ;
KActionsC i →: .

V is a function assigning to j
ik , a values in the dense time

domain; 0: j
iV k ≥→ R .

We define a function: DActionsi → which assigns a

value j
id ∈ +R to each action i

j
i Aa ∈ .

Given an E-edge ()ii yPagex ,,,,, where

Xxi ∈ and Yyi ∈ . We associate the clock j
ik to the

action j
ia , when the E-edge is enable; the node yi becomes

active and remains as long as j
ii Kd ≥ 〉 0.

4 Example: Assembly chain of micro-
motors

 This example presents an automated chain assembly
of electrical micro-motors. It is excerpted from a European
project named PABADIS (Plant Automation BAsed on
DIstributed Systems). This one deals with a flexible and a

reconfigurable system designed for production of different
types of micro-motors. Figure 2 represents the controlled
system.

Figure 2. Assembly chain

 Micro-motors consist to stators and rotors. The first
are transported to assembly robots, on pallets via a
conveyor system and seconds are available into stocks near
each robot. A set of pallets containing stators moves along
the conveyor belt. These are detected by pallet sensors PSi
at different levels of the conveyor system. When assembly
of micro-motors is completed, the pallets then move into a
fault detection station where a camera detects the possible
assembly faults. Set of PLC (Programmable Logic
Controller) and PC composes the control system.
 Let us consider an undesirable event such an
Assembly fault. Among the causes of this mode, there are
undesired signals sent by the sensors, undesired orders sent
by the controller and material failures of elevator. To
simplify model and make it easy to understand, some
components (conveyor belt, stators detector, etc) are
implicitly omitted in the following models.

4.1 Static UML model
 Figure 3 describes the static aspect of the assembly
chain example. A set of classes which represent the
controlled system and the system controller are linked with
associations. Stochastic and real-time attributes are given.
Such defined in the profile DAMRTS, the proposed QoS is
given either as tagged values or as operations attributes.
For example, Robot Class represents the assembly robots.
The operations Ass () and Stop () are called by Controller
class. Their proposed execution times are associated as
attributes. Controller Class reacts to signals coming from
Sensor class or Default detector class by sending orders
(O.Go up, O.Go down, O.Ass, O.Stop) to Elevator and
Robot classes. The deadline to send these Orders represents
the operations attributes. Robot class is associated to the
stereotypes Indicator and Cause. They represent
respectively the failure state “Faulty Assembly” and its
cause.

PS4 PS3

PS1

PS2

Assembly Robot X Assembly Robot Y

Detection Stators

Output
flow

Input
flow

Conveyor
Sense

Elevator Main
Functions

Fault
Detector

Pallet
Detector

Figure 3. Class diagram

4.2 Collaboration diagram
 Interactions between objects of classes are presented
in figure 4. Exchanged messages describe signals sent from
Sensors (S.PPi for sensor i) and Fault detector objects
(S.Fault) to controller. They also represent orders sent
from Controller to Robot and Elevator objects. Our
example presents a distributed system such that several
controllers (PLC) interact to control the system
functioning. To simplify, we represent in the collaboration
diagram one controller object.

Figure 4. Collaboration diagram

4.3 Statecharts diagram
 Robot and Controller objects behaviour are
respectively modelled as given in figure 5 and figure 6. In
Robot statechart, Orders are modelled as events. In the
example: “O.Ass (0,10) [PS1.Ds OR PS2.Ds]/
Assembly()[10s]”, guard expresses that the edge is enabled
if one of sensors PS2 or PS3 is in degraded state Ds. The
probability of sent an assembly order when one of sensors
are in degraded state is evaluate to 0,10. The execution of
the operation of assembly Ass () lasts 10s. The guard
“S.Active AND E.Active” represents the condition to leave
the state Emergency stop: sensors and elevator must be in

the state Active of their respective UML statecharts. When
probability is not represented, it means it is equal to 1.

Figure 5. Robot statechart

 Among the malfunctions of controller, sending of
undesired orders or lost orders are modelled in Controller
statechart as random events, e.g. “Fault (0.05)/ Order [5s]”.
The received sensor signals are presented as events and the
sending of orders as actions with their associated deadlines.
The edge “After 3s[SPP2=True]/ O.Go down().RT=5s”,
expresses that when PS2 detects a pallet (S.PP2=true),
order to go down from controller to elevator must be sent
after 3 seconds.

Figure 6. Controller statechart

5 Translating UML models to PTAs
 Timed automata are automata extended with clocks,
positive real valued variables which increase uniformly
with time, and whose nodes and edges are labelled with
clocks constraints, respectively called invariants and
guards. The invariant dictate when the automaton may
remain in a node, letting time pass, and guards when the
corresponding edge can be taken [1]. Probabilistic timed
automata are a variant of timed automata extended with
discrete probability distributions [6]. This type of automata
has been chosen for formalising extended UML statecharts
because it takes into account dense time, nondeterminism
and probabilistic choice as defined in the extended UML
statecharts. They are also amenable to model check
probabilistic temporal properties. In figure 7, we give
probabilistic timed automaton describing a sub-system of
the assembly chain example: the robot behaviour reacting
to controller orders. The probabilities used in the example
should in practice be obtained from statistical analysis of
observed behaviour.

Sensor
{qos Reliability = 0.01}

S.PP {qos Deadline =3s}

1..*

2
Robot

Ass() {qos Duration =10s}
Stop(){qos Duration =1s}

1

Go up() {qos Duration =5s}
Go down(){qos Duration =5s}

Elevator

{qos Reliability = 0.04}
{qos Maintainability = 0.01}

1

1
1

Controller

O.Go up {qos Deadline =5s}
O.Go down {qos Deadline =5s}
O.Ass {qos Deadline=5s}
O.Stop {qos Deadline =5s}

{qos Reliability = 0.05}

« Indicator »
Faulty assembly

Ex1:Faulty
assembly
Val: Boolean
Evaluate Ex1 ()

« Cause »
Faulty assembly

EX2: PS2.Ds OR
PS3.Ds = false
Val: Boolean
Evaluate Ex2 ()

11

1

1..*

O.Go down
O.Go up

O.Ass
O.Stop S.Fault

S.PP1 Elevator

 Robot

Fault
Detector

Controller

Sensor 2

Sensor 3

S.PP2

S.PP3

Sensor 1

Fault (0.05)/ Order [5s]
Degraded state

After 3s [SPP2=True]/
O.Go down () [5s]

SPP1/
O.Go up () [5s]

S.Fault/
O.Stop () [5s]

Idle

SPP3/
O. Ass () [5s]

End.Order

Emergency
Stop

[S.Active
AND
E.Active]

O.Stop (0,95)/
Stop () [1s]

Faulty
Assembly Assembly

 Idle

End.As

O.Ass (0,90)/
Ass () [10s]

O.Ass (0,10) [PS2.Ds OR
PS3.Ds] / Ass () [10s]

End.As

Figure7. Probabilistic timed automaton

 In the probabilistic timed automaton, the sub-system
consists to robot, controller and two clocks x and y. Atomic
propositions, related to probabilistic timed automata of
elevator and sensor, are included in nodes. “s:Ds, e:Active
and s:Active” express guards of UML statecharts in figure
5. In initial state, both clocks x and y set to 0. The
controller send assembly order to robot in 5 time units.
Then, the robot effect the assembly tasks with probability
0,90. After assembly takes 10 time units, the robot becomes
idle. When one sensor is in degraded state, then robot
perform a fault assembly with probability 0,10. When an
order stop is send by the controller, the robot stop. It
becomes idle when sensors and elevator are in active state.

6 Conclusion
 The paper presents the profile DAMRTS designed for
dependability analysis of real-time systems. The static
model is based on the metamodels of the OMG group
profile called “Schedulability, Performance and Time”.
Some concepts such as Indicator and Cause stereotypes are
defined in the metamodel in order to introduce new
dependability information excerpted from dependability
analysis based on faults trees. The dynamic models are
based on collaboration and extended UML statecharts such
proposed in our modelling process.

 The UML statecharts are extended by introduction of
probabilities and real-time aspects using clocks, an
example of assembly chain with real-time features is well
given. We proposed an extended semantics of UML
statecharts related to probabilistic timed automata. The
UML statecharts are then easily convertible to probabilistic
timed automata. The aim is to verify formally probabilistic
temporal properties related to the dependability of real-time
systems.

 In future works, the formal model will be integrated
in the probabilistic model checker PRISM [7]. The
probabilistic properties will be specified in PTCTL
(Probabilistic Timed Computation Tree Logic). This one is
suitable when the formal model is described with
probabilistic timed automata.

References
[1] R. Alur and D. L. Dill, “A theory of timed automata”,
Theoretical Computer Science, 126(2):183-235, 1994.

[2] C. Canevet and Al, “Performance modelling with
UML and stochastic process algebra”, In Proceedings of
the Eighteenth Annual UK Performance Engineering
Workshop, July 2002.

[3] D.N. Jansen, H. Hermanns and J-P Kaoten, “A
Probabilistic Extension of UML Statecharts: Specification
and Verification”, FTRTFT 02, Oldenburg, Germany,
2002, pages 355-374.

[4] P.King, R.Pooley, “Using UML to derive stochastic
Petri nets models”, In UKPEW'99. Proceedings of the 15th
UK Performance Engineering Workshop, the University of
Bristol, July 1999.

[5], H.Kopetz, Real-Time Systems: Design Principles for
Distributed Embedded Applications, Kluwer Academic
Publishers, 1999.

[6] M.kwiatkowska, “Model Checking for Probability
and Time : From Theory to Practice”, In LICS 03, IEEE
Computer Society Press, June 2003, pages 351-360.

[7] M.kwiatkowska, G.Norman and D.Parker,
“Prism:Probabilistic Model Checker”, In Proc.TOOLS
2002, volume 2324 of LNCS, 2002, pages 200-204.

[8] OMG. “Unified Modeling Language Specification”
v.1.5, OMG Document Formal / 03-03-01, March 2003.

[9] OMG. “White Paper on the Profile mechanism v.1.0”,
Analysis and Design Platform Task Force, OMG
Document ad/99-04-07, April 1999.

[10] B.Selic, A.Moore. “Response to the OMG RFP for
Schedulability, Performance and Time“: Revised
submission ", OMG document ad/2001-06-14.

[11] A. Villemeur, Sûreté de fonctionnement des systèmes
industriels, Ed Eyrolles, 1988.

5=x

∧≤10y

c : Active
r : Idle

10=y
c : Active
r : Faulty Ass
s: Ds

c : Active
r : Stop
e : Active
s : Active

c : Active
r : Assembly

5=x

0,95

0,10 0,90

1 1

10=y

{ }0:=x

1=y

{ }0:=x

{ }0:, =yx

5≤x

10≤y

1≤y

5≤x

{ }0:, =yx

0,05

{ }0:=x

0== yx

