
HAL Id: hal-00354029
https://hal.science/hal-00354029

Submitted on 9 Jun 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Probabilistic Model Checking for Dependability
Properties of Stochastic Systems

Nawal Addouche, Christian Antoine, Jacky Montmain

To cite this version:
Nawal Addouche, Christian Antoine, Jacky Montmain. Probabilistic Model Checking for Dependabil-
ity Properties of Stochastic Systems. European Safety and Reliability Conference (ESREL 05), 2005,
Tri City, Poland. �hal-00354029�

https://hal.science/hal-00354029
https://hal.archives-ouvertes.fr

Probabilistic Model Checking for Dependability Properties of Stochastic
Systems

N. Addouche, C. Antoine & J. Montmain
URC-CEA /LGI2P Research Center of Ales School of Mines, France

ABSTRACT: The paper proposes a dependability analysis method based on probabilistic model checking.
Using the profile DAMRTS (Dependability Analysis Models for Real-Time Systems), stochastic real-time
systems are modelled with stochastic and probabilistic information. In this profile, static model of the system
includes depen-dability information excerpted from fault trees. Behavioural UML models are given with
combined collaboration statecharts diagrams. A method of translating these models to continuous time
Markov chains (CTMCs) is proposed. The CTMCs are widely used in the context of performance and reli-
ability evaluation of various systems. A formal approach is proposed to verify temporal probabilistic proper-
ties related to dependability of stochastic systems. It consists to use a probabilistic model checker which sup-
ports the CTMC models and then to specify properties with the suitable temporal logic.

1 INTRODUCTION

Recently, the analysis of functional system require-
ments in combination with quantitative aspects of
system behaviour has come into focus. Several ap-
proaches have already been explored to introduce
quantitative information in the dynamic UML mod-
els. A stochastic extension of UML statechart dia-
grams is proposed in (Gnesi et al. 2000). It is based
on a set of stochastic clocks which can be used as
guards for transitions. The clock value is given by a
random variable with specified distribution function.
A probabilistic extension of UML statecharts is pre-
sented in (Jansen et al. 2002). The probabilistic
UML statecharts describe probabilistic choice and
nondeterministic system behaviour. Their formal
semantics is given in terms of Markov decision
process as defined in (Kwiatkowska 2003). To
evaluate system performance, other approaches are
also proposed. Dynamic UML models are formal-
ised with stochastic Petri nets in (King & Pooley
1999, Merseguer & Campos 2002) or with stochastic
process algebra in (Pooley 1999, Canevet et al.
2002). In order to take into account either real-time
constraints and probabilistic behaviour (undesired
signals, lost signals, etc.), a profile called DAMRTS
(Dependability Analysis Models for Real-Time Sys-
tems) is defined by (Addouche et al. 2004). A trans-
lation from UML statecharts used in this profile to
probabilistic timed automata is also proposed.

In this paper, another approach intended to quan-
titative dependability analysis is presented. The pro-

file DAMRTS is presented with UML statecharts
extended with stochastic information. Adding to
evaluate system performance using the several exist-
ing tools, the formalisation of combined collabora-
tion statechart diagrams using continuous time
Markov chains contains tree fault information. In-
troduction of this type of information allows verify-
ing formally properties related to system dependabil-
ity.

In our works, we focus on UML statechart dia-
grams, which allow describing dynamic aspects of
system behaviour. In section 2, a part of the profile
DAMRTS is presented with extended UML state-
charts. Dependability information excerpted from
faults trees analysis (failures with their causes) are
included in these statecharts. A collaboration dia-
gram and a set of extended UML statecharts describ-
ing the behaviour of an assembly chain are presented
in section 3. In this example, the activities duration
are considered as distributed exponentially. That
make possible to translate UML models into con-
tinuous time Markov chains as given in section 4. To
verify formally temporal probabilistic properties, we
finally propose to use the probabilistic model
checker Prism. In section 5, the formal model which
represents the chain example is given with CTMCs.
Dependability properties are specified with CSL and
some results are presented before the conclusion.

2 THE PROFILE DAMRTS

A profile is composed by a set of UML diagrams se-
lected in the UML metamodel. The extension
mechanisms (stereotypes, tagged values, constraints)
make it possible to add new elements specific to the
application domain (OMG. 1999). The UML profile
SPT specialises the UML reference metamodel in a
specific metamodel dedicated to domain of real-time
systems analysis. The DAMRTS profile is a specific
profile designed for dependability analysis of a real-
time system (see Fig.1). It is based on concepts de-
fined in the profile SPT with new stereotypes. Those
are added to the metamodel in order to introduce
particular dependability information. The malfunc-
tions considered as undesirable events and their pos-
sible causes are modelled with stereotypes.

Figure 1. Standard and specific profiles

2.1 Indicator and Cause stereotypes
The static aspect of the system is described by a
class diagram. It is based on general resources
model proposed in the profile SPT. Each component
is modelled with a resource class associated to indi-
cator and Cause stereotypes.

Indicator Class. Each resource class is associ-
ated to a Indicator class. One or several variables
(booleans or integers) are defined as attributes of In-
dicator class. These variables are related to dynamic
aspect of the resource class objects and represent
their degraded or failure states. When evaluation of
variable became true, it means that the object is in a
malfunction state.

Cause Class. Attributes of Cause class is defined
in terms of the corresponding Indicator class attrib-
utes. They represent one or several logical expres-
sions composed by an elementary logical conditions
linked by conjunctive and disjunctive connectors.
Variables used in the elementary conditions are
those defined in Indicator classes. Actions of Cause
stereotype consist to evaluate the logical expres-
sions. When one of them is true, it indicates that as-
sociated failure became true.

For more information about the static model pro-
posed in the profile DAMRTS, see (Addouche et
al.2004)

2.2 Extended UML statecharts
In UML, each class of the class diagram has an op-
tional statechart which describes the behaviour of its
instances (the objects). This statechart receives
events from other ones and reacts to them. The reac-
tions can include the sending of new events to other
objects and the execution of internal methods on the
object. Communications between systems compo-
nents are generally modelled as events. In proposed
UML statecharts, exchanged signals, orders and ran-
dom events (e.g. undesired and lost signals) are rep-
resented as events. Syntax of UML statecharts de-
fined in the standard UML of the (OMG 2003) is
extended with integrating rates on transitions. A de-
pendability information related to faults trees analy-
sis are also introduced as defined in (Addouche et al.
2004).

This section describes informal interpretation of
extended UML statecharts. The graphical represen-
tation is based on a set of nodes and a set of edges.
An edge is presented by the following syntax:

SPT Profile
Standard Profiles

End UserSpecific Profiles

UML

Real-Time

Real-Time
DAMRTS Profile

Edge: = Event [Guard] / Action.
Event: = Event name.
Guard: = Boolean Expression.
Action: = Operation name [Rate].

Event represents either received signals or orders
or random events. Guard is a boolean expression
that represents AND-composition and OR-
composition states of different objects. The compo-
sitions can be particular qualitative information
which represents the causes of undesirable events. In
this case, when guard is TRUE, a mode of failure
appears on the system. This type of information is
available in dependability analysis based on faults
trees. Action expresses operation execution or send-
ing messages to other objects. The considered time
on duration is stochastic and exponentially distrib-
uted.

3 EXAMPLE: ASSEMBLY CHAIN OF MICRO-
MOTORS

This example presents an automated chain for as-
sembly of electrical micro-motors. It is excerpted
from a European project named PABADIS (Plant
Automation Based on DIstributed Systems) and pre-
sented in (Lüder et al. 2004). This one deals with
flexible and reconfigurable system designed for pro-
duction of different types of micro-motors. Figure 1
presents the controlled system. Micro-motors consist
to stators and rotors. The firsts are transported to as-
sembly robots, on pallets via a conveyor system and
seconds are available into stocks near each robot. A
set of pallets containing stators moves along the con-
veyor belt. These are detected by pallet sensors PSi
at different levels of the conveyor system.

When assembly of micro-motors is completed,
the pallets then move into a fault detection station
where a camera detects the possible assembly faults.
Set of PLC (Programmable Logic Controller) and
PC composes the control system. Let us consider the
mode of failure "Assembly fault". Among the causes
of this mode of failure, there are undesired signals
sent by the sensors, undesired orders sent by the
controller and material failures of elevator.

To represent dynamic aspects of the system, ex-
tended UML statecharts and collaboration diagrams
are used. Combination of these two diagrams allows
representing all system interactions. Indeed, the col-
laboration model describes external interactions be-
tween objects whereas UML statecharts diagrams
represent how an instance of a class reacts to an
event occurrence.

3.1 Collaboration diagram

Interactions between objects of classes are presented
in figure 2. Exchanged messages describe signals
sent from Sensors (S.PPi for sensor i) and Fault de-
tector objects (S.Fault) to controller. They also rep-
resent orders sent from Controller to Robot and Ele-
vator objects. Our example presents a distributed
system such that several PLC interact to control the
system functioning. To simplify, one controller ob-
ject is presented in the collaboration diagram.

Figure 2. Collaboration diagram

3.2 Statechart diagrams
Robot and Controller objects behaviour are respec-
tively modelled as given in figure 3 and 4. In Robot
statechart, orders are modelled as events. In the ex-
ample: “O.Ass[PS1.Ds OR PS2.Ds]/ Assem-
bly()[0.03] ”, guard expresses that the edge is en-
abled if one of sensors PS2 or PS3 is in degraded
state Ds. The rate of executing assembly tasks repre-
sents constant of exponential distribution function
associated to the clock C=EXP (0.03).

The guard “S.Active AND E.Active” represents
the condition to leave the state Emergency stop: sen-
sors and elevator must be in the state Active of their
respective UML statecharts. Among the malfunc-

tions of controller, sending of undesired orders or
lost or
ders are modelled in Controller statechart as a fault
which arrives randomly.

F

s
a
s
c
s
u
o

F

4

4
S
A
in
la
m
a
−

−

O.Go down
O.Go up

O.Ass
O.Stop S.Faul

S.PP1 Elevator

 Robot

Fault
Detector

Controller

Sensor 2

Sensor 3

S.PP2

S.PP3

Sensor 1
stop
Emergency

[S.Activ
AND

E.Active]
O.Stop /
Stop () [0.3]

Faulty
Assembly Assembly

 Idle

End.Ass

O.Ass/
Ass ()[0.3]

O.Ass [PS2.Ds OR
PS3.Ds] / Ass ()

End.Ass

igure 3. Robot statechart

In the example “UO/ Send.O ()[0.001]”, an unde-

ired order (UO) can arrives randomly. After which
n order with a rate of 0.001 is sent to the corre-
ponding component of controlled system. The re-
eived sensor signals are presented as events and the
ending of orders as actions. The edge “SPP1/ O.Go
p()”, expresses that when PS1 detects a pallet, the
rder go up is sent from controller to elevator.

UO: SendO()[0.001]
Degraded state

SPP2 /O.Go down()[0.2]

SPP1/
O.Go up()[0.2] S.Fault /

O.Stop()[0.4]

Idle

SPP3/
O. Ass()[0.4]

End.O

igure 4. Controller statechart

 TRANSLATION OF UML MODELS WITH
CTMCS

.1 Principle of translation
ystem behaviour is composed by a set of scenario.
 scenario is composed by signal, order and execut-
g tasks. It is presented with a set of combined col-
boration and extended statecharts diagrams. For-
alisation of this behavioural UML models is given

s follow:
 Each scenario is modelled by a set of combined

collaboration extended statecharts diagrams.
Number of combined diagrams varies according
scenario,

 At any time the combined diagram must have
each of its objects in exactly one state. These

combinations of active states are called “mark-
ing” and represent in a continuous time Markov
chains the reachable states,

− It is assumed that the rates associated to sent
messages are exponentially distributed.
Let us consider the following scenario: when a

pallet arrives in the detection station and sensor PS2
send an undesired signal to controller. This make er-
roneous, position stator data sent to the controller.
Then a fault assembly will appear and will be de-
tected in fault detection station.

Translation of behavioural UML models to its
correspondent continuous time Markov chain is ex-
plained in figure 5 and 6 such that first one presents
a scenario of assembly chain example described
above with behavioural UML models and second
one shows a possible translation to CTMCs.

4.2 Application
The figure 5 describes a faulty assembly due to
sending of undesired signal by sensor 2. This sce-
nario is described by eight combined diagrams. In
each one from up to down and from right to left are
respectively presented, statecharts of sensor i, eleva-
tor i, controller and robot objects. To simplify figure
5, Default detector object is deliberately omitted,
one sensor statecharts and one elevator statecharts
are shown, index (i) used on signals and orders gives
which sensor or elevator is modelled in combined
diagrams. Transition from a marking to another re-
sults of exchanging signals or orders between ob-
jects. Active states of each marking are grey tented
in the figure.

Figure 5. Direct marking of combined collaboration statechart
diagrams

The scenario of faulty assembly begins in mark-

ing 1 and takes end in marking 8. From marking 1 to
marking 5 tasks of stators detection station (go up,
go down) are executed with undesired signal sent
from sensor 2 to controller. Malfunctioning of sen-
sors 2, leads erroneous detection of stator position
on pallet. Consequently, robot does not put rotors in
good pallet compartments. From marking 5 to mark-
ing 8, the faulty assembly and the emergency stop
are modelled.

If we assume an initial marking, such as all ob-
jects are in Idle state and elevator in Down state, it is
possible to derive all markings by following the ex-
changing messages between objects. The CTMC
reachable states are thus formed. The figure 6 shows
the continuous time Markov chain derived from
model of figure 5. The numbers on reachable states
are related to numbers on markings of figure 5.

O.Ass
0.4 PP3

0.4

O.Go up

O.Stop

US2

S.PP1

O.Go down

1

3

4

287

6 5

PP1

S.PP2

S.PP3

Rep

0.2

0.2 0.5

0.5
0.5

0.001

0.003

0.12

0.12

Figure 6. Continuous time Markov chain

A continuous time Markov chain is composed by

set of states and set of edges subject to an exponen-
tially distributed random delay. Each state of CTMC
represents a combination of active states of extended
UML statecharts. A CTMC edge is fired when an
action is executed by an extended UML statechart.
Rates associated to actions are directly translated as
rate of firing edges. In figure 6, the rates are related
either to orders sent by controller (O.Stop, O.Ass,
etc.) or to signals sent by sensors (SPP1, SPP2 and
SPP3). They are also related to stochastic events
such as random passage of pallets (PP1 and PP3),
operator intervention or repairing system (Rep).
Guards are used to model AND-composition and
OR-composition of degraded or normal states. Ab-
normal or normal functioning scenarios are obtained
according to whether these guards are true or false.
So, Guards are implicitly expressed in the CTMC.

1

S.PP1

2

O1.Go up

3

S.PP2

4

O1.Go dow n

5

S.PP3

6

O.Ass
7

O.S top

8

4.3 Comments
The global system behaviour is obtained from the set
of continuous time Markov chains related to differ-
ent scenario. Combination of these models gives
global continuous time Makov chains. This method
represents an intuitive proposition for formalisation.
It is not applied in this paper because it is not neces-

sary to construct it while Prism tool is used for prob-
abilistic model checking. This one is based on a
modular modelling of the system. It does not require
a global CTMC but rather a set of CTMCs, where
each represents one “module” of the system, as
given in section 5.1.

5 PROBABILISTIC MODEL CHECKING

To verify dependability properties, the model
checker Prism is adopted (Kwiatkowska et al. 2002).
This tool is designed for analysis of probabilistic
models and supports various models such as Markov
decision processes, discrete time Markov chains and
continuous time Markov chains. Prism is a tool de-
veloped at the University of Birmingham which
supports the model checking described before. The
tool takes as input a description of a system written
in Prism language. It constructs the model from this
description and computes the set of reachable states.
It accepts specification in either the logic PCTL or
CSL (Kwiatkowska 2003) depending on the model
type. It then determines which states of the system
satisfy each specification.

5.1 Model analysis
In order to model check a system with Prism tool, it
must be specified in the Prism language, based on
the Reactive Modules formalism of (Alur &
Henzinger 1996). This formal model is designed for
concurrent systems and represents synchronous and
asynchronous components in a uniform framework
that supports compositional and hierarchical design
and verification.

The fundamental components of Prism language
are modules and variables. A system is composed of
a number of modules which can interact with each
other. A module contains a number of local vari-
ables. The values of these variables at any given
time constitute state of the module. Global state of
the system is determined by local states of all mod-
ules.

The translation from UML statechart diagrams to
reactive modules is given as follow:
− The modules are defined for each UML object,
− The states of extended UML statecharts are mod-

elled by one or several local variables (integer or
boolean),

− The signals, orders and random events are given
by one local boolean variable that determine their
presence,

− The rates associated to actions (as given in our
extended statecharts) are modelled by a set of
constants proposed in reactive modules to assign
stochastic information to the transition,

− The guards of extended UML statecharts are ex-
pressed with constraints. These are predicates
over the local variables of other modules and are

proposed in Prism language in order to condition
the transition firing,

− The actions of UML models are also defined as
actions in reactive modules.
The behaviour model of assembly chain is pro-

posed such that each presented object in collabora-
tion diagram of section 3.1 is taken into account.
Part of the model is presented in figure 7.

Figure 7. Prism interface: Editing a model

5.2 Properties in Prism specification language
Some probabilistic properties related to our example
are presented. Their informal specifications are
given as follow:
Property 1: “In the long run, the probability the ro-
bot carries out a faulty assembly is less than 1%”.
Property 2: “In initial state, the probability that the
robot remains in emergency stop until the elevator
and the sensors are reactivated is at least 0,95”.
Property 3: “Elevator remains in down position less
than k units of time until the sensor1 detects a pallet
presence with a probability ≥ p ”.
These dependability requirements are formally
specified with the temporal logic CSL. The follow-
ing are their Prism specification language.

Property 1: S<0.1 [(r=2)]
Property 2: “init”⇒ P>0.95[(r=3) U (e=0) & (y1=0)
& (y2=0) & (y3=0)]
Property 3: P=? [(e=0)U≥ K SPP1= true]

5.3 Experimental results
The results of our experiments are shown in figure 8.
Dependability properties 1 and 2 are verified (true).
The verification of property 3 is presented with a
curve. The CSL requirement are evaluated for in-
creasing time points k and the boundary probabilities
p at which the requirement turns from being true to
being false are calculated. We plotted a graph gener-
ated by Prism where a pair (t, p) above a plot the re-
quirement is FALSE, while for pairs below it is TRUE.

Figure 8. Prism interface: Properties specification

6 CONCLUSION

The paper presents UML models to analyse the sys-
tem dependability. The aim is to verify formally de-
pen-dability properties of stochastic systems. Ex-
tended UML statecharts are proposed to introduce
stochastic information related to dependability of
real-time systems. Duration of activities is expressed
with rate. The time is exponentially distributed, that
make possible translation to continuous time
Markov chains. As example, an assembly chain is
described with extended statecharts. A translation
method from combined collaboration statechart dia-
grams to CTMCs is proposed. Using the Prism tool,
some dependability properties related to the example
are specified with the temporal logic CSL and veri-
fied by probabilistic model checking.

7 REFERENCES

Addouche, N. Antoine, C. & Montmain, J. 2004. UML Models
for Dependability Analysis of Real-Time Systems. In Proc
of SMC'04, The Hague, The Netherlands.

Alur, R. & D. Dill. 1994. A theory of timed automata. Theo-
retical Computer Science, 126(2), 183-235.

Alur, R. & Henzinger, T. 1996. Reactive Modules. In Proc of
LICS’96, pp. 207-218, IEEE Computer Society Press, New
Jersey.

Canevet, C. Gilmore, S. Hillston, J. & Stevens, P. 2002. Per-
formance modelling with UML and stochastic process al-
gebra. In Proc of UKPEW’02, pp. 16. The Univ of Glas-
cow, UK.

D’Argenio, P.R. Katoen, J-P. & Brinksma, E. 1999. Specifica-
tion and Analysis of Soft Real-Time Systems: Quantity and
Quality. In Proc. of RTSS’99, pp.104-114. IEEE Society
Press, Phoenix, Arizona, USA.

Gnesi, S. Latella, D. & Massink, M. 2000. A Stochastic Exten-
sion of a Behavioural Subset of UML Statechart Diagrams.
In Proc of HASE’00, Albuquerque, New Mexico.

Harel, D. 1987. Statcharts: A visual formalism for complex
systems. Science of Computer Programming. Elsevier, 8(3),
231-274.

Jansen, D.N. Hermanns, H. & Kaoten, J-P 2002. A Probabilis-
tic Extension of UML Statecharts: Specification and Verifi-
cation. In Proc of FTRTFT’02, pp. 355-374. Oldenburg,
Germany.

Jansen, D.N. Hermanns, H. & Kaoten, J-P. 2003. QoS-oriented
Extension of UML Statecharts. In UML 2003, (Perdita Ste-
vens et al.), pp. 76-91., LNCS, 2863, San Fransisco, USA.

King, P. & Pooley, R. 1999. Using UML to derive stochastic
Petri nets models. In Proc of UKPEW’99, pp. 45-56, The
Univ of Bristol.

Kwiatkowska, M. Norman, G. & Parker, D. 2002, Prism:
Probabilistic Model Checker, In Proc of TOOLS’02, (T.
Field et al), pp. 200-204, London, UK.

Kwiatkowska, M. 2003. Model Checking for Probability and
Time : From Theory to Practice. In Proc of LICS’03, pp.
351-360, IEEE Computer Society Press, Ottawa, Canada.

Latella, D. Majzik, I. & Massink, M. 1999, Towards a formal
operational semantics of UML statechart diagrams. In Proc
of FMOODS’99, pp. 331-347, Florence, Italy.

Lüder, A. Peschke, J. Sauter, T. Deter, S. & Diep, D. 2004,
Distributed intelligence for plant automation on multi-
agent systems: the PABADIS approach, Production Plan-
ning and Control, 15(2), pp. 201-212.

Merseguer, J & Campos, J. 2002. A Compositional Semantics
for UML State Machines Aimed at Performance Evalua-
tion. In Proc of WODES’02, pp. 295-302, IEEE Computer
Society Press, Zaragoza, Spain.

OMG 1999. White Paper on the Profile mechanism v.1.0,
Analysis and Design Platform Task Force, OMG Document
ad/99-04-07.

OMG 2003, Unified Modeling Language Specification. v.1.5,
OMG Document Formal / 03-03-01.

Pooley, R. 1999. Using UML to Derive Stochastic Process Al-
gebra Models. In Proc of UKPEW’99, (J.T. Bradley and
N.J. Davies), pp. 23-33. The Univ of Bristol.

	INTRODUCTION
	THE PROFILE DAMRTS
	Indicator and Cause stereotypes
	Extended UML statecharts

	EXAMPLE: ASSEMBLY CHAIN OF MICRO-MOTORS
	Collaboration diagram
	Statechart diagrams

	TRANSLATION OF UML MODELS WITH CTMCS
	Principle of translation
	Application
	Comments

	PROBABILISTIC MODEL CHECKING
	Model analysis
	Properties in Prism specification language
	Experimental results

	CONCLUSION
	REFERENCES

