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ABSTRACT: The paper proposes a dependability analysis method based on probabilistic model checking. 
Using the profile DAMRTS (Dependability Analysis Models for Real-Time Systems), stochastic real-time 
systems are modelled with stochastic and probabilistic information. In this profile, static model of the system 
includes depen-dability information excerpted from fault trees. Behavioural UML models are given with 
combined collaboration statecharts diagrams. A method of translating these models to continuous time 
Markov chains (CTMCs) is proposed. The CTMCs are widely used in the context of performance and reli-
ability evaluation of various systems. A formal approach is proposed to verify temporal probabilistic proper-
ties related to dependability of stochastic systems. It consists to use a probabilistic model checker which sup-
ports the CTMC models and then to specify properties with the suitable temporal logic. 

1 INTRODUCTION 

Recently, the analysis of functional system require-
ments in combination with quantitative aspects of 
system behaviour has come into focus. Several ap-
proaches have already been explored to introduce 
quantitative information in the dynamic UML mod-
els. A stochastic extension of UML statechart dia-
grams is proposed in (Gnesi et al. 2000). It is based 
on a set of stochastic clocks which can be used as 
guards for transitions. The clock value is given by a 
random variable with specified distribution function. 
A probabilistic extension of UML statecharts is pre-
sented in (Jansen et al. 2002). The probabilistic 
UML statecharts describe probabilistic choice and 
nondeterministic system behaviour. Their formal 
semantics is given in terms of Markov decision 
process as defined in (Kwiatkowska 2003). To 
evaluate system performance, other approaches are 
also proposed. Dynamic UML models are formal-
ised with stochastic Petri nets in (King & Pooley 
1999, Merseguer & Campos 2002) or with stochastic 
process algebra in (Pooley 1999, Canevet et al. 
2002). In order to take into account either real-time 
constraints and probabilistic behaviour (undesired 
signals, lost signals, etc.), a profile called DAMRTS 
(Dependability Analysis Models for Real-Time Sys-
tems) is defined by (Addouche et al. 2004). A trans-
lation from UML statecharts used in this profile to 
probabilistic timed automata is also proposed. 

In this paper, another approach intended to quan-
titative dependability analysis is presented. The pro-

file DAMRTS is presented with UML statecharts 
extended with stochastic information. Adding to 
evaluate system performance using the several exist-
ing tools, the formalisation of combined collabora-
tion statechart diagrams using continuous time 
Markov chains contains tree fault information. In-
troduction of this type of information allows verify-
ing formally properties related to system dependabil-
ity.   

In our works, we focus on UML statechart dia-
grams, which allow describing dynamic aspects of 
system behaviour. In section 2, a part of the profile 
DAMRTS is presented with extended UML state-
charts. Dependability information excerpted from 
faults trees analysis (failures with their causes) are 
included in these statecharts. A collaboration dia-
gram and a set of extended UML statecharts describ-
ing the behaviour of an assembly chain are presented 
in section 3. In this example, the activities duration 
are considered as distributed exponentially. That 
make possible to translate UML models into con-
tinuous time Markov chains as given in section 4. To 
verify formally temporal probabilistic properties, we 
finally propose to use the probabilistic model 
checker Prism. In section 5, the formal model which 
represents the chain example is given with CTMCs. 
Dependability properties are specified with CSL and 
some results are presented before the conclusion.  



2 THE PROFILE DAMRTS 

A profile is composed by a set of UML diagrams se-
lected in the UML metamodel. The extension 
mechanisms (stereotypes, tagged values, constraints) 
make it possible to add new elements specific to the 
application domain (OMG. 1999). The UML profile 
SPT specialises the UML reference metamodel in a 
specific metamodel dedicated to domain of real-time 
systems analysis. The DAMRTS profile is a specific 
profile designed for dependability analysis of a real-
time system (see Fig.1). It is based on concepts de-
fined in the profile SPT with new stereotypes. Those 
are added to the metamodel in order to introduce 
particular dependability information. The malfunc-
tions considered as undesirable events and their pos-
sible causes are modelled with stereotypes. 
 

 
Figure 1. Standard and specific profiles 

2.1 Indicator and Cause stereotypes 
The static aspect of the system is described by a 
class diagram. It is based on general resources 
model proposed in the profile SPT. Each component 
is modelled with a resource class associated to indi-
cator and Cause stereotypes. 

Indicator Class. Each resource class is associ-
ated to a Indicator class. One or several variables 
(booleans or integers) are defined as attributes of In-
dicator class. These variables are related to dynamic 
aspect of the resource class objects and represent 
their degraded or failure states. When evaluation of 
variable became true, it means that the object is in a 
malfunction state. 

Cause Class. Attributes of Cause class is defined 
in terms of the corresponding Indicator class attrib-
utes. They represent one or several logical expres-
sions composed by an elementary logical conditions 
linked by conjunctive and disjunctive connectors. 
Variables used in the elementary conditions are 
those defined in Indicator classes. Actions of Cause 
stereotype consist to evaluate the logical expres-
sions. When one of them is true, it indicates that as-
sociated failure became true.  

For more information about the static model pro-
posed in the profile DAMRTS, see (Addouche et 
al.2004) 

2.2 Extended UML statecharts 
In UML, each class of the class diagram has an op-
tional statechart which describes the behaviour of its 
instances (the objects). This statechart receives 
events from other ones and reacts to them. The reac-
tions can include the sending of new events to other 
objects and the execution of internal methods on the 
object. Communications between systems compo-
nents are generally modelled as events. In proposed 
UML statecharts, exchanged signals, orders and ran-
dom events (e.g. undesired and lost signals) are rep-
resented as events. Syntax of UML statecharts de-
fined in the standard UML of the (OMG 2003) is 
extended with integrating rates on transitions. A de-
pendability information related to faults trees analy-
sis are also introduced as defined in (Addouche et al. 
2004).  

This section describes informal interpretation of 
extended UML statecharts. The graphical represen-
tation is based on a set of nodes and a set of edges. 
An edge is presented by the following syntax:  

SPT Profile
Standard Profiles

End UserSpecific Profiles

UML

Real-Time

Real-Time
DAMRTS Profile

Edge: = Event [Guard] / Action. 
Event: = Event name. 
Guard: = Boolean Expression. 
Action: = Operation name [Rate]. 

Event represents either received signals or orders 
or random events. Guard is a boolean expression 
that represents AND-composition and OR-
composition states of different objects. The compo-
sitions can be particular qualitative information 
which represents the causes of undesirable events. In 
this case, when guard is TRUE, a mode of failure 
appears on the system. This type of information is 
available in dependability analysis based on faults 
trees. Action expresses operation execution or send-
ing messages to other objects. The considered time 
on duration is stochastic and exponentially distrib-
uted.  

3 EXAMPLE: ASSEMBLY CHAIN OF MICRO-
MOTORS 

This example presents an automated chain for as-
sembly of electrical micro-motors. It is excerpted 
from a European project named PABADIS (Plant 
Automation Based on DIstributed Systems) and pre-
sented in (Lüder et al. 2004). This one deals with 
flexible and reconfigurable system designed for pro-
duction of different types of micro-motors. Figure 1 
presents the controlled system. Micro-motors consist 
to stators and rotors. The firsts are transported to as-
sembly robots, on pallets via a conveyor system and 
seconds are available into stocks near each robot. A 
set of pallets containing stators moves along the con-
veyor belt. These are detected by pallet sensors PSi 
at different levels of the conveyor system. 



When assembly of micro-motors is completed, 
the pallets then move into a fault detection station 
where a camera detects the possible assembly faults. 
Set of PLC (Programmable Logic Controller) and 
PC composes the control system. Let us consider the 
mode of failure "Assembly fault". Among the causes 
of this mode of failure, there are undesired signals 
sent by the sensors, undesired orders sent by the 
controller and material failures of elevator. 

To represent dynamic aspects of the system, ex-
tended UML statecharts and collaboration diagrams 
are used. Combination of these two diagrams allows 
representing all system interactions. Indeed, the col-
laboration model describes external interactions be-
tween objects whereas UML statecharts diagrams 
represent how an instance of a class reacts to an 
event occurrence.  

3.1 Collaboration diagram 

Interactions between objects of classes are presented 
in figure 2. Exchanged messages describe signals 
sent from Sensors (S.PPi for sensor i) and Fault de-
tector objects (S.Fault) to controller. They also rep-
resent orders sent from Controller to Robot and Ele-
vator objects. Our example presents a distributed 
system such that several PLC interact to control the 
system functioning. To simplify, one controller ob-
ject is presented in the collaboration diagram. 

 
 
 
 

 
 
 
 
 
 
 
 

 
Figure 2. Collaboration diagram 

3.2 Statechart diagrams 
Robot and Controller objects behaviour are respec-
tively modelled as given in figure 3 and 4. In Robot 
statechart, orders are modelled as events. In the ex-
ample: “O.Ass[PS1.Ds OR PS2.Ds]/ Assem-
bly()[0.03] ”, guard expresses that the edge is en-
abled if one of sensors PS2 or PS3 is in degraded 
state Ds. The rate of executing assembly tasks repre-
sents constant of exponential distribution function 
associated to the clock C=EXP (0.03).  

The guard “S.Active AND E.Active” represents 
the condition to leave the state Emergency stop: sen-
sors and elevator must be in the state Active of their 
respective UML statecharts. Among the malfunc-

tions of controller, sending of undesired orders or 
lost or 
ders are modelled in Controller statechart as a fault 
which arrives randomly. 
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igure 3. Robot statechart 
 
In the example “UO/ Send.O ()[0.001]”, an unde-

ired order (UO) can arrives randomly. After which 
n order with a rate of 0.001 is sent to the corre-
ponding component of controlled system. The re-
eived sensor signals are presented as events and the 
ending of orders as actions. The edge “SPP1/ O.Go 
p()”, expresses that when PS1 detects a pallet, the 
rder go up is sent from controller to elevator. 

 

UO: SendO()[0.001] 
Degraded state

SPP2 /O.Go  down()[0.2] 

SPP1/
O.Go up()[0.2] S.Fault / 

O.Stop()[0.4] 

Idle

SPP3/
O. Ass()[0.4]

End.O 

igure 4. Controller statechart 

 TRANSLATION OF UML MODELS WITH 
CTMCS 

.1 Principle of translation 
ystem behaviour is composed by a set of scenario. 
 scenario is composed by signal, order and execut-
g tasks. It is presented with a set of combined col-
boration and extended statecharts diagrams. For-
alisation of this behavioural UML models is given 

s follow: 
 Each scenario is modelled by a set of combined 

collaboration extended statecharts diagrams. 
Number of combined diagrams varies according 
scenario, 

 At any time the combined diagram must have 
each of its objects in exactly one state. These 



combinations of active states are called “mark-
ing” and represent in a continuous time Markov 
chains the reachable states, 

− It is assumed that the rates associated to sent 
messages are exponentially distributed.  
Let us consider the following scenario: when a 

pallet arrives in the detection station and sensor PS2 
send an undesired signal to controller. This make er-
roneous, position stator data sent to the controller. 
Then a fault assembly will appear and will be de-
tected in fault detection station. 

Translation of behavioural UML models to its 
correspondent continuous time Markov chain is ex-
plained in figure 5 and 6 such that first one presents 
a scenario of assembly chain example described 
above with behavioural UML models and second 
one shows a possible translation to CTMCs.  

4.2 Application 
The figure 5 describes a faulty assembly due to 
sending of undesired signal by sensor 2. This sce-
nario is described by eight combined diagrams. In 
each one from up to down and from right to left are 
respectively presented, statecharts of sensor i, eleva-
tor i, controller and robot objects. To simplify figure 
5, Default detector object is deliberately omitted, 
one sensor statecharts and one elevator statecharts 
are shown, index (i) used on signals and orders gives 
which sensor or elevator is modelled in combined 
diagrams. Transition from a marking to another re-
sults of exchanging signals or orders between ob-
jects. Active states of each marking are grey tented 
in the figure. 

 
 

 

Figure 5. Direct marking of combined collaboration statechart 
diagrams 

 
The scenario of faulty assembly begins in mark-

ing 1 and takes end in marking 8. From marking 1 to 
marking 5 tasks of stators detection station (go up, 
go down) are executed with undesired signal sent 
from sensor 2 to controller. Malfunctioning of sen-
sors 2, leads erroneous detection of stator position 
on pallet. Consequently, robot does not put rotors in 
good pallet compartments. From marking 5 to mark-
ing 8, the faulty assembly and the emergency stop 
are modelled. 

If we assume an initial marking, such as all ob-
jects are in Idle state and elevator in Down state, it is 
possible to derive all markings by following the ex-
changing messages between objects. The CTMC 
reachable states are thus formed. The figure 6 shows 
the continuous time Markov chain derived from 
model of figure 5. The numbers on reachable states 
are related to numbers on markings of figure 5. 

 

O.Ass
0.4 PP3

0.4

O.Go up 

O.Stop

US2 

S.PP1 

O.Go down 

1 

3 

4 

287

6 5

PP1 

S.PP2 

S.PP3

Rep 

0.2 

0.2 0.5 

0.5 
0.5

0.001 

0.003 

0.12

0.12  
 
 
 
 
 
 
 
 
 
 
Figure 6. Continuous time Markov chain 

 
A continuous time Markov chain is composed by 

set of states and set of edges subject to an exponen-
tially distributed random delay. Each state of CTMC 
represents a combination of active states of extended 
UML statecharts. A CTMC edge is fired when an 
action is executed by an extended UML statechart. 
Rates associated to actions are directly translated as 
rate of firing edges. In figure 6, the rates are related 
either to orders sent by controller (O.Stop, O.Ass, 
etc.) or to signals sent by sensors (SPP1, SPP2 and 
SPP3). They are also related to stochastic events 
such as random passage of pallets (PP1 and PP3), 
operator intervention or repairing system (Rep). 
Guards are used to model AND-composition and 
OR-composition of degraded or normal states. Ab-
normal or normal functioning scenarios are obtained 
according to whether these guards are true or false. 
So, Guards are implicitly expressed in the CTMC. 
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4.3 Comments 
The global system behaviour is obtained from the set 
of continuous time Markov chains related to differ-
ent scenario. Combination of these models gives 
global continuous time Makov chains. This method 
represents an intuitive proposition for formalisation. 
It is not applied in this paper because it is not neces-



sary to construct it while Prism tool is used for prob-
abilistic model checking. This one is based on a 
modular modelling of the system. It does not require 
a global CTMC but rather a set of CTMCs, where 
each represents one “module” of the system, as 
given in section 5.1.  

5 PROBABILISTIC MODEL CHECKING 

To verify dependability properties, the model 
checker Prism is adopted (Kwiatkowska et al. 2002). 
This tool is designed for analysis of probabilistic 
models and supports various models such as Markov 
decision processes, discrete time Markov chains and 
continuous time Markov chains. Prism is a tool de-
veloped at the University of Birmingham which 
supports the model checking described before. The 
tool takes as input a description of a system written 
in Prism language. It constructs the model from this 
description and computes the set of reachable states. 
It accepts specification in either the logic PCTL or 
CSL (Kwiatkowska 2003) depending on the model 
type. It then determines which states of the system 
satisfy each specification. 

5.1 Model analysis 
In order to model check a system with Prism tool, it 
must be specified in the Prism language, based on 
the Reactive Modules formalism of (Alur & 
Henzinger 1996). This formal model is designed for 
concurrent systems and represents synchronous and 
asynchronous components in a uniform framework 
that supports compositional and hierarchical design 
and verification.  

The fundamental components of Prism language 
are modules and variables. A system is composed of 
a number of modules which can interact with each 
other. A module contains a number of local vari-
ables. The values of these variables at any given 
time constitute state of the module. Global state of 
the system is determined by local states of all mod-
ules. 

The translation from UML statechart diagrams to 
reactive modules is given as follow: 
− The modules are defined for each UML object, 
− The states of extended UML statecharts are mod-

elled by one or several local variables (integer or 
boolean), 

− The signals, orders and random events are given 
by one local boolean variable that determine their 
presence, 

− The rates associated to actions (as given in our 
extended statecharts) are modelled by a set of 
constants proposed in reactive modules to assign 
stochastic information to the transition, 

− The guards of extended UML statecharts are ex-
pressed with constraints. These are predicates 
over the local variables of other modules and are 

proposed in Prism language in order to condition 
the transition firing, 

− The actions of UML models are also defined as 
actions in reactive modules. 
The behaviour model of assembly chain is pro-

posed such that each presented object in collabora-
tion diagram of section 3.1 is taken into account. 
Part of the model is presented in figure 7. 
 

 
 
Figure 7. Prism interface: Editing a model  
 

5.2 Properties in Prism specification language 
Some probabilistic properties related to our example 
are presented. Their informal specifications are 
given as follow: 
Property 1: “In the long run, the probability the ro-
bot carries out a faulty assembly is less than 1%”. 
Property 2: “In initial state, the probability that the 
robot remains in emergency stop until the elevator 
and the sensors are reactivated is at least 0,95”. 
Property 3: “Elevator remains in down position less 
than k units of time until the sensor1 detects a pallet 
presence with a probability ≥ p ”.  
These dependability requirements are formally 
specified with the temporal logic CSL. The follow-
ing are their Prism specification language.  
 
Property 1: S<0.1 [(r=2)] 
Property 2: “init”⇒ P>0.95[(r=3) U (e=0) &  (y1=0) 
& (y2=0) & (y3=0)] 
Property 3: P=? [(e=0)U≥ K SPP1= true] 

5.3 Experimental results 
The results of our experiments are shown in figure 8. 
Dependability properties 1 and 2 are verified (true). 
The verification of property 3 is presented with a 
curve. The CSL requirement are evaluated for in-
creasing time points k and the boundary probabilities 
p at which the requirement turns from being true to 
being false are calculated. We plotted a graph gener-
ated by Prism where a pair (t, p) above a plot the re-
quirement is FALSE, while for pairs below it is TRUE. 
 



 

 
 
Figure 8. Prism interface: Properties specification 

6 CONCLUSION 

The paper presents UML models to analyse the sys-
tem dependability. The aim is to verify formally de-
pen-dability properties of stochastic systems. Ex-
tended UML statecharts are proposed to introduce 
stochastic information related to dependability of 
real-time systems. Duration of activities is expressed 
with rate. The time is exponentially distributed, that 
make possible translation to continuous time 
Markov chains. As example, an assembly chain is 
described with extended statecharts. A translation 
method from combined collaboration statechart dia-
grams to CTMCs is proposed. Using the Prism tool, 
some dependability properties related to the example 
are specified with the temporal logic CSL and veri-
fied by probabilistic model checking. 
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