
HAL Id: hal-00354025
https://hal.science/hal-00354025

Submitted on 9 Jun 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Combining Extended UML Models and Formal Methods
to Analyze Real-Time Systems

Nawal Addouche, Christian Antoine, Jacky Montmain

To cite this version:
Nawal Addouche, Christian Antoine, Jacky Montmain. Combining Extended UML Models and Formal
Methods to Analyze Real-Time Systems. Safecomp 2005, Computer safety, Reliability and Security,
2005, Fredrikstad, Norway. �hal-00354025�

https://hal.science/hal-00354025
https://hal.archives-ouvertes.fr

Combining Extended UML Models and Formal
Methods to Analyze Real-Time Systems

Nawal Addouche1, Christian Antoine2 and Jacky Montmain2

1 Ecole des mines d’Alès, Parc Scientifique Georges Besse,
30035 Nîmes, France

nawal.addouche@ema.fr
2 URC CEA-EMA, Parc Scientifique Georges Besse,

30035 Nîmes, France
{christian.antoine, jacky.montmain}@ema.fr

Abstract. In the paper, we present a methodology developed in order to verify
probabilistic temporal properties related to dependability of real-time systems.
The methodology is made of three essential steps. The first one is a UML pro-
file called DAMRTS (Dependability Analysis Models for Real-Time Systems)
designed using GME tool. The aim is to model a real-time system with quali-
tative and quantitative information related to its quality of service. In this pro-
file, UML statecharts are used to represent the system behavior. An extension
is introduced with probabilities, real-time requirements and nondeterministic
choices. The second one proposes a translation from the extended UML state-
charts to probabilistic timed automata (PTAs). In this step, global clocks are
used to represent synchronization of concurrent UML statecharts in probabilis-
tic timed automata. The last one concerns a probabilistic model checking with
PRISM tool. This requires specification of dependability properties with a
suitable temporal logic.

1 Introduction

Several approaches have already been explored to introduce quantitative informa-
tion in the dynamic UML models. A stochastic extension of UML statechart dia-
grams is proposed in [7]. It is based on a set of stochastic clocks which can be used
as guards for transitions. The clock value is given by a random variable with speci-
fied distribution function. Other approaches are also proposed to formalize UML
models which are extended with quantitative information. Dynamic UML models are
formalised with stochastic Petri nets in [15], with stochastic process algebra in [5] or
with continuous time Markov Chains such as we proposed it in [2]. This one is ade-
quate for the performance evaluation and the verification of some dependability
properties. However, the formal model contains only rates. Then, it is not suitable for
modeling real-time systems. Different models exist to describe real-time systems
such as timed automata [3] which have a clear semantics and for which a tool sup-
port for automatic verification (Uppaal, Kronos) is available.

The Unified Modeling Language (UML) [13] which becomes an official standard
of the Object Management Group (OMG) is widely adopted in industry. This semi-
formal language, easy-understood and well-established design notation in the soft-
ware engineering community, is extended to support the aspect-oriented design for a
system. UML support many application domains and provides a common notation
independent of the kind of systems that are developed.

To combine the advantages of intuitive modeling by UML with formal verifica-
tion, we chose the approach which consists to transform UML models into the input
language of an existing model checker. Input of a model checker is a formal descrip-
tion of a system. For formal analysis, it is necessary to define what kind of semantic
requirements are implied by the domain and what kind of semantics that easily al-
lows translation into the formal model to be analyzed by the model checker. Our
contribution includes:

− Definition of the profile DAMRTS [1] for modeling and analyzing real-time sys-
tems: a class diagram is proposed to represent static model with quality of service
of system components; the conventional UML statecharts are extended with prob-
abilities and real-time requirements,

− Specification of the nondeterminism in extended statecharts and synchronization
of concurrent statecharts,

− Métamodeling with the Generic modeling Environment (GME) to construct the
proposed profile,

− Translation of extended UML statecharts to probabilistic timed automata: global
clocks are defined to represent synchronization of UML statecharts.

In section 2, the methodology of real-time systems analysis is described. The dy-

namic view of UML models is presented in sections 3 and 4. The nondeterminism
and synchronization of extended UML statecharts is given in section 5. We present
in section 6, real-time constraints of an assembly chain as well as their behavioral
UML models as defined in the profile DAMRTS. The behavioral UML models are
nondeterministic, with probabilistic transitions and real-time aspects. That make
possible to translate them into probabilistic timed automata as given in section 7.
The UML profile is designed using GME tool as presented in section 8. The transla-
tion process of resulting models is described in section 9. We conclude with section
10.

2 General Methodology

In order to have UML accepted by the real-time development community, the OMG
group has proposed a profile called “Schedulability, Performance and Time” [18] for
real-time systems. In this profile, some supports are introduced in UML to capture a
maximum of real-time requirements and to perform the real-time development tasks

directly on UML models. Beside the usual analysis and design stages, scheduling
analysis, performance evaluation and formal verification of critical properties are
included. However, the two last activities are partially covered because “quality of
service” requirements are introduced without a clear indication about the formal
verification of this type of properties. Adapted tools to formal verification or per-
formance evaluation on these UML models are not yet available.

For the reasons indicated above, a new profile called DAMRTS is proposed to
analyze and verify dependability properties of real-time systems [1]. It represents an
extension to the reference metamodels of the OMG profile “Schedulability, Perform-
ance and Time” [18]. The first aim is to be compliant with the standard OMG pro-
file. The second one is to provide concepts that enable to specify a real-time system
with its real-time constraints and probabilistic information. A behavioral UML mod-
els are proposed with a formal semantics served to probabilistic model checking [10].
It is developed with probabilities and real-time aspects, resulting in probabilistic
timed automata as semantics models. These models are used to verify probabilistic
temporal properties related to the dependability of real-time systems.

GME Tool

Metamodel

Profile DAMRTS

Models DAMRTS

XML

PRISM Tool

Probabilistic
Model checking

Probabilistic

timed automata

Temporal
probabilistic
properties

Automatic
translation

Fig. 1. Global methodology

As depicted in fig.1, the proposed approach is presented with the essential steps
that allow associating a formal method to an oriented-object concept. The tools GME
and PRISM are used for formal verification of real-time system properties. The GME
tool is used to construct metamodels specifying the modeling paradigm (modeling
language) of our application domain. The modeling paradigm contains all syntactic,
semantic and presentation information regarding the domain of real-time systems
dependability. This is developed in section 8.

Once the profile DAMRTS is built, we model the real-time system. The output of
GME tool is a file having an extended XML format. The DAMRTS models are then
exported in XML format for which an automatic translation is applied to transform
UML behavioral models into probabilistic timed automata as it is detailed in section
9.

To verify dependability properties, the model checker Prism is adopted [10]. This
tool is designed for analysis of probabilistic models and supports various models
such as Markov decision processes, discrete time Markov chains and continuous time
Markov chains. The tool takes as input a description of a system written in Prism
language. It constructs the model from this description and computes the set of
reachable states. It accepts specification in either the logic PCTL or CSL [11] de-
pending on the model type. It then determines which states of the system satisfy each
specification.

3 Collaboration diagram

To represent dynamic aspects of the system, extended UML statecharts and collabo-
ration diagrams are used. Combination of these two diagrams allows representing all
system interactions. Indeed, the collaboration model describes external interactions
between objects whereas UML statecharts diagrams represent how an instance of a
class reacts to an event occurrence.

A collaboration diagram consists of objects and associations that describe how the
objects communicate. It represents the structural organisation of objects which ex-
changes messages. In the DAMRTS profile, the signals and the orders are the two
types of messages taken into account. The first ones are sent from objects of Sensor
classes to objects of Controller class. The second ones are sent from instances of
Controller class to instances of Effector classes (see fig 3). The proposed statecharts
allow expressing events with probabilities and actions with real-time constraints.

4 Extended UML Statecharts

In UML, each class has an optional statechart which describes the behavior of its
instances (the objects). This statechart receives events from other statecharts and
reacts to them. The reactions include sending of the new events to other objects and
executing of internal methods on the object. The communications between compo-
nents of the system are modeled as events. Exchanged signals and orders as well as
random events (e.g. undesired and lost signals) are represented as events associated
to a discrete probability distribution.

The syntax of UML statecharts, defined in the standard UML [16] is extended as
presented below. The operational semantics of UML statechart is inspired from [9]
and extended with real-time and probabilistic aspects as presented in [1]. The infor-
mal interpretation of extended UML statecharts is based on a set of nodes and a set
of edges. An edge is presented by the following syntax:

Edge: = Event [Guard] / Action
Event: = Event name (Probability)
Guard: = Boolean Expression
Action: = Operation name (Arguments) [Duration, deadline]

Event represents received signals, sent orders or random events with their associ-
ated probability. Guard is a boolean expression which represents either AND-
composition or OR-composition states related to degraded or failure states of other
objects. The compositions are excerpted from a faults tree analysis of the system [1].
Action expresses operation execution or sending messages to other objects. They are
not instantaneous but have duration or deadline. Transitions between states are prob-
abilistic. When two transitions are enabled, the choice is nondeterministic.

5 Nondeterminism and Synchronization in UML Statecharts

Nondeterminism. Nondeterministic choices can be specified in transition systems by
having several transitions leaving from the same state. It is used when we wish to
incorporate several potential system behaviors in a model. Nondeterminism is used
for several purposes. As it is specified in [6] and [17], it is used to represent phe-
nomena such as:
Unknown scheduling in concurrent systems. When a system consists of several com-
ponents running in parallel, we often do not make any assumptions on the relative
speeds of the components, because we want the application to work no matter what
these relative speeds are. Therefore nondeterminism is essential to define the parallel
composition operator, where we model the choice of which system take the next step
as a nondeterministic choice.
External environment. A system interacts with its environment via its external ac-
tions. When modeling a system, we can not predicate how the environment will
behave (failures, abnormal functioning). Therefore the possible interactions with the
environment are modeled by nondeterministic choices.
Uncertainty in probabilities and the expected times. Sometimes it is not possible to
obtain exact information about the system to be modeled. When the exact duration of
an action or the exact probability of an event is not known exactly but only with a
lower and upper bound. In this case, all possible values are incorporated by nonde-
terministic choices.

Synchronisation. The extended UML statecharts are allowed to communicate with
each other in well-defined manners. The communication and synchronization
method are presented as follow:

− One UML statechart may create an event as a result of a transition that is con-
sumed by another UML statechart.

− A guard may be used to test if another UML statechart is in a certain state before
allowing a transition to occur to the guarded state.

6 Example of an Assembly Chain

This example presents an automated chain assembly of electrical micro-motors. It is
excerpted from a European project named PABADIS (Plant Automation BAsed on
DIstributed Systems) [14]. This one deals with a flexible and a reconfigurable system
designed for production of different types of micro-motors. Fig 2 represents the con-
trolled system.

Fig.2. Assembly chain of micro-motors

Micro-motors consist to stators and rotors. The first are transported to assembly
robots, on pallets via a conveyor system and seconds are available into stocks near
each robot. A set of pallets containing stators moves along the conveyor belt. These
are detected by pallet sensors PSi at different levels of the conveyor system. When
assembly of micro-motors is completed, the pallets then move into a fault detection
station where a camera detects the possible assembly faults. Set of PLC (Programma-
ble Logic Controller) and PC composes the control system.

The assembly robots work in parallel. Let us consider a stators pallet arrives at the
level of assembly robots and detected by PS3. If the two robots are both idle, the
pallet is arbitrary send to one of the waiting areas w1 or w2 showed in fig 2. If the
robots are both busy, the controller send information request to robots. These send
the information about the assembly state. The pallet is then leaded to the robot which
will be the idle first. This behavior is modeled as given in the statechart of fig 4 and
5.

6.1 Collaboration Diagram

In the collaboration diagram of fig 3, interactions between objects are presented.
Exchanged messages describe signals sent from Sensors (S.PPi for sensor i) and

W2 W1
PS3

PS1

PS2

Assembly Robot 2 Assembly Robot 1

Detection Stators

Output
flow

Input
flow

Conveyor
Sense

Elevator Main
Functions

Fault
Detector

Pallet
Sensor

Fault detector objects (S.Fault) to controller. They also represent orders sent from
Controller to Robot 1, Robot 2and Elevator objects. Our example presents a distrib-
uted system such that several controllers (PLC) interact to control the system func-
tioning. To simplify, we represent in the collaboration diagram one controller object.

Fig.3. Collaboration diagram

6.2 Extended UML Statecharts

Robot and Controller objects behavior are respectively modeled in fig 4 and fig 5. In
Robot statechart (describes robot 1 or robot 2); assembly tasks as well as communica-
tion with controller are executed in parallel.

In substate A, the controller orders are modeled as events. In transition: “O.Ass
(0.10) [PS1.Ds OR PS2.Ds]/ Assembly()[10s]”, guard expresses that the edge is
enabled if one of sensors PS2 or PS3 is in degraded state Ds. The probability of send-
ing an assembly order when one of sensors is in degraded state is evaluated to 0.10;
the execution of the assembly operation, Ass () lasts 10s. Otherwise, the robot per-
forms a correct assembly with probability 0.90. The guard “S.Active AND E.Active”
represents the condition to leave the state Emergency stop: sensors and elevator must
be in the state Active of their respective UML statecharts. When probability is not
represented, it means it is equal to 1.

Nondeterminism is modeled at the level of the state, Idle. A probabilistic choice is
used to represent the possibility of performing a correct or a faulty assembly. It is
also possible that robot remains idle when there is absence of pallets (AP). Substate
B, describes the controller requests and sending of data from robot to controller.

O.Go down
O.Go up

O.Ass
O.Stop

S.Fault

S.PP1 Elevator

Robot 1 Controller

Sensor 2

Sensor 3

S.PP2

S.PP3

Sensor 1

Send.Data

Robot 2

O.Ass
O.Stop

 Fault
detector

Fig.4 Robot Statechart

Fig 5 describes controller behavior. When signal SPP3 becomes true (sensor PS3
detects a pallet), the order Info.need is send to the robots. After receiving informa-
tion, the controller send the order of assembly for one of the two robots (which will
be the idle first).

Fig.5. Controller Statechart

Among the malfunctions of controller, sending of undesired orders or lost orders are
modeled in Controller statechart as random events, e.g. “Fault (0.05)/ Order [5s]”. The
received sensor signals are presented as events and the sending of orders as actions
with their associated deadlines. The edge “SPP1/ O.Go up()[5s]”, expresses that
when PS1 detects a pallet, order to go up from controller to elevator is send.

Robot

Inf.need (0.70)/ Send.data () [5s]
Sending

information End.Send data
Idle

A

B

 Emergency
Stop

[S.Active
AND
E.Active]

O.Stop (0.95)/
Stop () [1s]

Faulty
Assembly Assembly

Idle

End.Ass

O.Ass (0.90)/
Ass () [10s]

O.Ass (0.10) [PS2.Ds OR
PS3.Ds] / Ass () [10s]

End.Ass

AP

Fault (0.05)/ Order [5s]

Degraded state

SPP2/
O.Go down () [5s]

SPP1/
O.Go up () [5s]

S.Fault/
O.Stop () [5s]

Idle

SPP3/
Info.need () [5s]

End.Order

Data/
O.Ass () [5s]

7 Translating Extended UML Statecharts to PTAs

Timed automata are automata extended with clocks, positive real valued variables
which increase uniformly with time, and whose nodes and edges are labeled with
clocks constraints, respectively called invariants and guards. The invariant dictate
when the automaton may remain in a node, letting time pass, and guards when the
corresponding edge can be taken [3]. Probabilistic timed automata are a variant of
timed automata extended with discrete probability distributions [11]. This type of
automata has been chosen for formalizing extended UML statecharts because it takes
into account dense time, nondeterminism and probabilistic choice as defined in the
extended UML statecharts. They are also amenable to model check probabilistic
temporal properties.

7.1 Principle of translation

To translate extended UML statecharts to probabilistic timed automata, real-time
constraints of actions are represented with clocks. Events are described with their
probabilities on edges. The guards defined in proposed UML statecharts describe the
active state of other objects.

 In probabilistic timed automata, it is not really possible to observe the location of
another component directly as the principle defined in our extended UML state-
charts. However, a probabilistic timed automaton component A can check the loca-
tion of another component B in the following way: component B is equipped with
self-loop edges in all of its locations (or some of its locations), where the events of
the self-loop edges would be different for each location. Therefore, in location L1,
the probabilistic timed automaton B would have enabled a self-loop edge with an
event which is unique to L1: “in-L1”, for example. Then component A, when it want
to know whether B is in L1 or not, would try to synchronize on event “in-L1”. If
synchronization is possible, then A knows that B is in L1 and can act accordingly;
otherwise, it can do something else, knowing that B is not in L1.

7.2 Synchronization with Global Clocks

Synchronization between probabilistic timed automata components is done using
edge-labeling events, as defined in [12]. One manner to synchronize probabilistic
timed automata is to create a probabilistic timed automaton component which has a
single clock which is never reset during the execution of the system. Then this clock
could be regarded as a “global clock”. This component could then synchronize with
the other components when the value of the global clock reaches certain values.

In fig 6, we give probabilistic timed automaton describing a sub-system of the as-
sembly chain example: the robot behavior reacting to controller orders. The prob-
abilities used in the example should in practice be obtained from statistical analysis
of observed behavior.

Fig.6. Probabilistic timed automaton

In the probabilistic timed automaton, the sub-system consists to robot, controller and
two clocks x and y. Atomic propositions, related to probabilistic timed automata of
elevator and sensor, are included in nodes. “s:Ds, e:Active and s:Active” express
guards of UML statecharts in fig 4. In initial state, both clocks x and y set to 0. The
controller sends assembly order to robot in 5 time units. Then, the robot performs the
assembly tasks with probability 0.90. After assembly takes 10 time units, the robot
becomes idle. When one sensor is in degraded state, then robot performs a fault as-
sembly with probability 0.10. When an order stop is send by the controller, the robot
stop. It becomes idle when sensors and elevator are in active state.

8 Metamodeling using GME Tool

The Generic Modeling Environment (GME) developed at the institute for Software
Integrated Systems at Vanderbilt University is a configurable toolkit for creating
domain-specific modeling and program synthesis environments [13].

There is a metamodeling paradigm defined that configures GME for creating
metamodels. These models are then automatically translated into GME configuration
information through model interpretation. Once the metamodeling interpreter is
operational, a meta-metamodel is created and the metamodeling paradigm is regen-
erated automatically [13]. The metamodeling paradigm is based on UML notation.
The syntactic definitions are modeled using UML class diagrams and the static se-
mantics are specified with constraints using the Object Constraint Language (OCL).

5=x

∧≤ 10y

c : Active
r : Idle

10=y
c : Active
r : Faulty Ass
s: Ds

c : Active
r : Stop
e : Active
s : Active

c : Active
r : Assembly

5=x

0.95

0.10 0.90 10=y
{ }0:=x

1=y

{ }0:=x

{ }0:, =yx

5≤x

10≤y

1≤y

5≤x

{ }0:, =yx

0.05

{ }0:=x

0== yx

8.1 Modeling Concepts

The vocabulary of the domain-specific languages implemented by different GME
configurations is based on a set of generic concepts built into GME itself. This one
supports various concepts for building complex models.

Folders, FCOs (Models, Atoms, Sets, References, and Connections), Roles, Con-
straints and Aspects are the main concepts that are used to define a modeling para-
digm. The First Class Objects (FCOs) used to represent entities and relations, form
the core of the GME concepts. These generic concepts are not generally used at the
same time. However, the choice is rather an important design decision.

The concepts used in our metamodel are: Aspects, Models, Atoms and connec-
tions. These latter are defined below. The other quoted concepts are defined in [8]
and [13].
Aspects represent different "views" of the structure of a model. It is not always bene-
ficial to present every object contained in a model all at once; aspects allow choosing
what we want to see. A model with several aspects will display different subsets of its
contained entities depending on the aspect selected,
Atoms are a basic, limited type of entity which has no internal structure (i.e. con-
tained objects). Every feature of an atom that can be represented in a model is con-
tained in the atom's name, attributes, and the relations it participates in,
Models, the second generic type of entity, are very similar to atoms. The main differ-
ence lies in the ability of models to contain atoms, other models, and other types of
objects. Thus, models have internal structure. When viewed together, they form tree-
like containment hierarchies of entities. Models can be opened, showing a diagram
of their internal structure,
Connections are the primary concepts that represent relationships. Connections nor-
mally describe a relation between two objects, and this relation is represented as a
line in a particular color and style connecting the two objects. Connections can also
have their own attributes.

8.2 Overview on the Metamodels of DAMRTS

The DAMRTS profile is a specific profile designed for dependability analysis of a
real-time system. It is based on concepts defined in the profile SPT [18] with new
stereotypes. Those are added to the metamodel in order to introduce particular de-
pendability information. The malfunctions considered as undesirable events and their
possible causes are modelled with stereotypes. The QoS is represented as attributes
when it is about actions of resource classes (e.g. duration of actions, response time
for a call action, etc.). It is also represented as a tagged value when it is about gen-
eral QoS, like reliability and maintainability of resources [1].

To build the profile DAMRTS, the metamodeling paradigm based on UML is
used. Three UML metamodels are created to represent class diagram, collaboration
diagram and extended UML statecharts of a real-time system. Such as presented in
fig 7, the metamodel of the class diagram contains the concept Atoms: sensor, effec-

tor (all components in contact with raw material such robots, conveyor belt, etc.) and
controller.

Fig.7. Class diagram metamodel of profile DAMRTS

The FCOs Resource and Dependability are defined to be hidden in the class dia-
gram. We use the concept Attributes (which does not necessarily represent attributes
in the class diagram) to define the QoS related to dependability of Resource as well
as the methods send signals, send orders and actions related to the Atoms sensor,
controller and effector (see fig 7). The Attributes of GME tool can have a set of
specifications such as the data-type [8]. Then we specify the defined Attributes with
integer or double according to whether it is of real-time data (deadline and duration
of methods) or of probabilities assigned to undesired events.

Each entity Resource is associated the Atom Indicator which represent the unde-
sired events such failures. The Atom Cause has as attribute one or several logical
expressions composed by elementary logical conditions linked by conjunctive and
disjunctive connectors. This attribute is specified to be boolean. When one of the
expressions is true, it indicates that associated failure became true.

9 Automatic Transformation Process

Once the UML models are built with the profile DAMRTS, the different view of the
real-time system are presented including dependability information. The following
step consists to analyze the models. For lack of UML’s models analysis tools, we
chose a tool which allows analysis of models containing real-time and probabilistic

information such as in the extended UML statecharts. The probabilistic model
checker Prism is then used [10].

To allow verification of probabilistic temporal properties, it is necessary to trans-
late behavioral UML models from the GME tool to input model of Prism tool. For
this, an automatic translation is performed using the parser XERCES.

The statecharts UML models are exported to XML format. Syntactic analysis is
applied on the XML files using the parser. Transformation rules are then defined to
rewrite the XML nodes to Prism language based on the Reactive Modules formalism
[4]. This formal model is designed for concurrent systems and represents synchro-
nous and asynchronous components in a uniform framework that supports composi-
tional and hierarchical design and verification.

10 Conclusion

The approach used in our proposition is to enrich the UML model with the local
quality of services parameters relevant to a specific analysis objective (for instance,
failure/repair rates are associated with elements of UML model) and to automatically
transform the relevant parts of the enriched UML models to probabilistic timed auto-
mata.

The advantage of the approach is that it is relatively easy to experienced UML us-
ers to create extended UML models and automatic translation made it possible to
apply Prism. The formal model is correct with respect to requirements of UML
model. Writing properties with probabilistic temporal logic such as PCTL is not
easy. In Prism, syntax is proposed to express properties. This one is easier than that
of probabilistic temporal logic.

Due to the denseness of time, the underlying semantic model of a probabilistic
timed automaton is infinite, and hence effective decision procedure rely on building
a finite quotient of the state space. In future works, the verification technique used,
will be based on the generation of the forward reachability graph with Kronos, and
model checking the obtained graph encoded as a Markov decision process with
Prism.

References

1. Addouche, N., Antoine, C., Montmain, J.: UML Models for Dependability Analysis of
Real-Time Systems. In: Proc of SMC'04, The Hague, The Netherlands (2004)

2. Addouche, N., Antoine, C., Montmain, J.:"Formalisation of Quantitative UML models
Using Continuous Time Markov Chains", Third Conference on Management and Control
of Production and Logistics, Santiago, Chile (2004)

3. Alur, R., Dill, D.L.: A Theory of Timed Automata, Theoretical Computer Science,
126(2):183-235 (1994)

4. Alur, R., Henzinger, T.: Reactive Modules, In: Proc of LICS’96, IEEE Computer Society
Press, New Jersey (1996), 207-218

5. Canevet, C., Gimore, S., Hillston, J., Stevens, P.: Performance Modelling with UML and
Stochastic Process Algebra, In Proc of the Eighteenth Annual UK Performance Engineering
Workshop (2002)

6. De Alfaro, L.: Formal Verification of Probabilistic Systems, PhD thesis, Standford Univer-
sity (1997)

7. Gnesi, S., Latella, D., Massink, M.: A Stochastic Extension of a Behavioural Sub-
set of UML Statechart Diagrams, In: Proc of HASE’00, Albuquerque, New Mex-
ico (2000)

8. ISIS.: GME 4 User’s Manual, version 4.0, Institute for Software Integrated Systems, Van-
dertbilt University (2004), http://www.isis.vanderbilt.edu/Projects/gme/

9. Jansen, D.N., Hermanns, H., Katoen, J-P.: A Probabilistic Extension of UML Statecharts:
Specification and Verification, FTRTFT 02, Oldenburg, Germany (2002) 355-374

10. Kwiatkowska, M., Norman, G., Parker, D.: Prism: Probabilistic Model Checker, In
Proc.TOOLS 2002, volume 2324 of LNCS (2002), 200-204

11. Kwiatkowska, M.:Model Checking for Probability and Time: From Theory to Practice, In
LICS 03, IEEE Computer Society Press (2003) 351-360

12. Kwiatkowska, M., Norman, G., Sproston, J.: Model Checking of Deadline Properties in
the IEEE 1394 Fire Wire Root Contention Protocol, Formal Aspects of Computing (2003),
14(3), 295-318

13. Ledeczi, A., Maroti, M., Bakay, A., Karsai, G., Garrett, J., Thomason, C., Nordstrom, G.,
Sprinkle, J., Volgyesi, P.: The Generic Modeling Environment, Workshop on Intelligent
Signal Processing, Budapest, Hungary (2001)

14. Lüder, A., Peschke, J., Sauter, T., Deter, S., Diep, D.: Distributed Intelligence for Plant
Automation on Multi-agent Systems: the PABADIS approach, Production Planning and
Control (2004), 15(2), 201-212

15. Merseguer, J and J. Campos. (2002). A Compositional Semantics for UML State
Machines Aimed at Performance Evaluation. In: Proc of WODES’02, pp. 295-
302, IEEE Computer Society Press, Zaragoza, Spain.

16. OMG.: Unified Modeling Language Specification v.1.5, OMG Document Formal / 03-03-
01, (2003)

17. Segala, R.: Modeling and Verification of Randomized Distributed Real-Time Systems,
PhD thesis, Massachussetts Institute of Technology (1995)

18. Selic, B., Moore, A.: Response to the OMG RFP for Schedulability, Performance and
Time: Revised submission, OMG document ad/2001-06-14

