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Abstract

In this paper we present direct numerical simulations of a sliding avalanche in aerosol
regime. The second scope of this study is to get more insight into the interaction
process between an avalanche and a rigid obstacle. An incompressible model of two
miscible fluids can be successfully employed in this type of problems. We allow for
mass diffusion between two phases according to the Fick’s law. It is shown that
the present model is consistent in the sense of kinetic energy. Some connections
with Brenner-Navier-Stokes and Kazhikhov-Smagulov systems are revealed. The
governing equations are discretized with a contemporary fully implicit finite vol-
ume scheme. The solver is able to deal with arbitrary density ratios. Encouraging
numerical results are presented. Impact pressure profiles, avalanche front position
and velocity field are extracted from numerical simulations and discussed. The in-
fluence of the bottom boudary condition onto propagation and impact processes
is discussed. Finally we give some ideas of how this methodology can be used for
practical engineering problems.
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Figure 1. Two illustrations of powder-snow avalanche flows.

1 Introduction

By definition, snow avalanches are abrupt and rapid gravity-driven flows of
snow down a mountainside, often mixed with air, water and sometimes debris
(see Figure 1). Avalanches are physical phenomena of great interest, mainly
because they represent a big risk for those who live or visit areas where this
natural disaster can occur. During last several decades, the risk has increased
due to important recreational and construction activities in high altitude ar-
eas. We remember recent events at Val d’Isère in 1970 and in Nothern Alps in
1999 [Anc01].

The avalanches arise from an instability in a pile of granular material like sand
or snow. The destabilization phase of an avalanche life is still a challenging
problem. There are many factors which influence the release process. One
can recall snowpack structure, liquid contain, shape and curvature of starting
zone and many others [Anc01]. In this study we focus especially on sliding
and stopping phases.

The serious research work on this natural phenomenon was preceded by the
creation of scientific nivology at the end of the XIXth century. Among the pio-
neers we can mention Johann Coaz (swiss engineer) [Coa81] and Paul Mougin
(french forest engineer, author of the first avalanche model using an analogy
with a sliding block) [Mou22, Mou31]. The work of P. Maugin was ignored
until the 1950s when A. Voellmy developed a similar model [Voe55] which is
still used by engineers nowadays.

Celine.Acary-Robert@univ-savoie.fr (Céline Acary-Robert),
Didier.Bresch@univ-savoie.fr (Didier Bresch).
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We would like to point out here important contributions of the Soviet school by
S.S. Grigorian, M.E. Eglit, A.G. Kulikovskiy, Y.L. Yakimov and many others
[GEY67, KE73, BE73, BKK+75, KS77b, Egl83, Egl91, BL98, Egl98, BEN02].
They were at the origin of all modern avalanche models used nowadays in the
engineering practice and, sometimes, in scientific research. Their works were
mainly devoted to the derivation and comprehension of mathematical models
while occidental scientists essentially looked for numerical solutions.

Conventionally we can divide all avalanches in two idealized types of motion:
flowing and powder-snow avalanches. A flowing avalanche is characterized by
a high-density core ranging from 100 to 500 kg/m3 and consists of various
types of snow: pasty, granular, slush, etc. The flow depth is typically about a
few meters which is much smaller than the horizontal extent. This argument is
often used to justify numerous depth-integrated models of the Savage-Hutter
type 1 [SH89, SH91]. These avalanches can cause extensive damage because of
the important snow masses involved in the flow in spite of their low speed.

On the other hand, powder-snow avalanches are large-scale turbidity currents
descending slopes at high velocities [RH04]. They seriously differ from flowing
avalanches. These clouds can reach 100 m in height and very high front veloc-
ities of the order of 100 m/s. They grow continously and the average density
is fairly low (from 4 to 25 kg/m3). These spectacular avalanches (see Figure
1) occur only under certain conditions (after abundant fresh snowfalls, cold,
dry and weakly cohesive snow on strong slopes) and they produce a devastat-
ing pressure wave which breaks the trees, buildings, tears off the roofs, etc.
During the propagation stage, they are able to cross the valleys and even to
climb up on the opposite slope. Hence, measurements by intrusive probes are
almost impossible. Avalanches in aerosol are not very frequent events in Alps
but in the same time we cannot say they are very seldom. In the technical
literature there is an opinion that an avalanche in aerosol is less destructive
than a flowing one since the transported mass is much smaller. Nevertheless,
recent events of the winter 1999 revealed the important destructive potential
of the powder-snow avalanches (see Figure 2).

Recently several systematic measurements campaigns in situ were conducted
in Norway, Switzerland and Japan [MS84, NTK90, NMKI93, NSKL95, DGBA00].
Researchers shed some light on the internal structure of big avalanches. More
precisely, they show that there exists a dense part of the avalanche which re-
mains permanently in contact with the bed. This dense core is covered by the
aerosol suspension of snow particles in the air. From these results it follows
that mentioned above two types of avalanches may coexist in nature and pro-
posed above classification is rather conventional. Perhaps, future studies will

1 In hydrodynamics and hydraulics this type of modeling is also known as shallow
water or Saint-Venant equations [dSV71].
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Figure 2. Protecting wall in armed concrete at Taconnaz (Haute-Savoie, France)
destroyed by the powder-snow avalanche of the 11 February 1999. The height is 7
m and the thickness is 1.5 m (Photo by C. Ancey).

perform a coupling between the dense core and powder-snow envelope.

Let us review various existing approaches to the mathematical modeling of
snow avalanches. Generally, we have two big classes of mathematical mod-
els: probabilistic and deterministic. In the present article we deal with a de-
terministic model and we refer to the works of K. Lied and D.M. McClung
[LB80, ML87, McC00, McC01] for more information on statistical appoaches
to avalanche modeling. Deterministic models can be further divided into con-
tinuous and discrete ones depending whether the material under considera-
tion can be approximated as a continuum medium or not. For the review and
some recent results on dense granular flows we refer to the works of J. Ra-
jchenbach [Raj02b, Raj02a, Raj05] and the references therein. Some promis-
ing results were obtained with discrete models based on cellular automata
[DGRS+99, ADGM+00, DSI06].

The first contemporary avalanche models appeared in 1970 by soviet scientists
Kulikovskiy and Sveshnikova [KS77b, BL98]. Later, their idea was exploited by
Beghin [Beg79, BB83, BO91] and others [HTD77, FP90, AU99, Anc04, RH04].
We call this type of modeling 0D-models since the avalanche is assimilated to
semi-elliptic cloud with variable in time volume V (t), momentum (ρU)(t),
etc. All quantities of interest are assimilated to the center of mass and their
dynamics is governed by conservation laws expressed as Ordinary Differential
Equations (ODE).

On the next complexity level we have various depth-integrated models. The
governing equations are of Shallow Water (or Saint-Venant [dSV71]) type.
In general, they are derived by depth averaging process or some asymptotic
expansion procedure from complete set of equations. Thus, a physical 3D (or
2D) problem results in a 2D model (1D correspondingly). From computational
point of view these models are very affordable even for desktop computers. On
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the other hand, they provide us very approximative flow structure, especially
in the vertical direction.

In France, G. Brugnot and R. Pochat were among the pioneers [BP81] while
in Soviet Union this direction was explored in the beginning of 1970 by N.S.
Bakhvalov et M.E. Eglit [BE73, BKK+75]. Currently, each country concerned
with the avalanche hazard, has its own code based on this type of equations.
Probably the most representative model is that developed by S. Savage and
K. Hutter [SH89]. Nowadays this set of equations is generally referred as the
Savage-Hutter model. We refer to [Hop83, Hut96] as general good reviews of
existing theoretical models and laboratory experiments.

This approach was further developed by incorporating more complex rheolo-
gies and friction laws [GWH98, Hut91, HG93, MCVB+03, HWP05, FNBB+08].
To conclude on this part of our review, we have to say that this modeling is
more relevant to the flowing avalanche regime which is characterized by small
ratio of the depth h to the horizontal extent ℓ:

h

ℓ
≪ 1.

We would like to mention impressive density currents simulations in Boussi-
nesq regime by T. Özgökmen, P.F. Fischer and their collaborators [OFDI04,
OFDI06, BDF+07, OIF+07]. They solved 2D and 3D variable density Navier-
Stokes equations by a Spectral Element Method (SEM). Even if their results
applied to physical oceanography, there is an analogy with the subject of our
concern.

Finally, we come to the so-called two-fluid (or two-phase) models. In this
paradigm both phases are resolved and, a priori, no assumption is made on
the shallowness of the flow under consideration. Another advantage consists in
fact that efforts exerted by the ambient air on the sliding mass are naturally
taken into account. From computational point of view, these models are the
most expensive [NG98, ESH04, Eti04, EHS05]. In the same time, they offer
quite complete information on the flow structure.

As it follows from the title, in this study we are mainly concerned with powder-
snow avalanches. We would like to underline that our modeling paradigm
allows for taking into account of the dense core. The density is completely
determined from the snow volume fraction distribution. This parameter can
be used to introduce a stratification in the initial condition, for example.
Otherwise, if we propagate our avalanche sufficiently long time, it will happen
automatically due to mixing processes in the flow.

We retained a simple incompressible two-fluid model which is described in
detail in Section 2. Two phases are allowed to interpenetrate, forming a mixing
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zone in the vicinity of the interface. We make no Boussinesq-type hypothesis
[Anc04] about the density ratio. Moreover, our solver is robust and is able to
deal with high density ratios (we tested up to 3000). In the nature, the flow
under consideration is highly turbulent but at the present stage we do not
incorporate any turbulence modeling beyond resolved scales.

Good understanding of these natural phenomena can improve the risk assess-
ment of such natural hazards. Numerical simulations of avalanches provide use-
ful information on the dynamics of these flows. On the other hand, large scale
experiments are not feasible 2 . Field measurements during the event are very
hazardous and the events are rare. Laboratory experiments on powder-snow
avalanches are essentially limited to Boussinesq clouds 3 [Kel95, NBNBH02,
Pri03, NB03, PNBNF04] while it is not the case in the nature. When the
Reynolds number is sufficiently high (inertial regime), two scaling parameters

to be respected are the density ratio ∆ρ
ρ+ = ρ+−ρ−

ρ+ and the densimetric Froude

number Fr := U
∆ρ

ρ+

√
gH

. In these formulas ρ± are densities of the heavy and light

fluids respectively, U is the characteristic flow velocity and H is the length
scale. Obviously, g denotes the acceleration due to gravity. Recall that in the
Boussinesq regime, only the Froude number has to be respected. We quote
[PNBNF04] reporting on this important issue:

. . . Satisfying the Froude number and density ratio similarities in the labo-
ratory means that a very high velocity is necessary, which calls for a very
large channel. It is not possible to satisfy the density ratio similarity, be-
cause dimensionless number differs by several orders of magnitude between
the processes that unfold in nature and those reproduced in the labora-
tory. . .

Thus, we do not really know how these results apply to real-world events.
Recently, some progress has been made to remedy this situation [TM08].
Anyhow, computer experiments will become the main tool in studying this
phenomenon. Experiments in silico should be complementary to those in situ
or in laboratory. Direct Numerical Simulations (DNS) provide complete in-
formation about all flow quantities of interest such as the local density, the
velocity field variations, the dynamic pressure and the energy. Recall that this
information is not easily accessible by means of measurements.

The present paper is organized as follows. In Section 2 we present the govern-

2 However, we would like to notice that there are two experimental sites: one in
Switzerland (Sion Valley) and another one in France (Col d’Ornon). Unfortunately,
field measurements provide very limited information nowadays [DGA01].
3 The Boussinesq regime corresponds to the situation when ρ+−ρ−

ρ+ ≪ 1 where ρ±

are densities of the heavy and light fluids respectively. This asymptotics allows to
introduce the so-called Boussinesq approximation.
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dΩ1
dΩ2

Figure 3. An elementary fluid volume dΩ occupied by two phases.

ing equations and some constitutive relations. Special attention is payed to
the kinetic energy balance properties. Some connections with Brenner-Navier-
Stokes equations [Bre05b] and Kazhikhov-Smagulov systems [BES02] are also
discussed. The next Section 3 contains a brief description of the numerical
methods and numerous computation results are presented. Finally, this pa-
per is ended by outlining main conclusions and a few perspectives for future
studies (see Section 4).

2 Mathematical model

In the present study we assume that an avalanche is a two-fluid flow formed by
air and snow particles in suspension. The whole system moves under the force
of gravity. For simplicity we assume that the mixture is a Newtonian fluid.
The last assumption is not so restrictive as it can appear. The flow under
consideration is such that the Reynolds number is very high (Re ∼ 109).
Therefore, the transient behaviour is essentially governed by the convective
terms and not by the fluid rheology. On the contrary, the rheology is very
important in the flowing regime.

In two-fluid flows it is natural to operate with the so-called volume fractions
[Ish75, TK96, TKP99, GKC01]. consider an elementary fluid volume dΩ sur-
rounding an interior point P ∈ dΩ. Let us assume that the first fluid occupies
volume dΩ1 ⊆ dΩ and the second the volume dΩ2 ⊆ dΩ (see Figure 3) such
that

|dΩ| ≡ |dΩ1| + |dΩ2|. (1)

The volume fraction of the fluid i = 1, 2 in the point P is defined as

φi(P ) := lim
|dΩ|→0

P∈dΩ

|dΩi|
|dΩ| .

From relation (1) it is evident that φ1(P ) + φ2(P ) ≡ 1, for any point P in the
fluid domain. Henceforth, it is sufficient to retain only the heavy fluid volume
fraction φ1, for example, which will be denoted by φ, for the sake of simplicity.

The volume fraction evolution is governed by two simultaneous processes:
advection and diffusion. Very often, the diffusion is neglected. However, we
cannot disregard this effect in the present study because of important mixing
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processes in the aerosol flow regime. Thus, we model the fluid mixing by the
Fick’s law [Fic55a, Fic55b]. Two phases are constrained to have the same
velocity 4 ~u and the mixture is assumed to be incompressible. Taking into
account all the hypotheses made above, we come to the following system of
the governing equations:

∇ · ~u = 0, (2)

∂φ

∂t
+ ~u · ∇φ = ∇ · (νf∇φ), (3)

∂~u

∂t
+ (~u · ∇)~u − νf∇ log ρ · ∇~u +

∇p

ρ
= ~g +

1

ρ
∇ ·

(

2µD(~u)
)

, (4)

where ~g is the acceleration due to gravity, D(~u) = 1

2

(

∇~u+(∇~u)t
)

, νf controls
the mixing process between two fluids and has the dimension of the kinematic
viscosity. The mixture density ρ and dynamic viscosity µ are defined as follows:

ρ = φρ+ + (1 − φ)ρ−, µ = φρ+ν+ + (1 − φ)ρ−ν−, (5)

where ρ± and ν± are constant densities and kinematic viscosities of the heavy
and light fuids correspondingly.

Remark 1 Since we model an avalanche propagation along a sloping solid
boundary, we take the gravity acceleration in the following form:

~g = (g sin θ,−g cos θ),

where θ is the slope of the hill and usually g := |~g| = 9.8 m/s2.

The snow kinematic viscosity ν+ can be parameterized as a function of tem-
perature T and snow density ρ+ according to [DAH+07]:

ν+ =
µ0

ρ+
e−αT eβρ+

,

where µ0 = 3.6 × 106N · s · m−2, α = 0.08K−1, β = 0.021m3

kg
.

Equations (2), (3) and (4) have to be completed by appropriate initial and
boundary conditions to form a well-posed problem and determine the system
evolution.

Recall that governing equations can be formulated in terms of various sets
of variables. For example, equation (3) is formulated in terms of the volume
fraction φ. From given above definition (5), it is straightforward to obtain

4 This assumption is not very restrictive. Two-phase single velocity models were
already be successfully applied in various situations [DDG08b, DDG08c, DDG08a,
Dut07].
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an evolution equation for the mixture density ρ. Using the incompressibility
condition (2), it can be written in the conservative form:

∂ρ

∂t
+ ∇ · (ρ~u) = ∇ · (νf∇ρ). (6)

This equation will be used below to establish some kinetic energy properties
of our system (2) – (4).

We would like to underline a certain interplay between our model (2) – (4)
and very recent modification to Navier-Stokes equations proposed by Howard
Brenner [Bre05a, Bre05b, Bre06, FV07]. Namely, equation (6) can be rear-
ranged in the following way:

∂ρ

∂t
+ ∇ · (ρ~v) = 0, ~v := ~u − νf∇ log ρ.

Recall that H. Brenner introduced the notion of the volume velocity ~v which
is related to the classical mass velocity ~vm in a very similar way:

~v − ~vm = K∇ log ρ.

It is obvious that two velocities coincide for incompressible and homogeneous
fluids ρ = const.

The second remark concerns the “novel” term νf∇ log ρ·∇~u in the momentum
equation (4). In fact, this term is already known and can be encountered
in the so-called Kazhikhov-Smagulov type systems which were derived for
incompressible multiphasic fluid models [KS77a, AKM90, BES02, BES07].

2.1 Energy consistency

Consider a fluid domain Ω. The kinetic energy K is classically defined as

K =
1

2

∫

Ω

ρ|~u|2 dΩ. (7)

If we multiply equation (4) by ρ~u, equation (6) by |~u|2
2

and subtract them, after
some simple analytical computations we get the following evolution equation
for the kinetic energy:

d

dt

1

2

∫

Ω

ρ|~u|2 dΩ =
∫

Ω

ρ~g · ~u dΩ −
∫

Ω

2µ|D(~u)|2 dΩ, (8)

where |D(~u)|2 := D(~u) : D(~u). Each term in equation (8) has a precise physical
interpretation. The first term on the right-hand side is a consequence of the
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kinetic energy production by the gravity force. The second term is responsible
of the energy dissipation by viscous forces.

In several studies [JR93, ESH04] a slightly different model was used. Namely,
the term νf∇ log ρ · ∇~u was missing in the momentum balance equation (4).
Exactly the same incomplete model was implemented in OpenFOAM solver
twoLiquidMixingFoam. In this case, the energy balance equation takes the
following form:

d

dt

1

2

∫

Ω

ρ|~u|2 dΩ =
∫

Ω

|~u|2
2

∇ · (νf∇ρ) dΩ +
∫

Ω

ρ~g · ~u dΩ −
∫

Ω

2µ|D(~u)|2 dΩ.

Since, the first term on the right-hand side is not positive-defined, the notion
of kinetic energy is not well defined for the model used before.

2.2 Dimensional analysis

In this section we perform a dimensional analysis of the governing equations
(2) – (4) in order to reveal important scaling parameters. Henceforth, starred
variables denote dimensional quantities throughout this section.

The initial avalanche height h0, the heavy fluid density ρ+ and the kinematic
viscosity ν+ are chosen to be the characteristic length, density and viscosity
scales correspondingly. Velocity field is adimensionalized by U0 :=

√
gh0 as it

is usually done for gravity-driven flows. Finally, from characteristic length and
velocity, it is straightforward to deduce the time scale.

The scaling for the independent variables is

~x∗ = h0~x, t∗ =
h0√
gh0

t,

and dimensionless dependent variables ρ, ~u, p, µ are introduced in this way:

ρ∗ = ρ+ρ, ~u∗ =
√

gh0 ~u, µ∗ = ρ+ν+µ, p∗ = ρ+U2
0 p = ρ+gh0p.

We decided to adimensionalize dependent variables with respect to the heavy
fluid parameters ρ+ and ν+ but this choice is only conventional.

The governing equations (2) – (4) in dimensionless form become:

∇ · ~u = 0,

∂φ

∂t
+ ~u · ∇φ = ∇ · ( 1

ReSc
∇φ),
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∂~u

∂t
+ (~u · ∇)~u − 1

ReSc
∇ log ρ · ∇~u +

∇p

ρ
= ~g +

1

ρ
∇ ·

( 1

Re
2µD(~u)

)

.

This procedure reveals two important scaling parameters – the Reynolds num-
ber [Rey83] Re and the Schmidt number [ID01] Sc which are traditionally
defined as

Re :=
h0U0

ν+
=

h0

√
gh0

ν+
, Sc :=

ν+

νf

.

Recall that the Reynolds number Re gives a measure of the ratio of inertial
forces to viscous forces. In practice this number characterizes different flow
regimes, such as laminar or turbulent flow. The Schmidt number is the ra-
tio of fluid viscosity to mass diffusivity. This parameter is introduced used
to characterize fluid flows with simultaneous momentum and mass diffusion
processes [YXS02, SS03]. This number was named after the German engineer
Ernst Heinrich Wilhelm Schmidt (1892 – 1975).

In fact, there are two additional scaling parameters δ and λ hidden in defini-
tions of the density ρ and viscosity µ of the mixture:

ρ :=
ρ∗

ρ+
= φ + (1 − φ)δ, δ :=

ρ−

ρ+
,

µ :=
µ∗

ρ+ν+
= φ + (1 − φ)δλ, λ :=

ν−

ν+
.

Actually, the densities ratio δ can be related to the well-known Atwood number
[GGL+01, LJ05] At:

At :=
ρ+ − ρ−

ρ+ + ρ− =
1 − δ

1 + δ
.

The powder-snow avalanche regime is characterized by very high values of
Reynolds number Re and low density ratios δ [MS93, Anc03]:

Re ∼ 106, 0.05 ≤ δ ≤ 0.25.

Thus, the flow is clearly turbulent. Nevertheless, in the present study we do
not consider any turbulence modeling beyond the scales resolved by the nu-
merical method. As we already pointed out in the Introduction section, there
is an important issue with the density ratio parameter δ. In current laboratory
experiments its value is about 0.8 [NB03] which is bigger than values encoun-
tered in nature. As a result, the interpretation of laboratory results is quite
ambiguous.

Regarding the Schmidt number Sc, M. Clément-Rastello reports [CR01] the
following values:

0.5 ≤ Sc ≤ 1.

There is substantially less information on snow viscosities [DAH+07] and on
the snow rheology, in general.

11



Thus, if an avalanche is considered as a two-phase flow, the ideal laboratory
experiment has to respect four scaling parameters: Re, Sc, At and λ. Obvi-
ously, it is impossible in practice as honestly stated in many experimental
studies [Pri03, NB03, PNBNF04]. At this point, numerical simulation should
be considered as a complementary tool to physical modeling.

3 Numerical methods and simulation results

In this article we perform Direct Numerical Simulations (DNS) of a snow
cloud moving down a steep slope. Our solver is based on a freely available
CFD toolbox OpenFOAM . All computations performed in this study are 3D
with only one cell in z direction for the sake of efficiency. The extension to
truly 3D configurations is in progress.

In order to implement model (2) – (4) we modified the standard solver twoLiq-

uidMixingFoam. The principal modification concerns the momentum balance
equation. Namely, we had to incorporate a novel term νf∇ log ρ · ∇~u which
ensures the energy consistency property (8). For information, we provide here
a piece of the novel code written in the internal OpenFOAM language:

fvVectorMatrix UEqn

(

fvm::ddt(rho, U)

+ fvm::div(rhoPhi, U)

- fvm::laplacian(muf, U)

- Dab*(fvc::grad(U)().T() & fvc::grad(rho))

- fvc::div(muf*(mesh.Sf()&fvc::interpolate(fvc::grad(U)().T())))

);

Time derivatives were discretized with the classical implicit Euler scheme. An
upwind second order finite volume method was employed in space. For more
details on the retained discretization scheme we refer to [Jas96, Rus02, Ope07].
The choice of the finite volume method is justified by its excellent stability
and local conservation properties (especially in comparison to FEM [ESH04,
Eti04, EHS05]).

3.1 Test-case description

The sketch of the fluid domain and the initial condition description are given
on Figure 4. We choose to simulate a classical lock-exhange type flow with an
obstacle placed into the computational domain. The values of all parameters
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Figure 4. Sketch of the computational domain and initial condition description.

parameter value

gravity acceleration g, m/s2 9.8

slope, θ 32◦

Reynolds number, Re 105

Schmidt number, Sc 0.5

friction parameter 5 , α 0.3

initial mass height, h0 1

obstacle height, hs 0.25h0

obstacle thickness 0.05h0

Table 1
Values of various parameters used for numerical simulations.

parameter heavy fluid light fluid

density, ρ±, kg/m3 4 1

kinematic viscosity, ν±, m2/s 10−5 10−5

Table 2
Values of various parameters for light and heavy fluids.

are provided in Tables 1 and 2. The objective of this article is twofold. Except
presenting DNS results, we also want to shed some light onto the interaction
process between an avalanche and an obstacle. At the present stage we assume
the obstacle to be absolutely rigid but this assumption can be relaxed in future
investigations. Most of results presented here are given for the obstacle height
hs = 0.25h0, where h0 is the initial mass height. However, we performed a few
computations with bigger obstacle hs = 0.6h0. Interesting comparisons and
discussions are presented below.
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(a) t = 0.2 s (b) t = 0.4 s

Figure 5. Sliding mass evolution just after the release. The fluid volume fraction φ
is represented. Red color corresponds to φ = 1 (snow particles) and blue to φ = 0
(ambient air).

(a) t = 0.8 s (b) t = 1.0 s

Figure 6. The avalanche formation during the sliding process.

3.2 Simulation results

Snapshots of the volume fraction evolution are presented on Figures 5 – 10.
At the beginning, the initial rectangular mass gradually transforms into more
classical elliptic form (Figures 5 – 7). Then, the sliding process continues until
the interaction with the obstacle (see Figure 8). The flow deflection by is
shown on Figures 9 and 10.

Our simulations clearly show that Kelvin-Helmholtz type instability [Hel68,
Kel71, Cha81, DR04] develops locally during the propagation stage. For illus-
tration, two typical roll-structures are forming on Figure 6 and they are already
fully developed on Figure 7. On the other hand, the interaction process with
the obstacle creates a jet directed upward. This jet has a mushroom-like shape
typical for Rayleigh-Taylor instability [Ray83, Tay50, DR04]. Finally, on the
last Figure 10 we see the creation of new rolling structures since the flow is
deflected again by the top boundary.

Several authors pointed out an intriguing feature of the avalanche type flows
[DGA01, RH04]. Namely, it was shown by radar measurements that the maxi-
mum velocity inside the avalanche exceeds the front velocity by 30% – 40%. For
this purpose we visualize the velocity field magnitude during the propagation
stage (see Figure 11). Qualitatively, our computations are in conformity with
these experimental results. We get even more important differences between
the dense core and front velocities sometimes reaching 75%.
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(a) t = 1.2 s (b) t = 1.4 s

Figure 7. Fully developed gravity flow. One can already distinguish the avalanche
head and the body.

(a) t = 1.6 s (b) t = 1.7 s

Figure 8. The avalanche just before and during the interaction with the obstacle.

(a) t = 1.8 s (b) t = 2.0 s

Figure 9. The flow deflection by the obstacle.

(a) t = 2.2 s (b) t = 2.4 s

Figure 10. Interaction with the top wall.

There is another important feature of the powder-snow avalanches. In fact, the
sliding mass pushes the air ahead its front. In real world events the air speed
reaches 300 m/s and represents important hazard for buildings and forests
even if the avalanche mass is stoped before. This destructive force cannot
be computed with any single-fluid model and, thus, a two-fluid modeling is
imposed. Our computations naturally demonstrate this feature since the both
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(a) t = 1.2 s (b) t = 1.6 s

Figure 11. Velocity field magnitude. The maximum velocity inside an avalanche
exceeds the speed of the front.

(a) t = 1.4 s (b) t = 1.6 s

Figure 12. Dynamic pressure field during the propagation stage and just before the
impact.

(a) t = 1.7 s (b) t = 1.8 s

Figure 13. Dynamic pressure field during the interaction with the obstacle.

phases are resolved. An air envelope pushed by the sliding mass is illustrated
on Figure 11.

The dynamic pressure field snapshots are shown on Figures 12 – 13. Recall
that the dynamic pressure pd is defined as

pd := p − ρ~g · ~r.

It means, for example, that constant dynamic pressure distribution corre-
sponds to the hydrostatic pressure field inside the fluid.

It is of big practical interest to analyze the dynamic pressures along the ob-
stacle. Some computational results and existing engineering approaches are
presented below in Section 3.3.

16



(a) t = 0.2 s (b) t = 1.2 s

Figure 14. Vorticity field magnitude during the release and propagation stage.

(a) t = 1.6 s (b) t = 1.8 s

Figure 15. Vorticity field magnitude during the interaction with the obstacle.

The magnitude of the vorticity field is presented on Figures 14 – 15. From these
snapshots it is clear to see that the vorticity is concentrated in regions where
mixing processes take place. We would say that there is an important vorticity
production across the interfaces, if the notion of an interface is appropriate in
miscible fluid dynamics, of course.

During the simulation we also computed the kinetic energy according to its
definition (7). We performed a little sensitivity analysis. Two different types
of boundary conditions (no-slip and partial slip) and two obstacle heights
were tested. As it can be seen on Figure 16, the total kinetic energy K is
not very sensitive to the boundary condition type (provided that we do not
have any open boundaries). The energy grows almost linearly in time during
the propagation stage for all scenarios. Differences start to appear just before
the interaction process with the obstacle. It is evident that bigger obstacle
provides stronger attenuation of the kinetic energy. The ability to decrease
the kinetic energy can be taken as a quantitative measure of a protecting
structure efficiency.

Remark 2 The idea to use the kinetic energy loss to estimate the efficiency
of a dike was already proposed by Beghin and Closet in 1990 [BC90]. However,
they had very limited information on the flow structure (especially velocity and
density profiles). That is why they decided to approximate this quantity by the
ratio |U2 − U ′2| /U2. Here U ′ is the front velocity at certain distance below the
dike and U is the front velocity of the reference avalanche measured at the
same point.
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Figure 16. Kinetic energy evolution during the simulation. “Small obstacle” refers
to the height hs = 0.25h0 and “big obstacle” means hs = 0.6h0.

Finally, we extract from our simulations another important characterization
of an avalanche flow. We speak about the front velocity Uf represented as a
function of the front position xf . It is depicted on Figure 17 for two different
types of boundary conditions. This result is in accordance with earlier nu-
merical simulations [Eti04]. However, the propagation stage is quite limited in
our computations since we introduced an obstacle in the middle of the fluid
domain.

3.3 Impact pressures

In many applications we have to estimate the loading exerted on a structure
by an avalanche impact. Incidentally, the avalanche hazard level is attributed
depending on the estimated impact pressure values [Lié06]. Moreover, this
information is crucial for the design of buildings and other structures. In en-
gineering practice, it is common to determine the impact pressures according
to the following formula [MS93]:

Pd = Kpref = Kρ̄U2
f (9)

where K is a parameter depending on the obstacle configuration, ρ̄ is the
average avalanche density and Uf is the front velocity. For small obstacles it is
advised to take K = 1 and for big ones K = 2 sinα, where α is the incidence
angle. However, as it is pointed out in [BO91], it is difficult to estimate the
maximum pressure exerted by an avalanche since we have only very limited
information on the vertical structure of the flow.
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Figure 17. Avalanche front velocity as a function of the front position.

Remark 3 The given above formula (9) is applicable to avalanches in inertial
regime. When we deal with a gravity flow regime (in Fluid Mechanics we call
it the Stokes flow [HB83]), the situation is more complicated since the flow is
governed by the rheology which is essentially unknown [AM04]. In this case,
engineers use another expression [ABB+06]:

Pd = 2ρ̄g(h − z).

For aerosol avalanches, Beghin and Closet [BC90] proposed the following em-
pirical law to estimate the impact pressure:

Pd =
K

2
Ka(z)ρ̄U2

f ,

where Ka(z) is a dimensionless factor taking into account for the velocity
variations in the upward direction. They also suggested an idealized form of
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the factor Ka(z):

Ka(z) =



























10, z < 0.1h,

19 − 90z, 0.1h ≤ z ≤ 0.2h,

1, z > 0.2h,

(10)

where h is the impacting avalanche height. It was shown later [NB03] that this
approximation underestimates the dynamic pressure in all parts of the flow.

The methodology presented in this study allows to determine the impact pres-
sures with required accuracy. The pressure profiles at different times are pre-
sented on Figures 18 and 19. On Figure 18 we show side by side pressure
profiles for the big and small obstacles. It can be seen, that the form of the
vertical pressure distribution does not change drastically. It means that pre-
computed pressure profiles may be scaled and reused for different obstacles
within engineering accuracy [BC90, MS93].

On Figure 19 we show the comparison of impact pressures for two different
boundary conditions along the bottom. Namely, we performed one run with
the classical no-slip condition ~u = ~0 and another run with the following partial
slip condition:

~u · ~n = 0,
(

(1 − α)~u + α(D(~u) · ~n)
)

· ~τ = 0, (11)

where ~τ is the tangent vector to the boundary. We have to say that the last
condition is known to be physically more relevant [Eti04].

The impact pressure is sensitive to the addition of the friction. The apparent
big difference between two profiles on Figure 19 is explained by the shift in
time of the impact event. However, the peak loading and the impact duration
are almost the same.

Computed in the present study impact pressure profiles may be used in engi-
neering practice. Namely, proposed earlier [BC90, Rap95] somehow idealized
profiles (10) can be in principle computed for any obstacle geometry in vari-
ous configurations. Once a computational tool is developed and validated, the
cost of its usage is totally negligible comparing to physical experiments. It
represents the major advantage of computer simulations.

4 Conclusions and perspectives

In the present paper we show some preliminary results on the numerical mod-
eling of powder-snow avalanches. We compute the evolution of an avalanche
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Figure 18. Dynamic pressure profiles along the obstacle at different times.

(a) t = 1.68 s (b) t = 1.74 s

Figure 19. Comparison of impact pressures for two types of boundary conditions.
Solid black line corresponds to the classical no-slip condition, while the blue line
with circles refers to the partial slip condition (11).

from the beginning until hitting against the obstacle. We show impact pressure
profiles (Figures 18 and 19) and kinetic energy evolution (Figure 16) for dif-
ferent obstacle heights. Front position and front velocities are extracted from
simulations. The main goal of these computations is to prepare the tools and
develop a methodology to quantify the efficiency of protecting structures.

Recall that a powder-snow avalanche front can reach the speed up to 100 m/s.
Consequently, the Mach number Ma attains relatively high values:

Ma :=
uf

cs

≈ 0.3,
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where cs is the sound speed in the air. It means that compressible effects
may be important during the propagation stage. In general, impact events
are followed by strong compressions. Hence, in future works we are plan-
ning to take into account the compressibility in some weak and strong senses
[DDG08b, DDG08c, DDG08a, Dut07] and to perform the comparisons with
the present results. Obviously, at this point a validation against experimental
data is highly recommended.

Extracted impact pressures should be used to couple the present computa-
tions with a solid mechanics part [KB01]. We would like to compute defor-
mations induced in the obstacle (later in a structure) by striking force of
an avalanche. Currently we assume the obstacle to be absolutely rigid. This
research axis seems to be still underexplored. However, there is already inter-
esting experimental material on the avalanche interaction with solid obstacles
[LSBH95, Pri03, PNBNF04, NB03, BR04].

The rheology of avalanches should be further investigated [AM04] and future
models will take this information into account. At this stage, close collabora-
tion between physicists and mathematicians is needed to bring the answers on
challenging questions.
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[BDF+07] V.P. Boñgolan-Walsh, J. Duan, P. Fischer, T. Özgökmen, and
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