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Abstract 

This paper deals with the implementation of 
monitoring and control strategies to improve 
industrial performances.  Industrial performances are 
nowadays defined in terms of numerous and multi-
level criteria to be synthesized for overall 
improvement purposes In our approach, the overall 
performance of the company is the aggregated value 
of its partial performances related to each criterion. 
The aggregation model is performed with a Choquet 
integral. Two improvement strategies in this multi-
criteria context are then envisaged. The contribution 
of a criterion to the Choquet aggregated performance 
has a key role in both strategies that are thus 
compared and justified through the monitoring of 
criteria contributions. A case study illustrates the 
propositions of the paper. 

Keywords: industrial performance, performance 
improvement, contribution of a criterion, efficiency, 
multi-criteria decision-making. 

1   Problem statement 

To deal with the complexity of the current industrial 
context, new diagnosis and control strategies 
intended to bring about continuous improvement 
have to include both the multi-criteria performance 
expression aspects and the modeling of their 
relationships [1][2][3]. The so-called Performance 
Measurement Systems (PMS’s), which are 
instruments to support decision-making [4], fulfill 
that purpose. A PMS is made of a set of performance 
expressions to be consistently organized w.r.t. the 
objectives of the company. Besides, aggregation 
models allow to define overall performances w.r.t. 
the different elementary objectives of the company 
[1]. They enable to highlight the priorities in the 
decision-maker's strategy. The aggregated 
performance model captures the company’s strategy: 
in our approach, the aggregation model is performed 
with a Choquet integral that enables both tackling 
with relative importance of criteria and interactions 
among them [5]. 

Definition and design attempts for overall 
performance have already been considered in [1][4]. 
This work is focused on decision-support tools that 
could help managers to better plan performances 
improvements w.r.t. to the company strategy to reach 

a goal while minimizing costs. We have already 
proposed optimization techniques to fit this scheme 
and characterize an efficient improvement [5]. The 
paper focuses here on a related issue: how to define a 
relevant step by step procedure to reach the 
previously computed goal. Two different logics are 
semantically analyzed and justified. One is based 
upon statistical considerations w.r.t. the most likely 
profitable contributions of criteria to the overall 
performance.  The idea is to determine the criteria on 
which the company should improve first statistically 
in order to improve as much as possible its overall 
performance. This study was initially proposed by 
Labreuche in [7] when no quantitative goal is 
targeted. The second one is related to the concept of 
efficient improvement when a quantitative goal is set 
[8][9]. The principle is to define a step by step locally 
efficient improvement in a multi-criteria context until 
the expected goal is reached. The corresponding 
iterative procedure is provided in both cases 
(algorithms A1 and A2). In both cases, the 
contribution of a criterion to the overall performance 
improvement plays a key role. As a consequence, a 
monitoring functionality of criteria’ contributions in 
time is provided for a more quantitative and 
theoretical comparison of both improvement logics. 
The corresponding algorithm is provided. 

This paper is organized as follows. Section II briefly 
recalls the characteristics of the industrial 
performance expressions. The Choquet integral is 
proposed as a solution for handling the interacting 
multi-criteria aspects of industrial performance. The 
aggregation viewpoint compels us to redefine what 
efficiency means. Performance improvement 
problems are modeled as optimization problems. 
Then, section III qualitatively analyzes two 
semantically different logics based upon criteria 
contributions to perform an efficient improvement. 
Section IV proposes a more quantitative and 
theoretical comparison. Finally, a case study 
illustrates all these notions. 

2 The aggregative model of overall 
performance 

2.1 The PMS notations  

A performance expression is associated with a given 
objective and can be defined as a satisfaction degree. 



In practice, elementary performances are returned by 
the so-called performance indicators. They result 
from the straightforward comparison between the 
objectives (obtained by the breakdown of the overall 
considered objective) and the reached measurements. 
Hence, the performance expressions can be 
formalized by the following mapping [10]: 

P :

( , ) P( , )

O M E

o m o m P

× →
→ =  

O, M and E are respectively the universes of 
discourse of the set of objectives o, the set of 
measures m and the normalized performance [0,1]P∈ . 

Let us note C the set of the n criteria implied by the 
PMS. The aggregation of the performances can be 
expressed as an operation that synthesizes the 
elementary performances into an overall expression:  
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In our approach, the aggregative model Ag for the 

PMS is a Choquet integral. It enables tackling both 
with relative importance of criteria and interactions 
among them. This choice is not discussed here (see 
[5][8] for further justifications). Let us simply note 
that another viewpoint is proposed in [3] where a 
goal is directly modeled as a fuzzy set upon the 
measure scale. That is another way to tackle the 
commensurability issue. Furthermore, interactions 
considered in our approach are not the ones tackled 
in [3] where action plans may impact conjointly 
several performances indicators. Our approach 
focuses only on the preference decision-maker model 
at the performance level: the corresponding action 
plans have then to be designed. Thus, eventual 
interactions between improvement actions are not 
considered here as is the case in [3]. 

kP  is the aggregated performance of the partial 

performances profile 
1

( , ..., )k k
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where : ( ) [0,1]P Cµ →  is a fuzzy measure, (.) 

indicates a permutation such that the partial 

performances(.) [0,1]kP ∈  are ranked 
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where 
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Note that a simplex  

{ }(.) (1) ( )[0,1] / 0 1n
nH P P P= ∈ ≤ ≤ ≤ ≤K  is associated to 

each profile kP
r

: it corresponds to the ranking (.) 
where the Choquet integral has a linear expression. 
This remark is of importance to tackle optimization 

problems implying a Choquet integral in terms of 
linear programming in simplex regions. 

2.2 Efficiency in the aggregated framework  

The problem is to help the decision-makers in their 
improvement analysis by considering the way the 
overall performance could be relevantly improved. 
The problem is to design a strategy that leads to the 
required overall performance improvement with a 
minimal increase w.r.t. each elementary performance, 
i.e. a minimal additional cost related to each of them. 
The answers to this question are intuitive when the 
aggregation operator is linear, e.g. with the weighted 
average mean (WAM). It is thornier with a Choquet 
integral. 

This notion of optimal improvement is directly 
related to the concept of efficient improvement. 
Indeed, the notion of efficiency both implies the 
objective to be reached and the allocation of 
resources associated to an improvement: an 
improvement is efficient if any restrictive 
modification of its allocated resources necessarily 
entails a decrease of the overall performance. In our 
aggregated framework of PMS, the efficient 
improvement search can thus be formalized as the 
following optimization problem. 

Let us note 
1 2( , ,..., )I I I I

nP P P P=
r

 the initial 

performance profile and ( )I IP C Pµ=
r

 the associated 

overall performance. The problem to be solved is to 
identify the most efficient strategy to improve the 
overall performance, i.e. the least costly 
improvement of the elementary performances to 

achieve an expected overall performance
* I

P P> . 

What is the minimal investment w.r.t. each criterion 

to reach *P ? Let us note * * * *
1 2( , ,..., )nδ δ δ δ=

r
the 

solution to this problem. *δ
r

is thus associated to the 

most efficient strategy w.r.t. a given Cµ  model and a 

predefined set of cost functions associated to each 
criterion of the PMS. A cost function ( , )I

i i ic P δ  is 

associated to each criterion i: ( , )I
i i ic P δ  represents 

the cost for an improvement of iδ  from I
iP . For sake 

of simplicity, ( , )I
i i ic P δ is supposed to be a linear 

function w.r.t. iδ : ( , ) .I
i i i i ic P cuδ δ= with icu a unit 

cost. The problem (P1) of the most efficient 
improvement can then be formulated as follows: 

Objective function 

1

min ( , ) ( ),
n

I
i i i

i

c P c Pδ δ
=

=∑
rr

          (4) 

Constraints 
( ) *C P Pµ δ+ =

rr

    (Behavioral constraint) 
, 0 1

i

I
ii Pδ∀ ≤ ≤ −  (Bound constraints) 

The piecewise linearity of Cµ enables to tackle (P1) as 

a linear programming problem. Indeed, Cµ  behaves 



as a WAM on each simplex 

[ ]{ }(.) (1) ( )0,1 / 0 1
n

n
H P P P= ∈ ≤ ≤ ≤ ≤

r
L . This remark 

enables to break down the initial problem into !n  
linear programming sub problems. Nevertheless, this 
solving can be considered only for low n values [5]. 

Another idea consists in considering the problem as a 
whole and introducing linear programming 
considerations [8][9]. To that end, let us first notice 
that guaranteeing a potential solution belongs to a 
given (.)H  implies adding ( 1)n−  constraints in the 

problem definition: ( ) ( 1)( ) ( 1), I I

i ii ii P Pδ δ++ + +∀ ≤ . Next, 

noticing that realizable solutions related to a linear 
programming problem belong to a convex hull, the 
associated vertices x

r
 have a particular profile due to 

the 3 types of inequalities involved in the problem 
modeling:  

(a) ( ), 0 ii δ∀ ≤  

(b) ( ) ( ), 1i ii Pδ∀ ≤ −            (5) 

(c) ( ) ( 1)( ) ( 1), i ii ii P Pδ δ++ + +∀ ≤ . 

A vertex x
r

 is thus defined by n equations: ( 1)n−  of 

the preceding constraints brought to equality 

conjointly with ( ) ( )
1

( ) *.( )
n

I I
i i

i

C P PPµ δ µ δ
=

+ = ∆ + =∑
rr rr

 

where the ( )iµ∆ ‘s are the coefficients of the linear 

expression of Cµ  in simplex (.)H defined by 

inequalities of type (c). The set of constraints is 

generated for any simplex (.)H  and all the vertices 

are computed. The minimal distance between IP
r

 and 
a vertex gives the solution to the global problem. 

Now, let us remark that, after some rearrangement, a 
vertex x

r
 is a vector with 3 distinct blocks of 

coordinates: 
- (a) unchanged coordinates w.r.t. the initial 

vector P
r

 ( ( )( ) ( )0 ii ix Pδ = ⇒ = ), 

- (b) coordinates equal to 1 
( ( ) ( ) ( )1 1i i iP xδ = − ⇒ = ), 

- (c) a subset of coordinates at the same value 
β ( ( ) ( ) ( ) ( ) ( ) ( )i i j j i jP P x xδ δ ⇒+ += = ).  

Linear programming results involve that *IP δ+
rr

can 
only take remarkable values as coordinates. Indeed, 

after some rearrangement, it means that *P δ+
rr

 can 
always be rewritten under the following form 
denoted F [7]:  

( ) ( )[1,...,1, ,..., , ,..., ]Ti jP Pβ β          (6) 

This is a relevant piece of information for decision-
making that generalizes the obvious result that is 
obtained with a WAM, e.g. 

( ) ( )
[1,...,1, , ,..., ]

i j

I I TP Pβ . 

More details are provided in [9].  

Let us still note that problem (P1) can be easily 
extended in (P’1) when more severe bound 
constraints related to the application are to be 

introduced. Constraints , 0 1
i

I
ii Pδ∀ ≤ ≤ −  are 

replaced by , 0 1
i ii

l r I
ii Pδ δ δ∀ ≤ ≤ ≤ − −  where 

i

lδ  

and 
i

rδ  are threshold parameters issued from the 

application (e.g. improvement w.r.t. criterion i cannot 
exceed 30% but must be over 10%). 

2.3 The improvement control problematic 

From this viewpoint, an efficient improvement to 
reach the overall performance level *P merely 

depends on an initial performances profileIP
r

, a set 
of n linear cost functions and an aggregation 
operatorCµ .  It means that efficiency only depends 

on a static viewpoint of improvement: the 
optimization profile (P1) merely determines the 
setpoint * * * *

1 1* [ .. ] / ( ,.., ) *
n n

P P P C P P Pµ= =
r

 to be 

reached. No dynamical aspects of improvement are 
considered in this modeling. The problem to be 
solved now is to determine a step by step evolution in 
time for P

r
 from IP

r
 to *P

r
. *P
r

 is the setpoint of this 
control problem,  P

r
 the controlled variable.  

The basic idea is to define some remarkable points 
kP
r

of the trajectory from IP
r

 to *P
r

 to plan a step by 
step expected evolution ofkP

r
. Let us note that our 

viewpoint is dedicated to the managers’ team because 
our decision-making support system only relies on 
the PMS perception of the company’s health. It does 
not consider further operational or physical 
constraints related to the implementation of the 
improvement. Indeed, the aggregation model only 
captures expectations, preferences or wills of the 
company’s managers. Interactions thus express 
expected negative or positive synergies between 
criteria, but they are not to be confused with 
statistical correlations between parameters of the 
physical and operational world [3]. Providing the 
series of intermediate points  kP

r
 from IP

r
 to *P

r
 

enables to define the guidelines that the managers 
would like the company improvements follow. This 
is a purely managerial viewpoint. The contribution of 
a criterion to the global improvement has then a key 
role in the following of this paper. 

3 Improvement control logics 

3.1 A statistical viewpoint: the worth index 

This first viewpoint is inspired of the work of 
Labreuche in [7]. In that paper, the author proposes 
an index of importance to determine the criteria on 
which a candidate should improve first in order to 
improve as much as possible his overall score. His 
results are transposed here in the case of industrial 
performance improvement. Let us note that no 
quantitative objective *P  is provided in Labreuche’s 
issue, the qualitative aim is only to do one’s best. 
Let us first briefly recall the notion of worth index 
like it is developed in [7]. This work was initiated in 



[11] when no initial profile IP
r

is specified. 
Labreuche’s aim is to come up with advices on the 
criteria on which the company performance should 
be improved first from a statistical viewpoint. This 
identification depends on the aggregation model H  
as well as on the partial 
performances

1 2( , ,..., )I I I I
nP P P P=

r
. To give some 

advices on the criteria that should be improved, 
Labreuche proposes to introduce an index denoted by 

( )( )C I

A H Pω
r

for the aggregation function H  and the 

initial profile IP
r

. For anyA C⊂ , ( )( )C I
A H Pω

r
will be 

the worth for the profile IP
r

 to be improved in 
criteria among A, subject to the evaluation 
functionH . He constructs ( )( )C I

A H Pω
r

 that will be 

large if improving IP
r

 w.r.t. criteria A  yields a large 
improvement in the overall evaluation( )H P

r
. The 

recommended set of criteria to be improved first is 
the coalition *A C⊂  that maximizes ( )( )C I

A H Pω
r

. 
More accurately, improving the criteria in *A  
maximizes the odds the overall performance reaches 
the highest level as possible. Labreuche proposes an 
axiomatic construction of worth index ( )( )C I

A H Pω
r

. 

In the following the only case H Cµ= is considered. 

Let us consider two profiles , '
r rIP P andA C⊂ . The 

following notations are introduced: \' ,
A

I

C AP P   is the 

compound profile whose partial performances are 

such that '
i

I

iP P> if i A∈ else I

iP . For any subset of 

criteriaA C⊂ , 
A

P is the restriction of P
r

on A.  

A possible formula for the worth index is:  

'

' '

[ ,1 ] \

1
( )( ) [ ( , ) ( )].

(1 ) A

I
A A

A A AP P

i A i

c I I I

C AI
C P C P P C P dP

P
µµ µω

∈

∈

= −
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r r      (7) 

( )( )
A

c IC Pµω
r

 is thus the mean value of gain related to 

the aggregated performance calculated over all the 

expected values the improvement can take' [ ,1 ]A

I
A AP P∈  

in the upper hypercube (Figure 1). Let us note that 
the upper bound of the integral is 1A

 (no quantitative 

objective *P  is specified). 

When cost functions w.r.t. partial improvements are 
introduced, a natural extension is: 

'

\

[ ,1 ]

' '

'

1
( )( )

(1 )

[ ( , ) ( )].

( , )A

C A

I
AA

i A

A P P
i A

I I
A Ac I

I I I
A A

C C
C P

P

P P P dP

c P P P
µ µ

µω
∈

∈

=
−

−
−∫∏

r
r

    (8) 

The benefit 
\

'( , ) ( )
C A

I I
AC CP P Pµ µ−

r
 is replaced by the benefit 

to cost ratio \

'

'

( , ) ( )

( , )
C A

A

I I
A

I I
A A

C CP P P

c P P P
µ µ−

−

r

. 

In this framework, coalition max ( )( )* / A

c I

A
C PA µω

r

 
results from a statistical interpretation: indeed, 

* ( )( )C I

A
H Pω

r
 provides the criteria that maximize the 

expectancy of '

\( , ) ( )
A

I I

C AP P C PCµ µ−
r

/ '( , )I I

A A A
c P P P−  

appearing as a variate. No accurate value can be 
provided for the overall improvement with 

* ( )( )C I

A
H Pω

r
, it only warranties that criteria in *A  

maximize the odds to reach a high overall 
performance.  
 

 

 

 

 

Figure 1: The upper hypercube I

A
P —1

A
 

lower bound 
I

A
P - upper bound 1
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This statistics based advice is natural for the MCDM 
or theory games community, but somewhat 
disturbing in the industrial systems engineering 
community. We are going to see how Labreuche’s 
model can be slightly modified and integrated in a 
step by step improvement procedure when a 
quantitative goal *P is assigned.  

Thus, we authorize an upper bound Sup
CP  not 

necessarily equal to 1C  (as a consequence the upper 

bound in (8) will be Sup
AP  and not 1A). We will note it: 

( )( ),A

c I Sup
CC P Pµω

r

 and ( )( ) ( )(,1 )A A

c I c I
CC CP Pµ µω ω=

r r

            (9) 

Now let us back to the control problem of P
r

 from 
IP

r
 to *P

r
. ( )( ),A

c I Sup
CC P Pµω

r
 can be used for strategic 

control purposes. Let us take 
*Sup

CP P=
r

 where *P
r

  is 
solution of (P1). The aim is to plan a step by step 
expected evolution in time forkP

r
 from IP

r
 to *P

r
. 

The algorithm (A1) is then the following: 

Given , , ,I
iP C i cuµ ∀

r
 

00, : Ik P P= =
r r  

While 
*

( ) ( )
k

C CP Pµ µ<
r r

 

Compute 

*

* * *
( )( ) max ( )( )/ , ,

AA

c k c k

A C

C CA P P P Pµ µω ω
⊂

=
r r r r

 

Improve partial performances w.r.t. criteria in 
*

A till time 1k +  
Check improved performances be kept in upper 

hypercube 
*___k

A AP P  

Note 1k
P

+r
the new attained performance profile at 

1k +  

Evaluate overall performance 1
( )

k
C Pµ

+r
  

1k k= +
 

End while  

The series of points k
P
r

defines the required 
trajectory  

Note that this step by step procedure is possible 

because *P
r

 remains a solution of (P1) with any 
k

P
r

as 

  

P1

P2

P3

P1

P2

P3

1A°
°I

AP

P1

P2

P3

P1

P2

P3

1A°
°I

AP



initial profile in the upper hypercube 
I

P
r

— *P
r

(L1 
norm is used in (P1) and no regression is authorized 
w.r.t. any criterion). (A1) warranties that from any 

kP
r

 to 1kP +r
, the improved criteria correspond to the 

ones that maximize the odds to reach a high level of 
performance at time 1k + . This is an optimum in the 
sense of statistics: on an average, the criteria of *A  
warranty the maximal expectancy for overall 
improvement at 1k + . It does not mean that each 

intermediary
k

P
r

corresponds to an efficient 
improvement! Constraining the improvement to be 

efficient at each intermediary 
k

P
r

corresponds to 
another viewpoint that is now explained. 

3.2 The local efficiency viewpoint 

Let us consider again the control problem of P
r

 from 
IP

r
 to *P

r
. We are no more interested in maximizing 

the odds to reach a high performance at each step k, 
as the worth index method suggests it, the strategic 
decisive factor is now warranting efficiency at any 

intermediary point
k

P
r

.   

The basic idea is to “locally” reuse (P1) (more 
exactly (P’1)) to define such a series of points kP

r
. 

Indeed, intermediate pointskP
r

are needed when *P  
appears as an ambitious setpoint that will require a 
long time before reached. Managers have to define 
short terms and progressive improvements for which 
it is easier to plan an adequate implementation. These 
intermediate points can be envisaged as locally 
efficient improvement. The guidelines consist in 
providing short terms objectives that will be reached 
in an efficient manner and proceed thus, step by step, 
until *P

r
. This is A2 algorithm:  

Given , , ,I
iP C i cuµ ∀

r
 

Provide a real series of overall objectives kP such 

that ( ) *
I k

C P P Pµ ≤ ≤
r

(for example, if *P
r

 is 

reached in p steps, we may 

choose
* ( )

( . 1,..,,)
I

k I
C

C
P P

P P k k p
p

µ
µ

−
= =+

r
r

. This 

is a mere suggestion; the idea is merely to provide 
short terms and progressive improvements). 

00, : Ik P P= =
r r  

While 
*

( ) ( )
k

C CP Pµ µ<
r r

 

Solve  (P’1) with k
P
r

as initial point and 
1k

P
+

as 
setpoint and bound constraints: 

*, 0, 1l r

i i i
i Pδ δ∀ = = − ; it provides 

1k
P

+r
  

1k k= +  
End while  

The series of points k
P
r

defines the required 
trajectory  

This strategy warranties a local efficient 

improvement as soon as k
P
r

is reached. The 
implementation is both locally and globally efficient 

when *P
r

 is finally reached. Local efficiency is 
another way envisaging the trajectory from IP

r
to *P

r
, 

which obeys a different decisive factor as the one in 
the worth index method. They correspond to clearly 
different attitudes w.r.t. the potential risk to fail.  

3.3 Semantic comparison 

From a semantic viewpoint, this second alternative is 
close to a control theory modeling, whereas the first 
one was rather games theory oriented with a 
statistical semantic. Both can be easily justifiable: the 
first one ensures that improved criteria correspond to 
the maximal expectancy for the expected overall gain 
at any time. The second one relies on a decisional 
criterion based upon local and global efficiency. Both 
have advantages―they are justifiable at any 
time―but suffer some drawbacks. Indeed, the worth 
index logics will provide the most statistical 
profitable criteria but nothing can be said about the 
resulting expected gain. For example, the maximal 
worth index can be associated to a criterion where the 
improvement margin is extremely reduced (the 
company’s partial performance w.r.t. this criterion is 
already excellent and even if perfection (i.e., 1) is 
reached, the overall performance will not be 
significantly improved. Furthermore, at each kP

r
the 

worth index relies on statistical considerations, thus 
the performances evaluation at time 1k + can be 
discouraging in practice! On the other hand, (P1)-
based logics warranties efficiency at each kP

r
if and 

only if kP
r

is precisely reached. Moreover, it 
necessitates managers to be able to define the series 
of real values kP . 

4 Criteria contribution and Monitoring  

Now let us consider a more quantitative and 
theoretical comparison of both control logics. The 
basic notion beyond these two strategies is the notion 
of criterion contribution to the improvement of the 
overall performance.  
Let us thus consider the following problem: what is 
the contribution of criterion i in the efficient 

improvement from 
I

P
r

 to 
*

P
r

? This contribution 
cannot be a priori computed with initial data of (P1): 

, , ,I
iP C i cuµ ∀

r
and *P .  Indeed, criteria contributions 

depend on the dynamics of the improvement from 
I

P
r

to 
*

P
r

.  Let us consider the following illustration 
(Figure 2). 

Three possible paths j=1, 2 et 3t from 
I

P
r

 to 
*

P
r

are 

represented in the figure 2 example. The global 
cost *C is provided by (P1): it is the same for all 

paths jt from 
I

P
r

 to 
*

P
r

, whereas the criteria 

contributions to *
( ) ( )

I
P PC Cµ µ−
r r

depend  on the path. 

The contributions of criterion 1, 1
jC
t

, 1, 2 3j and=  



are: 
1

*

1 1 1.( )IC P Pµ= ∆ −1
t , 

1 1

' *
1 1.( )IC P Pµ= ∆ −2t  and 

1 1

' *
1 1 1. .( )µ µ= ∆ + ∆ − −IC dp P P dp3t . 

Thus, the a priori contribution of a criterion to  
*

( ) ( )
I

P PC Cµ µ−
r r

 is not a precise quantity. In the 

following, a method is proposed to compute the 
lower and upper endpoints of the interval of all 
possible values for the contribution of any criterion i. 
The aim is to provide the minimal and maximal 
expected profitability. A criterion necessarily 
contributes at least up to min

i i

N
C C= t

t

, but it is possible 

the contribution reaches max
i i

C C
Π = t

t

. [ , ]
i i

NC CΠ  

characterizes the imprecision of the a priori 
contribution of criterion i to *

( ) ( )
I

P PC Cµ µ−
r r

. 

 

 

 

 

 

 

 

Figure 2. Contributions and trajectories 

We give now the principle of the 
[ , ]

i i

NC CΠ computation. This is a three steps 

procedure.  
Step 1: Non oriented complete graph Γ is first built; 
it links all the !n  simplexes 

[ ]{ }(1) ( )
0,1 / 0 .. 1

n

n
H P P Pσ σ σ= ∈ ≤ ≤ ≤ ≤

r
 together.  

Let be
I

H
σ

the simplex IP
r

 belongs to and 
F

H
σ the 

one of *P
r

. 
I

H
σ is the source of  Γ and 

F
H

σ its sink.  

• For eachHσ , it is checked that there exists at least 

one point ( )P σ
r

 such that: {1;..; },i n∀ ∈  
*( )

i i

I
iP P Pσ≤ ≤  ; 

• If there does not exist such a point, thenH
σ

is 

deleted as all the arcs whose H
σ

is an endpoint; 

• Finally, when each node H
σ

 has been checked, a 

filtered graph ΓF is obtained. 
Step 2: For each node H

σ
in ΓF, compute the range of 

allowed values for ( )
i

P σ  for each criterion i: 

[ ( ); ( )]Inf Sup

i i
B Bσ σ . The computation is given by the 

following expressions: 

11

*

( )
( )( )

( )( ) max ; ( ) minInf Sup

i i j
j ij i

I
jB P B Pσ

σσ
σσ σ

−− ≥≤
= =         (10) 

Step 3: ΓF defines a set of paths 1..,k k mPath =  with 

I
H

σ as source and 
F

H
σ as sink without cycles. For 

each node H
σ

in 
k

Path , we know  [ ( ); ( )]Inf Sup

i i
B Bσ σ  

and ( )
i

µ σ∆ , the linear coefficient of Cµ  for 

criterion i in simplex H
σ

. Let be kPath

i
E  the set of 

series of disjoint intervals ( )
i

I σ  such that 

( ) [ ( ); ( )]Inf Sup

i i i
I B Bσ σ σ⊆  and 

*

/ ( )

( ) [ ; ]
k

i i

H Nodes Path

I
iI PP

σσ

σ
∈

=U .  It can be then computed, 

with ( )L I  the length of interval I : 

/ ( )

min ( ). ( ( ))
Pathk

k

i i

H Nodes Path

L I
σσ

µ σ σ
∈

∆∑
iE

and 

/ ( )

max ( ). ( ( ))
Pathk

k

i i

H Nodes Path

L I
σσ

µ σ σ
∈

∆∑
iE

 

Finally: 

/ ( )

min min ( ). ( ( ))
Pathk

k
k

i i i
Path

H Nodes Path

NC L I
σσ

µ σ σ
∈

= ∆∑
iE

/ ( )

max max ( ). ( ( ))
Pathk

k
k

i i i
Path

H Nodes Path

C L I
σσ

µ σ σ
∈

Π = ∆∑
iE

 

 Note that 
i

NC and 
i

CΠ can be indexed by time k for 

monitoring purposes. Indeed,[ ( ), ( )]
i i

NC k C kΠ can be 

computed at each point kP
r

of the trajectory from 
IP

r
to *P

r
. We have then the following relation: 

[ ( ), ( )] [ ( 1), ( 1)]
i i i i

N NC k C k C k C kΠ Π⊇ + + . It means that 

the imprecision related to the contribution of a 
criterion to the overall improvement 

*
( ) ( )

I
P PC Cµ µ−
r r

naturally decreases as kP
r

 becomes 

closer to *P
r

. When *P
r

 is reached at *k k= , 
* *( ) ( )

i i

NC k C kΠ= , i.e. * *([ ( ); ( )]) 0
i i

NL C k C kΠ = : there 

is of course no more imprecision related to the a 
posteriori contribution. The manager has thus at his 
disposal an estimation in time of the range of 
authorized values for the contribution of each 
criterion. These computations enable to compare 

quantitatively any two control strategies from 
I

P
r

 to 
*

P
r

in terms of criteria profitability. It is illustrated in 
the following section for the local efficiency and the 
worth index control strategies. 

5 Case study  

The case study concerns a SME producing kitchens 
and it is detailed in [12]. The overall objective of the 
company is to continuously increase its productivity. 
Let us suppose that a partial break-down of the 
strategic objective related to the productivity rate into 
4 basic criteria is processed: Stocks, Equipment 
availability, Operators’ skill, Quality. The overall 
performance is defined as the aggregation of these 4 

associated indicators with a Cµ . All the numerical 

pieces of information exposed hereafter have been 
obtained by asking the management staff according 
to the Macbeth methodology [12]. Table 1 provides 

the current performances 1( , , )I I I
nP PP =

r
K , the 
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relative importance of each criterion in the SME 
activity and the estimated 

icu costs to improve the 

performances. In this example, we use a 2-additive 

Cµ . In this case, we have:  

( ) ( ) ( )( ) ( )( )

1 1

2 2
i i i j i jj i j i

I Iµ ν
> <

∆ = + −∑ ∑ where the 

( )iν are the Shapley indexes and the 
( )( )i jI the 

interaction coefficients between criteria i and j 
(Table 2). 

Table 1. Weights, costs and initial performances 
 Indicators νi cui IP

r
 

C1 Stocks 0.30 1 000k€ 0.80 

C2 Equipment availability 0.25 3 000k€ 0.25 

C3 Quality 0.30 2 000k€ 0.75 

C4 Operators’ skill 0.15 3 000k€ 0.50 

Table 2. Interactions coefficients 
Interactions between value 

Stocks - Equipment availability 0.30 

Stocks - Quality 0.25 

Operators’ skill - Quality 0.30 

The current aggregated performance is 
( )( ) 0.8,0.25,0.75,0.5 0.483IC P Cµ µ= =

r
. The expected 

overall performance is * 0.9P = . Solving (P1) with 
I

P
r

as initial point and * 0.9P =  provides 
*

(1,1,1,0.636)P =
r

 which corresponds to a global 

improvement cost * 3358 €kC = . That is the static 
viewpoint of this efficient improvement. Now* 0.9P =  
appears as an ambitious setpoint so that the manager 
makes up his mind to reach it in three years. He has 
then to define the way he is going to achieve this 
goal. He decides to set intermediate targets each year. 
The two strategies described in this paper are 
envisaged (see respectively algorithms A1 and A2). 

- Local efficiency logics. The manager chooses more 
pragmatic and short-term overall performances for 
each end-year, i.e., 1P  and 2P . Optimization 

problem (P1) is first solved with  
I

P
r

as initial profile 
and 1P  as expected overall performance: it provides 

1P
r

at the end of first year. Then (P1) is solved with 
1P
r

 and 2P : the result is 2P
r

at the end of second 
year. Finally, it remains the improvement from 2P

r
 to 

*

P
r

last year. He justifies his strategy as a step by step 
efficient improvement implementation. The 
computations are summarized in Table 3 (left part). 

- Worth index logics. The worth index is computed at 
the beginning of each year. It provides the criteria to 
be first improved. At the end-year, the performance 
vector is observed. Worth index is recalculated with 

this new vector until 
*

P
r

is reached. Results are 

summarized in Table 3 (right part). Thus, *

2{ }A c=  

first year (maximal worth index is got for 
* *

{ }* 2
, ,( ) ( )) ) 0,01303( (C I C I

CA
C P P C P Pµ µω ω= =

r r r r
) and 

3

(0.8,0.65,0.75,0.5)P =
r

 is reached, then 
*

1 2 3{ , , }A c c c=  second year (maximal worth index 

is got for 
1 3

* *
{ , , }* 2

( ) , ( ) ,) ) 0,01147( (C I C I
C C CA

C P P C P Pµ µω ω= =
r r r r

) 

and 
4

(1,0.9,0.8,0.5)P =
r

 is achieved. Last year, it 

remains improvement from 
4

P
r

 to 
*r

P . The manager 
justifies his strategy as the step by step most 
statistically profitable implementation. 

Table 3. Left Part: Trajectory with local efficiency; 
Right Part: Trajectory with the worth index  

1st year  1st year   

 2nd year   2nd year   

 3rd year   3rd year 

P
r

 IP
r

 1P
r

 2P
r

 *P
r

 IP
r

 3P
r

 4P
r

 *P
r

 

1C  0.8 0.8 0.914 1 0.8 0.8 1 1 

2C  0.25 0.759 0.914 1 0.25 0.65 0.9 1 

3C  0.75 0.759 0.914 1 0.75 0.75 0.8 1 

4C  0.5 0.5 0.5 0.636 0.5 0.5 0.5 0.636 

( )PCµ
r  0.483 0.69 0.8 0.9 0.483 0.643 0.768 0.9 

 

Finally, for a quantitative comparison of both control 
strategies, interval [ ( ), ( )]

i i

NC k C kΠ ( 3k = years) that 

provides the lower and upper bounds of the 

contribution of criterion i are computed with 
r I
P as 

initial point. Results are reported in Table 4. Column 
« Improvement » gives the coordinates of vector 

*δ
r

from 
r I
P to *

P
r

. Column « costs » reports the cost 
corresponding to each criterion for the optimal 
improvement. Columns ( )

i

NC t  and ( )
i

C tΠ give the 

minimal and maximal expected contributions for an 

efficient improvement from 
r I
P  to *

P
r

. Column 6 
(resp. 7) reports the corresponding minimal (resp. 
maximal) expected profitability for each criterion. 
Columns 8 and 9 respectively give the a posteriori 
contribution and profitability of each criterion to 

*( ) ( )I
C P C Pµ µ−

r r
 when a locally efficient strategy 

is applied, whereas columns 10 and 11 provide the 
same data for the worth index logic. Note that both 
strategies provide opposite effects on this example: 
the most profitable criteria for one are the less ones 
for the other one. Indeed, for the local efficiency 
control strategy, the most profitable criterion is 
Stocks and the less profitable one is Quality; in 
revenge, the most profitable criterion is Quality and 
the less profitable one is Stocks for the worth index 
control strategy. 



Conclusion 

Optimization problem (P1) is a basic useful tool to 
determine what an efficient improvement is when the 
overall performance of the company is modeled as 
the aggregation of elementary performances. 
However, they only provide the setpoint*P

r
, the 

expected performance profile for this improvement. 
That is the static viewpoint of what an efficient 
improvement should be. The way reaching *P

r
 

necessitates other decisive factors that will set the 
discrete dynamics of the improvement. Criteria 
contributions play a key role in this choice. Worth 
index and local efficiency logics provide two 
different dynamics to implement the efficient 
improvement that leads to *P

r
. An algorithm has 

been provided to compute the expected contributions 
of criteria from any initial point to *P

r
. It enables to 

compare in time control strategies in terms of criteria 
profitability. 
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Table 4. Expected and observed contributions and profitabilities 

Criterion Improvt  

Cost 

k€  ( )
i

N
C t  ( )

i
C t

Π   

Minimal 
Expected 

Profitability  
(%) 

Maximal 
Expected 

Profitability 
(%) 

Observed 
Contribution 

Strategy 1  
local efficiency 

Observed 
profitability  

(%) 

Strategy 1  

Observed 
Contribution 

Strategy 2  
worth index 

Observed 
profitability 

(%) 

Strategy 2  

C1 0.2 200 0,0099 0,11 4.95 E -3 5.5 E -2 0,11 5.5 E -2 0.01 5E -3 

C2 0.75 2250 0,24 0,3 1.067E-2 1.33E-2 0,24 1.067E-2 0.3 1.33E-2 

C3 0.25 500 0,02875 0,06875 5.75E-3 1.375E-2 0,02875 5.75E-3 0.06875 1.375E-2 

C4 0.136 408 0,0374 0,0374 9.17E-3 9.17E-3 0,0374 9.17E-3 0.0374 9.17E-3 

Somme  3358     0,41615  0,41615  

 


