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On some simpli
ial elimination s
hemes for
hordal graphsMi
hel Habib 1LIAFA, CNRS and Université Paris Diderot - Paris 7, Fran
eVin
ent Limouzy 2Dept. of Computer S
ien
e, University of Toronto, CanadaAbstra
tWe introdu
ed here an interesting tool for the stru
tural study of 
hordal graphs,namely the Redu
ed Clique Graph. Using some of its 
ombinatorial propertieswe show that for any 
hordal graph we 
an 
onstru
t in linear time a simpli
ialelimination s
heme starting with a pending maximal 
lique atta
hed via a minimalseparator maximal under in
lusion among all minimal separators.Keywords: Chordal graphs, minimal separators, simpli
ial elimination s
heme,redu
ed 
lique graph.1 Introdu
tionIn the following text, a graph is always �nite, simple, loopless, undire
ted and
onne
ted. A graph is 
hordal i� it has no 
hordless 
y
le of length ≥ 4.The 
lass of 
hordal graphs is one of the �rst 
lass to have been studied at
1 Email: habib�liafa.jussieu.fr
2 Email: limouzy�
s.toronto.edu



the beginning of the theory of perfe
t graphs. Sin
e then 
hordal graphs havebeen intensively studied, as 
an be seen in the following books [9,2℄.Let us re
all the main notions de�ned for 
hordal graphs. A maximal
lique of G is a 
omplete subgraph maximal under in
lusion. A minimalseparator is a subset of verti
es S for whi
h it exist a, b ∈ G su
h that a and
b are not 
onne
ted in G−S, and S is minimal under in
lusion with this prop-erty. A vertex is simpli
ial if its neighborhood is a 
lique (
omplete graph).An ordering x1, . . . , xn of the verti
es is a simpli
ial elimination s
heme,if for every i ∈ [1, n−1] xi is a simpli
ial vertex in G[xi+1, . . . xn]. Amaximal
lique tree is a tree T that satis�es the following three 
onditions: Verti
esof T are asso
iated with the maximal 
liques of G. Edges of T 
orrespond tominimal separators. For any vertex x ∈ G, the 
liques 
ontaining x yield asubtree of T .Using results of Dira
 [5℄, Fulkerson, Gross [6℄, Buneman [3℄, Gavril [8℄and Rose, Tarjan and Lueker [12℄, we have:Theorem 1.1 The following 5 statements are equivalent and 
hara
terize
hordal graphs.(i) G has a simpli
ial elimination s
heme(ii) Every minimal separator is a 
lique(iii) G admits a maximal 
lique tree.(iv) G is the interse
tion graph of subtrees in a tree.(v) Any LexBFS provides a simpli
ial elimination s
heme.2 The Redu
ed Clique GraphDe�nition 2.1 For a 
hordal graph G, we denote by C the set of maximal
liques of G and by Cr(G) the redu
ed 
lique graph, i.e. the graph whoseverti
es are the maximal 
liques of G, and two 
liques are joined by an edgei� their interse
tion separates them (i.e. if for every x ∈ C − (C ∩ C ′) andevery y ∈ C ′ − (C ∩ C ′), C ∩ C ′ is a minimal separators for x and y in G).Clearly Cr(G) is a subgraph of the interse
tion graph of the maximal 
liquesof G. Ea
h edge CC ′ of Cr(G) 
an be labelled with the minimal separator
S = C ∩ C ′.Lemma 2.2 [7℄ Let us 
onsider three maximal 
liques C1, C2, C3 in G, su
hthat S = C1 ∩ C2 and U = C2 ∩ C3 are minimal separators in G, then S ⊂ Uimplies that C1 ∩ C3 is a minimal separator of G.



(a) (b) (
)
(d)Fig. 1. An example of a 
hordal graph (a), its redu
ed 
lique-graph (b), note thatalthough the maximal 
liques {b, d, e} and {c, e, f} interse
t the 
orresponding edgeis missing. Two maximal 
lique-trees are shown (
)-(d).Lemma 2.3 [7℄ Let us 
onsider a triangle in Cr(G) together with its 3 minimalseparators labelling its edges. Then two of these minimal separators must beequal and in
luded in the third.With these two lemmas it is easy to prove the following result:Proposition 2.4 [1,7℄ For a 
hordal graph G maximal 
lique trees 
orrespondto maximum spanning trees of Cr(G) when the edges are labelled with the sizeof the minimal separator they are asso
iated with. Furthermore Cr(G) is theunion of all maximal 
lique trees of G.As a 
onsequen
e, all maximal 
lique trees de�ne the same multiset ofminimal separators, and from one maximal 
lique tree to another we 
anpro
eed by ex
hanging edges (with same label) on triangles. But the graph

Cr(G) has still more 
ombinatorial properties, that we now 
onsider. Let usnow study the limit 
ase of the two previous lemmas, when S = U . First weneed a basi
 separating lemma (whi
h 
an also be found in a more generalsetting of tree de
ompositions, see lemma 12.3.1 in [4℄).Lemma 2.5 Separating lemmaLet T be a maximal 
lique tree and C1C2 and edge of T . Let T1 and T2 the



two 
onne
ted 
omponents of T −C1C2. If we de�ne Vi for i=1,2 the union ofall maximal 
liques in Ti. Then S = C1 ∩C2 separates every x ∈ V1 − S fromany y ∈ V2 − S.Lemma 2.6 Let us 
onsider three maximal 
liques C1, C2, C3 in G, su
h that
S = C1 ∩ C2 = U = C2 ∩ C3 are minimal separators in G, then either theedge C1C3 ∈ Cr(G) or the two edges C1C2, C2C3 
annot belong both to a samemaximal 
lique tree.Proof. Suppose that the edge C1C3 does not belong to Cr(G), i.e. that S =
C1 ∩ C3 does not separate C1 − S from C3 − S. Therefore if it exists somemaximal 
lique tree T 
ontaining both edges C1C2, C2C3, this would 
ontradi
tthe above separating lemma 2.5. 2Lemma 2.7 Let us 
onsider three maximal 
liques C1, C2, C3 in G, su
h that
S = C1 ∩ C2 = U = C2 ∩ C3 are minimal separators in G, if the edges
C1C2, C2C3 belong both to a same maximal 
lique tree T . Then C1C3 ∈ Cr(G)and C1 ∩ C3 = UProof. Using the previous lemma ne
essarily C1C3 ∈ Cr(G), but lemma 1just states that C1 ∩ C3 ⊆ U = S. If this is a stri
t in
lusion then one 
anbuild a new maximal 
lique tree T ′ by ex
hanging the edges C1C2 by C1C3.But then T ′ would be a better spanning tree than T whi
h 
ontradi
ts theoptimality of T and therefore C1 ∩ C3 = U = S. 23 Min-max separatorsFor a �nite 
hordal graph G, let us 
all a min-max (resp. min-min) separator
S, a minimal separator that is maximal (resp. minimal) under in
lusion amongall minimal separators of G.Theorem 3.1 [10℄ Let G be a 
hordal graph, then it exists a maximal 
lique-tree T that admits a pending edge labelled with a min-max separator.Proof. The proof will pro
eed by transforming a maximal 
lique tree usingthe above lemmas. Let us 
onsider T a maximal 
lique tree of G and someedge ab ∈ T labelled with a min-max separator S. First we need to de�ne anoperation on 
liques trees, namely the 
hain-redu
tion. Suppose ab is not apending edge in T , therefore T − {ab} is the disjoint union of two non emptytrees Ta, Tb. If one of these trees, say Ta admits a lead edge xy labelled with aminimal separator S ′ ⊂ S (y being the pending 
lique in T ). Then the whole
hain in Ta joining ab to xy is labelled with minimal separators 
ontaining



S ′. Using this fa
t and su

essive appli
ations of the above lemmas, we 
aninter
hange in Ta the edges xy and ay (or equivalently in T ex
hanging xy by
by). Let us go ba
k to the proof of the theorem. If one of the subtrees Ta, Tb,say Ta is made up with edges labelled with minimal separators in
luded in
S, then using the 
hain-redu
tion operation we 
an produ
e another maximal
lique tree T ′ in whi
h all the edges of Ta are leaves atta
hed to b and ab is aleaf and we have �nished. Else it exists in one of the subtrees Ta, Tb, say Ta,some edge zt labelled with S ′ whi
h is not 
omparable with S. We re
urseon the maximal minimal separator that 
ontains S ′ and whi
h ne
essarilybelongs to Ta. This pro
ess ne
essarily ends by �nding a leaf in the tree whi
his labelled with a max-min separator, be
ause ea
h time we re
urse on a stri
tsubtree. 2Su
h maximal 
lique trees seem to play an important role for the studyof path graphs [10℄. The above proof also suggests a dual result for min-minseparators. But as it was noti
ed by M. Preissmann [11℄, su
h a maximal
lique tree does not always exist. The graph depi
ted in �gure 2 does notadmit a min-min elimination s
heme.
Fig. 2. Preissmann's 
ounter example [11℄, A graph, its redu
ed 
lique graph andone maximal 
lique treeUsing the above 
onstru
tive proof, a polynomial s
heme 
an be obtainedto 
ompute a min-max elimination s
hemes. As shown in Figure 3, 
lassi
algraph sear
hes do not provide su
h elimination s
heme.
Fig. 3. An exemple of graph on whi
h MCS, LexBFS fail to �nd a max-minsimpli
ial vertex. For any starting vertex, both sear
hes will end on e of f .



Corollary 3.2 Su
h trees 
an be obtained in linear time.Proof. We prove the result in the min-max 
ase. To obtain su
h a tree we 
an�rst 
ompute a maximal 
lique tree T of G as explained in [7℄, with its edgesbeing labelled with the minimal separators of G. We 
an sort the minimalseparators with respe
t to their size in linear time, and therefore start withan edge ab labelled with a max-min separator S and then explore Ta and stopeither be
ause the whole subtree is labelled with minimal separators 
ontainedin S, then it su�
es to modify the tree, or be
ause we have found an edgelabelled with some edge xy labelled with a minimal separator S ′ in
omparablewith S. In this 
ase, among all edges in Ta, 
onsider the edge zt labelled witha min-max separator S ′′ in
omparable with S, and re
urse on zt. During thisalgorithm an edge of T is at most traversed twi
e, whi
h yields the linearityof the whole pro
ess. 2Corollary 3.3 For any 
hordal graph there exist an elimination s
heme thatfollows a linear extension of the 
ontainment ordering of the minimal separa-tors. It 
an be 
omputed in O(n.m).Proof. It is well-known, that one 
an produ
e elimination s
heme on thefollowing way. Take any maximal 
lique tree T of a 
hordal graph G, andlet C be a leaf of this tree, atta
h to the tree via the minimal separator S.Su

essively prune all verti
es in C − S and re
urse on T − C the maximal
lique tree of G − {C − S}. To �nish the proof it su�
es to apply the abovetheorem. Ea
h time the above algorithm is applied requires O(n + m), thisyields the 
omplexity. 2It should be noti
ed that not every linear extension of the 
ontainmentordering 
an be obtained with an elimination s
heme.4 Reversible elimination s
hemesA reversible elimination s
heme is just an ordering of the verti
es whi
h issimpli
ial in both dire
tions. As shown by the graph 
alled 3-sun, there existgraphs for whi
h one 
an prove that there is no reversible elimination s
heme.A vertex is said to be bisimpli
ial if its neighbourhood 
an be partionnedinto two 
liques. Furthermore, if a graph G admits su
h a reversible elimina-tion s
heme, this implies that ea
h vertex is either simpli
ial or bisimpli
ial.Therefore su
h a graph 
annot 
ontain any 
law (K1,3) as subgraph.Theorem 4.1 A graph G admits a reversible ordering if and only if G isproper interval graph.



Proof. Let us 
onsider a unit interval graph G and one of its unitary intervalrepresentation. Therefore to ea
h vertex x ∈ G we 
an asso
iate an interval
I(x) = [left(x), right(x)] of length one of the real line, su
h that xy is anedge i� I(x) ∩ I(y) 6= ∅. Let us 
onsider the total ordering τ of the verti
esof G de�ned as follows: x ≤τ y i� (right(x) < right(y)). Let x be the�rst vertex of this ordering, 
learly its neighborhood is a 
lique. Thus τis an elimination s
heme. Reversibility is straightforward. Conversely let uspro
eed by 
ontradi
tion. Let us assume that G admits a reversible eliminationordering and that G is not a proper interval graph. As proper interval graphadmit a 
hara
terization by forbidden indu
ed subgraphs, we 
an assume thatour graph 
ontains one of the graph as a subgraph. The forbidden sugraphsfor proper interval graphs are the net, the 
law and the sun of size 3. Thesegraphs are depi
ted in �gure 4. So to prove our 
laim it is su�
ient to see thatnone of these graphs admit a reversible elimination ordering. For the 
law, wealready noti
ed it. Considering the 3-sun, it is easy to 
he
k that ea
h vertexis bisimpli
ial. If we 
onsider the sugraph indu
ed by {a, b, c, d, e}, this graphforms the bull. And this graph admit only one reversible elimination orderingwhi
h is a, b, d, c, e. To 
onvin
e ourself a and e has to be the extremities ofthe ordering (d is not a good 
andidate sin
e it is not simpli
ial in the wholegraph). Then to satisfy b, sin
e a is already positionned c and d have to be onthe right. In the same way to satisfy c, sin
e e is already positionned b and dhave to be on the left. Finally the only ordering to full�ll all the 
onstraintsis a, b, d, c, e. But now, when we want to add f , ea
h position in the previousorder will violate the 
onstraint for at least one vertex. A 
ontradi
tion. Forthe net, the proof is similar. 2

(a) Claw: K1,3 (b) 3-Sun (
) netFig. 4. Forbidden indu
ed subgraphs for proper interval graphs.sA
knoledgements:We are grateful to B. Lévêque for pointing out useful referen
es.
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