
HAL Id: hal-00353959
https://hal.science/hal-00353959v1

Preprint submitted on 17 Jan 2009 (v1), last revised 17 Feb 2009 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On some simplicial elimination schemes for chordal
graphs

Michel Habib, Vincent Limouzy

To cite this version:
Michel Habib, Vincent Limouzy. On some simplicial elimination schemes for chordal graphs. 2008.
�hal-00353959v1�

https://hal.science/hal-00353959v1
https://hal.archives-ouvertes.fr


ON SOME SIMPLICIAL ELIMINATION SCHEMES FOR

CHORDAL GRAPHS

MICHEL HABIB AND VINCENT LIMOUZY

Abstract. We present here some results on particular elimination schemes
for chordal graphs, namely we show that for any chordal graph we can con-
struct in linear time a simplicial elimination scheme starting with a pending
maximal clique attached via a minimal separator maximal (resp. minimal)
under inclusion among all minimal separators.

Chordal graphs, minimal separators, simplicial elimination scheme.

1. Introduction

In the following text, a graph is always finite, simple, loopless, undirected and
connected. A graph is chordal iff it has no chordless cycle of length ≥ 4. The class
of chordal graphs is one of the first class to have been studied at the beginning
of the theory of perfect graphs. Since then chordal graphs have been intensively
studied, as can be seen in the following books [9, 2].

Let us recall the main notions defined for chordal graphs. A maximal clique
of G is a complete subgraph maximal under inclusion. A minimal separator is a
subset of vertices S for which it exist a, b ∈ G such that a and b are not connected in
G−S, and S is minimal under inclusion with this property. A vertex is simplicial if
its neighborhood is a clique (complete graph). An ordering x1, . . . , xn of the vertices
is a simplicial elimination scheme, if for every i ∈ [1, n − 1] xi is a simplicial
vertex in G[xi+1, . . . xn]. A maximal clique tree is a tree T that satisfies the
following three conditions: Vertices of T are associated with the maximal cliques
of G. Edges of T correspond to minimal separators. For any vertex x ∈ G, the
cliques containing x yield a subtree of T .

Using results of Dirac [5], Fulkerson, Gross [6], Buneman [3], Gavril [8] and Rose,
Tarjan and Lueker [11], we have:

Theorem 1. The following 5 statements are equivalent and characterize chordal
graphs.

(i): G has a simplicial elimination scheme
(ii): Every minimal separator is a clique
(iii): G admits a maximal clique tree.
(iv): G is the intersection graph of subtrees in a tree.
(v): Any LexBFS provides a simplicial elimination scheme.

1



2 MICHEL HABIB AND VINCENT LIMOUZY

2. The reduced Clique graph

Definition 1. For a chordal graph G, we denote by C the set of maximal cliques of
G and by Cr(G) the reduced clique graph, i.e. the graph whose vertices are the
maximal cliques of G, and two cliques are joined by an edge iff their intersection
separates them (i.e. if for every x ∈ C − (C ∩ C′) and every y ∈ C′ − (C ∩ C′),
C ∩ C′ is a minimal separators for x and y in G).

Clearly Cr(G) is a subgraph of the intersection graph of the maximal cliques of
G. Each edge CC′ of Cr(G) can be labelled with the minimal separator S = C∩C′.

(a) (b) (c)

(d)

Figure 1. An example of a chordal graph (a), its reduced clique-
graph (b), note that although the maximal cliques {b, d, e} and
{c, e, f} intersect the corresponding edge is missing. Two maximal
clique-trees are shown (c)-(d).

Lemma 1. [7] Let us consider three maximal cliques C1, C2, C3 in G, such that
S = C1 ∩ C2 and U = C2 ∩ C3 are minimal separators in G, then S ⊂ U implies
that C1 ∩ C3 is a minimal separator of G.

Lemma 2. [7] Let us consider a triangle in Cr(G) together with its 3 minimal
separators labelling its edges. Then two of these minimal separators must be equal
and included in the third.

With these two lemmas it is easy to prove the following result:

Proposition 1. [1, 7] For a chordal graph G maximal clique trees correspond to
maximum spanning trees of Cr(G) when the edges are labelled with the size of the
minimal separator they are associated with. Furthermore Cr(G) is the union of all
maximal clique trees of G.



ON SOME SIMPLICIAL ELIMINATION SCHEMES FOR CHORDAL GRAPHS 3

As a consequence, all maximal clique trees define the same multiset of mini-
mal separators, and from one maximal clique tree to another we can proceed by
exchanging edges (with same label) on triangles. But the graph Cr(G) has still
more combinatorial properties, that we now consider. Let us now study the limit
case of the two previous lemmas, when S = U . First we need a basic separating
lemma (which can also be found in a more general setting of tree decompositions,
see lemma 12.3.1 in [4]).

Lemma 3. Separating lemma
Let T be a maximal clique tree and C1C2 and edge of T . Let T1 and T2 the

two connected components of T − C1C2. If we define Vi for i=1,2 the union of all
maximal cliques in Ti. Then S = C1 ∩ C2 separates every x ∈ V1 − S from any
y ∈ V2 − S.

Lemma 4. Let us consider three maximal cliques C1, C2, C3 in G, such that S =
C1 ∩ C2 = U = C2 ∩ C3 are minimal separators in G, then either the edge C1C3 ∈
Cr(G) or the two edges C1C2, C2C3 cannot belong both to a same maximal clique
tree.

Proof. Suppose that the edge C1C3 does not belong to Cr(G), i.e. that S = C1∩C3

does not separate C1−S from C3−S. Therefore if it exists some maximal clique tree
T containing both edges C1C2, C2C3, this would contradict the above separating
lemma 3. �

Lemma 5. Let us consider three maximal cliques C1, C2, C3 in G, such that S =
C1∩C2 = U = C2∩C3 are minimal separators in G, if the edges C1C2, C2C3 belong
both to a same maximal clique tree T . Then C1C3 ∈ Cr(G) and C1 ∩ C3 = U

Proof. Using the previous lemma necessarily C1C3 ∈ Cr(G), but lemma 1 just states
that C1∩C3 ⊆ U = S. If this is a strict inclusion then one can build a new maximal
clique tree T ′ by exchanging the edges C1C2 by C1C3. But then T ′ would be a
better spanning tree than T which contradicts the optimality of T and therefore
C1 ∩ C3 = U = S. �

3. Min-max and min-min separators

For a finite chordal graph G, let us call a min-max (resp. min-min) separator
S, a minimal separator that is maximal (resp. minimal) under inclusion among all
minimal separators of G.

Theorem 2. [10] Let G be a chordal graph, then it exists a maximal clique-tree T

that admits a pending edge labelled with a min-max separator.

Proof. The proof will proceed by transforming a maximal clique tree using the
above lemmas. Let us consider T a maximal clique tree of G and some edge ab ∈ T

labelled with a min-max separator S. First we need to define an operation on
cliques trees, namely the chain-reduction. Suppose ab is not a pending edge in
T , therefore T − {ab} is the disjoint union of two non empty trees Ta, Tb. If one of
these trees, say Ta admits a lead edge xy labelled with a minimal separator S′ ⊂ S

(y being the pending clique in T ). Then the whole chain in Ta joining ab to xy

is labelled with minimal separators containing S′. Using this fact and successive
applications of the above lemmas, we can interchange in Ta the edges xy and ay (or
equivalently in T exchanging xy by by). Let us go back to the proof of the theorem.



4 MICHEL HABIB AND VINCENT LIMOUZY

If one of the subtrees Ta, Tb, say Ta is made up with edges labelled with minimal
separators included in S, then using the chain-reduction operation we can produce
another maximal clique tree T ′ in which all the edges of Ta are leaves attached to
b and ab is a leaf and we have finished. Else it exists in one of the subtrees Ta, Tb,
say Ta, some edge zt labelled with S′ which is not comparable with S. We recurse
on the maximal minimal separator that contains S′ and which necessarily belongs
to Ta. This process necessarily ends by finding a leaf in the tree which is labelled
with a max-min separator, because each time we recurse on a strict subtree. �

Such maximal clique trees seem to play an important role for the study of path
graphs [10]. But the above proof also suggests a dual result for min-min separators.

Theorem 3. Let G be a chordal graph, then it exists a maximal clique-tree T that
admits a pending edge labelled with a min-min separator.

Proof. The structure of the proof is roughly the same, first we need to reformulate
the chain-reduction in this case. Let us consider T a maximal clique tree of G and
some edge ab ∈ T labelled with a min-min separator S. First we need to define
an operation on cliques trees, namely the chain-reduction. Suppose ab is not a
pending edge in T , therefore T − {ab} is the disjoint union of two non empty trees
Ta, Tb. If one of these trees, say Ta admits a lead edge xy labelled with a minimal
separatorS′ with S ⊂ S′ (y being the pending clique in T ). Then the whole chain
in Ta joining ab to xy is labelled with minimal separators containing S. Using this
fact and successive applications of the above lemmas, we can interchange in Ta the
edges ab and ay (or equivalently in T exchanging ab by by). If one of the subtrees
Ta, Tb, say Ta admits a pending edge xy labelled with S′ which strictly contains S.
Then using the chain-reduction operation we can produce another maximal clique
tree T ′ having a pending edge labelled with S and we have finished. Else it exists
in one of the subtrees Ta, Tb, say Ta, some edge zt labelled with S′ which is not
comparable with S. We recurse on a min-max separator that contains in S′ and
which necessarily belongs to Ta. This process necessarily ends by finding a leaf in
the tree which is labelled with a min-min separator, because each time we recurse
on a strict subtree. �

Using the above constructive proofs, a polynomial scheme can be obtained to
compute such elimination schemes. As shown in Figure 2, classical graph searches
do not provide such elimination scheme.

Figure 2. An exemple of graph on which MCS, LexBFS fail to
find a max-min simplicial vertex. For any starting vertex, both
searches will end on e of f .



ON SOME SIMPLICIAL ELIMINATION SCHEMES FOR CHORDAL GRAPHS 5

Corollary 1. Such trees can be obtained in linear time.

Proof. We prove the result in the max-min case. To obtain such a tree we can
first compute a maximal clique tree T of G as explained in [7], with its edges being
labelled with the minimal separators of G. We can sort the minimal separators with
respect to their size in linear time, and therefore start with an edge ab labelled with a
max-min separator S and then explore Ta and stop either because the whole subtree
is labelled with minimal separators contained in S, then it suffices to modify the
tree, or because we have found an edge labelled with some edge xy labelled with
a minimal separator S′ incomparable with S. In this case, among all edges in Ta,
consider the edge zt labelled with a max-min separator S′′ incomparable with S,
and recurse on zt. During this algorithm an edge of T is at most traversed twice,
which yields the linearity of the whole process. �

Corollary 2. For any chordal graph there exist an elimination scheme that follows
a linear extension of the inclusion (resp. containment) ordering of the minimal
separators. It can be computed in O(n.m).

Proof. It is well-known, that one can produce elimination scheme on the following
way. Take any maximal clique tree T of a chordal graph G, and let C be a leaf
of this tree, attach to the tree via the minimal separator S. Successively prune all
vertices in C − S and recurse on T − C the maximal clique tree of G − {C − S}.
To finish the proof it suffices to apply the above theorem. Each time the above
algorithm is applied requires O(n + m), this yields the complexity. �

It should be noticed that not every linear extension of the inclusion (resp. con-
tainment) ordering can be obtained with an elimination scheme.

4. Reversible elimination schemes

A reversible elimination scheme is just an ordering of the vertices which is sim-
plicial in both directions. As shown by the graph called 3-sun, there exist graphs
for which one can prove that there is no reversible elimination scheme. A vertex
is said to be bisimplicial if its neighbourhood can be partionned into two cliques.
Furthermore, if a graph G admits such a reversible elimination scheme, this implies
that each vertex is either simplicial or bisimplicial. Therefore such a graph cannot
contain any claw (K1,3) as subgraph.

Theorem 4. A graph G admits a reversible ordering if and only if G is proper
interval graph.

Proof. Let us consider a unit interval graph G and one of its unitary interval
representation. Therefore to each vertex x ∈ G we can associate an interval
I(x) = [left(x), right(x)] of length one of the real line, such that xy is an edge
iff I(x) ∩ I(y) 6= ∅. Let us consider the total ordering τ of the vertices of G de-
fined as follows: x ≤τ y iff (right(x) < right(y)). Let x be the first vertex of this
ordering, clearly its neighborhood is a clique. Thus τ is an elimination scheme.
Reversibility is straightforward. Conversely let us proceed by contradiction. Let us
assume that G admits a reversible elimination ordering and that G is not a proper
interval graph. As proper interval graph admit a characterization by forbidden
induced subgraphs, we can assume that our graph contains one of the graph as
a subgraph. The forbidden sugraphs for proper interval graphs are the net, the



6 MICHEL HABIB AND VINCENT LIMOUZY

claw and the sun of size 3. These graphs are depicted in figure 3. So to prove our
claim it is sufficient to see that none of these graphs admit a reversible elimination
ordering. For the claw, we already noticed it. Considering the 3-sun, it is easy
to check that each vertex is bisimplicial. If we consider the sugraph induced by
{a, b, c, d, e}, this graph forms the bull. And this graph admit only one reversible
elimination ordering which is a, b, d, c, e. To convince ourself a and e has to be the
extremities of the ordering (d is not a good candidate since it is not simplicial in
the whole graph). Then to satisfy b, since a is already positionned c and d have to
be on the right. In the same way to satisfy c, since e is already positionned b and
d have to be on the left. Finally the only ordering to fullfill all the constraints is
a, b, d, c, e. But now, when we want to add f , each position in the previous order
will violate the constraint for at least one vertex. A contradiction. For the net, the
proof is similar. �

(a) Claw: K1,3 (b) 3-Sun (c) net

Figure 3. Forbidden induced subgraphs for proper interval graphs.s

References

1. J.R.S. Blair and B. Peyton, An introduction to chordal graphs and clique trees, Graph Theory
and Sparse Matrix Multiplication (1993), 1–29.

2. A. Brandstädt, V.B. Le, and J.P. Spinrad, Graph classes: A survey, SIAM Monographs on
Disc. Math. and Applic., 1999.

3. P. Buneman, A characterization of rigid circuit graphs, Discrete Math. 9 (1974), 205–212.
4. R. Diestel, Graph theory, Springer Verlag, 1997.
5. G.A. Dirac, On rigid circuit graphs, Abh. Math. Sem. Univ. Hamburg 25 (1961), 71–76.
6. D.R. Fulkerson and O.A. Gross, Incidence matrices and interval graphs, Pacific J. of Math.

15 (1965), 835–855.
7. P. Galinier, M. Habib, and C. Paul, Chordal graphs and their clique graphs, 21th Workshop on

Graph-Theoretic Concepts in Computer Science, Aachen, Lecture Notes in Computer Science
1017 (Springer-Verlag, ed.), 1995, pp. 358–371.

8. F. Gavril, The intersection graphs of a path in a tree are exactly the chordal graphs, J.
Combinatorial Theory 16 (1974), 47–56.

9. M. C. Golumbic, Algorithmic graph theory and perfect graphs, Academic Press, New York,
1980.

10. B. Lvque, F. Maffray, and M. Preissmann, Characterizing path graphs by forbidden induced

subgraphs, Journal of Graph Theory To appear (2008).
11. D.J. Rose, R.E. Tarjan, and G.S. Lueker, Algorithmic aspects of vertex elimination on graphs,

SIAM J. of Computing 5 (1976), 266–283.

LIAFA, CNRS and Université Paris Diderot - Paris 7, France

E-mail address: habib@liafa.jussieu.fr

Dept. of Computer Science, University of Toronto, Canada

E-mail address: limouzy@cs.toronto.edu


