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EXTENSION OF BOCHNER-LICHNÉROWICZ FORMULA ON
SPHERES.

DOMINIQUE BAKRY, ABDELLATIF BENTALEB.

Abstract. Given a second order differential operator L, we define the
vector space of ”intrinsic bilinear operators” associated with it. They are
constructed only from the operator L itself and the algebra structure given
by the product of functions. When the operator is symmetric with respect to
some positive measure, every positive quadratic form in this space provides
information on the spectrum of the operator. The positiveness of a form
relies only on the local structure of the operator.

The purpose of this paper to construct a sequence (Rk) of positive in-
trinsic quadratic forms on spheres (in this case, L is the Laplace-Beltrami
operator) which carry all the information on the spectrum. More precisely,
if f is an eigenvector of the Laplace-Beltrami operator associated to the
eigenvalue λ and g is any smooth function, then, for the Riemann measure
µ, ∫

Rk(f, g)dµ = λ(λ− λ1) . . . (λ− λk−1)
∫

fgdµ,

where 0, λ1, . . . , λk−1 are the k first eigenvalues of the Laplace-Beltrami
operator. This extends to the full spectrum the Bochner-Lichnérowicz for-
mula which gives on the sphere a sharp lower bound on the first non-zero
eigenvalue. An extension of this property is given for a family of operators
which extends the ultraspherical operator on the real line.

1. Introduction

The famous Bochner-Lichnérowicz formula in Riemannian geometry asserts
that on a Riemannian manifold on dimension n with Ricci curvature bounded
below by a constant ρ > 0, the first non zero eigenvalue of the Laplace operator
is bounded below by ρn/(n − 1), and this inequality is optimal on spheres
[3, 4, 8, 9]. This inequality is very simple to obtain: let ∆ be the Laplace-
Beltrami operator on the smooth manifold M (which we assume to be compact
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for simplicity), then, for any smooth function f on M , if we compute

Γ(f, f) = (1/2)∆(f 2)− f∆f,

we get
Γ(f, f) = |∇f |2,

where |∇f | is the lenght of the gradient of the function f computed in the Rie-
mannian metric. Then, we may define the so-called iterated squared gradient
by

Γ2(f, f) = (1/2)∆(|∇f |2)−∇f.∇∆f.

It turns out (and this is the Bochner-Lichnérowicz formula) that this may be
computed from the Ricci tensor and is equal to

|∇∇f |2 + Ric(∇f,∇f),

where Ric denotes the Ricci tensor, ∇∇f denotes the (symmetric) tensor wich
is the second covariant derivative of f , and |M |2 is the square of the Hilbert-
Schmidt norm of the symmetric tensor M . Therefore, it is equivalent to say
that the Ricci tensor is bounded below by ρ or to say that, for any smooth
function f , Γ2(f, f) ≥ ρΓ(f, f).

This inequality is not by itself sufficient to produce the Bochner-Lichnerowicz
lower bound, but if we recall that ∆f is the trace of ∇∇f , and that for any
n-dimensional symmetric matrix, we have |M |2 ≥ (1/n)(trace M)2, then we
get that a lower bound ρ on the Ricci tensor is equivalent to the fact that

Γ2(f, f) ≥ ρΓ(f, f) + (1/n)(∆f)2.

In fact, to get from this the lower bound on the non zero eigenvalues of −∆,
let us introduce the Riemann measure µ and denote by 〈f〉 the integration of
a function f with respect to it. We know that −∆ is symmetric with respect
to µ, which means that

〈g∆f〉 = 〈f∆g〉,
for any pair of smooth functions, from which we deduce that

〈∆f〉 = 0

for any smooth function f . Now, if we call R2 the positive quadratic form

R2(f, f) =
n

n− 1
[Γ2(f, f)− ρΓ(f, f)− (1/n)(∆f)2],

and R2(f, g) the associated bilinear form. From what preceedes, we get, if
∆f = −λf , and for any smooth functions g,

〈Γ(f, g)〉 = λ〈fg〉
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and

〈R2(f, g)〉 = λ(λ− ρn/(n− 1))〈fg〉.

From the first one we get that the eigenvalues of −∆ are positive, and from
the second one the fact that no eigenvalue lies between 0 and ρn/(n− 1).

If we replace ∆ by a general second order differential operator L, with no
zero order term, we may follow the same construction, and define the operators
Γ and Γ2, which are built only from L and the product of two functions (we
shall say later that those quadratic forms are intrinsic).

We may say that L satisfies a curvature-dimension inequality CD(ρ, n) if,
for any smooth function f ,

(1.1) Γ2(f, f) ≥ ρΓ(f, f) + (1/n)(Lf)2.

(Here, n does not need to be an integer and is only assumed to be posi-
tive, and may be infinite). If L is symmetric with respect to some measure µ,
then the CD(ρ, n) inequality carries the same information as before about the
first non zero eigenvalue, but it says a lot more. For example, the CD(ρ,∞)
inequality implies the celebrated logarithmic-Sobolev inequality, the gaussian
isoperimetry, the property of concentration of measures, while the CD(ρ, n)
inequality for finite n implies the Sobolev inequality, and therefore the com-
pactness of the resolvant, upper bounds on the diameter, upper bounds on the
heat kernel, etc. [2].

Therefore, as we saw before, for the Laplace-Beltrami operator of a Rie-
mannian manifold, it is equivalent to say that the Ricci curvature is bounded
below by some constant ρ or to say that the (intrinsic) bilinear form Γ2(f, f)−
1
n
(∆f)2 − ρΓ(f, f) is positive.

The purpose of this note is to show that, for any integer k, we may construct
on the n-dimensional sphere an intrinsic quadratic form defined on smooth
functions, say Rk(f, f), which is positive (∀f , Rk(f, f) ≥ 0), and which is such
that if ∆f = −λf , for any smooth function g, we have

〈Rk(f, g)〉 = λ(λ− λ1) . . . (λ− λk−1)〈f, g〉,
where λk = k(k + n − 1) is the kth eigenvalue of the operator −∆. Those
inequalities are for each k a kind of CD(ρ, n) inequality, but at an higher
order.

Therefore, the positivity of this sequence of operators Rk encodes the full
spectrum of the sphere. More precisely, the Rk are constructed on the sphere by
a recurrence formula only by means of algebraic manipulations on the Laplace-
Beltrami operator ∆ of the sphere (see definition 3.1 below). Assume that some
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elliptic operator L is defined on a smooth compact manifold M , and that it is
self-adjoint with respect to some measure finite measure . Let Rk(L) be the
family of bilinear operators constructed from L in the same way, replacing ∆
by L. Then, if, for i = 1, . . . , n, Ri(L)(f, f) ≥ 0 for any smooth f on the
manifold, the spectrum of −L must lie in {0, λ1, . . . , λn−1} ∪ [λn−1,∞[, where
the λi are the eigenvalues of the spherical Laplace-Beltrami operator. (See
proposition 2.2 in the next section.)

We then extend this sequence of sharp inequalities to a family of opera-
tors which generalizes in dimension n the one dimensional operator which is
associated to the ultraspherical polynomials in dimension one.

2. Intrinsic bilinear operators

In what follows, we shall adopt a näıve point of view which avoids all prob-
lems which may occur on a non compact Riemannian manifold when dealing
with the spectrum of the Laplace-Beltrami operator.

Let M be a set and A be an algebra of real valued functions on M . To
fix the ideas, in most of the cases, M is a smooth manifold, and A is the set
of compactly supported smooth functions on M , or may be some other set of
smooth functions with a growth condition at infinity in the non compact case.

We consider a linear operator L from A into A. If Q is a symmetric bilinear
application mappingA×A intoA, we may define three new symmetric bilinear
applications, LQ(f, g), Q(f, Lg) + Q(g, Lf), Q(Lf, Lg).

Among those constructions, we shall distinguish the operation [L, Q] as fol-
lows

[L, Q](f, g) = (1/2)[L(Q(f, g))−Q(f, Lg)−Q(Lf, g)].

The vector space of bilinear operations which closed under those three op-
erations and which contains the bilinear form Q0(f, g) = fg shall be called
the space of intrinsic bilinear operators : they are contructed only from the
operator L itself and the algebra structure. We shall call this space I(L).
Those bilinear applications are just the bilinear members of the Lie algebra
associated with L introduced by Ledoux [7].

We shall say that a element Q of I(L) is positive whenever, for each f in
A, one has Q(f, f) ≥ 0.

To understand the link between the positivity of such quadratic forms and
the spectrum of L, we shall assume that we are given on the set M a measure
space structure, that A is made of measurable functions, and that a positive
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measure µ is given such that each element of A is integrable with respect to
µ. The basic assumption is that L is symmetric in L2(µ), that is, for each pair
(f, g) in A2, one has ∫

fLg dµ =

∫
gLf dµ.

We shall moreover assume that
∫

Lf dµ = 0, for any f in A. It is always the
case if A contains the constant functions and if L(1) = 0. We shall call this
measure µ a reversible measure associated to L. It needs not to be unique,
but this shall be the case under mild conditions when it exists.

Those conditions are always fulfilled when L is the Laplace-Beltrami oper-
ator of a Riemannian manifold if we choose for µ the Riemann measure, but
there are many other examples (we shall see some of those examples later on).

Under those conditions, to each Q in I(L), one may associate a real poly-
nomial PQ which has the following property :

if f ∈ A satisfies Lf = −λf , then, for any g ∈ A, one has∫
Q(f, g) dµ = PQ(λ)

∫
fg dµ.

To see that, it is clear that it is the case for Q0(f, g) = fg, with PQ0(λ) = 1,
and the polynomials associated to LQ(f, g), Q(Lf, g)+Q(Lg, f) and Q(Lf, Lg)
are repectively 0, −2λPQ, λ2PQ.

In particular, P[L,Q](λ) = λPQ(λ).

(Formally, we do not need the reversible measure µ to associate those poly-
nomials to a Q in I(L): it would be enough to describe exactly how the
quadratic form Q is constructed from the basic multiplication Q0.)

The main interest of those construction is the following:

Proposition 2.1. Assume that Q is a positive intrinsinc bilinear operator.
Then, for any eigen value λ of L in A, (i.e. there exists an non zero element
in A such that Lf = −λf), then PQ(λ) ≥ 0.

Proof. — It is straight forward. We write

0 ≤
∫

Q(f, f) dµ = PQ(λ)

∫
f 2 dµ.

Therefore, it is interesting to look for positive bilinear forms associated to a
given operator L. For example, we have
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Proposition 2.2. Assume that, for some sequence 0 < λ1 < λ2, . . . < λk−1,
there exists a sequence of intrinsic bilinear operators R1, . . . , Rk which are
positive (Ri(f, f) ≥ 0,∀f ∈ A, ∀i = 1, . . . , k) and that PRi

(l) = λ(λ −
λ1) . . . (λ − λi−1). If for some f ∈ A, f 6= 0, we have Lf = −λf , then
λ ∈ {0, λ1, . . . , λk−1} ∪ [λk−1,∞[.

Proof. — The proof of this proposition is straightforward. From the previous
proposition, we have PRi

(λ) ≥ 0, for any i = 1, . . . , k, and the conclusion
follows by an easy induction.

In the next section, we shall show that it is precisely what happens for the
spherical Laplacian.

In fact, the positivity of R2 is exactly the CD(n − 1, n) inequality of the
sphere (1.1). The positivity of R2 has proven to carry a lot of important
information on the operator L, far beyond spectral properties. But up to now,
we do not see what kind of information on the operator L could be deduced
from the positivity of R3 (not to talk of the other ones) although we have
the feeling that it should carry similar properties. (See [7] for example, where
a similar analysis is carried in a case where no dimensional information is
involved.)

3. The spherical case.

In what follows, we consider an n dimensional sphere (that is a sphere of
radius 1 in Rn+1), and it’s Laplace-Beltrami operator, which may be seen as the
usual Euclidean Laplacian acting in Rn+1 on functions which in a neighborood
of the sphere are constant on the radius.

The eigenvalues of the Laplace-Beltrami operator ∆ are λk = −k(n+k−1).
The eigenvectors are the restrictions to the sphere of homogeneous harmonic
polynomials in Rn+1. We refer to [10] for a complete analysis of the spectral
properties of the sphere.

To define the sequence Rk of intrinsic bilinear operators acting on functions,
we shall proceed in the following way:

Definition 3.1. R0(f, g) = fg, R1(f, g) = [∆, R0](f, g). For k ≥ 2, we shall
proceed by induction and set

γkRk+1(f, g) = [∆, Rk](f, g)−αkRk(f, g)−βkRk−1((∆+λk−1I)f, (∆+λk−1I)g),

where

αk = k(n + k − 2); λk = k(n + k − 1); βk =
k

n + 2k − 2
; γk =

n + k − 2

n + 2k − 2
.
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(Recall that n is the dimension of the sphere.)

Then, the main result of this paper is the following:

Theorem 3.2. Let m be the Riemann measure of the sphere and Rk be defined
as in definition 3.1. Then,

(1) For each pair of smooth function g, and each eigenvector f solution of
∆f = −λf , one has∫

Rk(f, g)dm = PRk
(λ)

∫
fgdm,

with PRk
(λ) = λ(λ− λ1) . . . (λ− λk−1).

(2) For each k, Rk is positive.

Remark. — For the radial functions on the sphere (i.e. functions wich
depends only on the distance to some given point), this result was already
obtained in [1], where it may be seen as a result on ultraspherical operators on
the unit interval on R. In this case, through a change of variables, the operator
may be seen as

L(f) = (1− x2)f ′′ − nxf ′

on the interval [−1, 1], and the operator Rk(f, f) = ak(1 − x2)k(f (k))2. The
vector space generated by the k lowest eigenvalues of L is the space of poly-
nomials of degree less than k (the eigenvectors are precisely the ultraspherical
polynomials), and Rk is precisely 0 on the space generated by the first k − 1
eigenvectors. A bit of algebraic computations in this case shows that this is the
unique intrinsic bilinear operator satisfying this property, up to some constant,
and which is in each argument a differential operator with degree less than k.

It is remarkable that the same construction, whith the same values of the
coefficients, still produce positive bilinear maps on the spheres. Moreover, if
we compare Rk to R2, one has the feeling that the coefficients γk should appear
as the ratio of the dimensions of some fiber bundles of symmetric tensors. We
had been unable to give such an interpretation.

Proof. — (of theorem 3.2). The first assertion is easy to prove by induction. If
Q is an element of I(L) associated with the polynomial PQ, then it is a direct
consequence from the definitions that

P[∆,Q](λ) = λPQ(λ),

and that if Q1(f, f) = Q(∆f + µf, ∆f + µf), then

PQ1(λ) = (λ− µ)2PQ.
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Therefore, if Pk denotes the polynomial associated to Rk, we have

Pk+1(λ) =
1

γk

[λPk(λ)− αkPk(λ)− βk(λ− λk−1)
2Pk−1(λ).

Assume that, for q ≤ k,

Pq(λ) =

q−1∏
i=0

(λ− λi),

then we get

Pk+1(λ) =
1

γk

Pk(λ)[λ− αk − βk(λ− λk−1)],

and the result is the consequence of the obvious identities

1− βk = γk ; αk − βkλk−1 = γkλk.

The formula is clearly true for R0 and R1, since P0 = 1 and P1(λ) = λ, and
this proves the first part.

The second assertion is more delicate and shall require some steps.

First, we shall compute an explicit formula for Rk, and to do so we shall use
a specific system of coordinates on the sphere. Since everything is invariant
under rotations, it is enough to prove the positivity of the Rk’s on the upper
half sphere.

Let X ∈ Sn be on the unit sphere in the Euclidean space Rn+1, and let x be
its orthogonal projection on Rn (removing the last coordinate of X to fix the
ideas). Then, x belongs to the unit ball of Rn and this unit ball shall be our
local system of coordinates for the upper half-sphere (as well as for the lower
one, in fact). In this system of coordinates, the Laplace-Beltrami operator has
a simple form

∆(f)(x) =
∑
ij

(δij − xixj)
∂2f

∂xi∂xj
− n

∑
i

xi ∂f

∂xi
.

In all what follows, we shall denote gij the associated cometric in those
coordinates, that is gij = δij − xixj.

For a multindex I = (i1, . . . , ik) ∈ {1, . . . , n}k, and a smooth function f
defined on the unit ball, let DI(f) denotes the partial derivative along those
coordinates

Dk
I (f) =

∂kf

∂xi1 . . . ∂xik
.
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Then, Dkf shall denotes the symmetric k-tensor whose coordinates are Dk
I (f)

in this system of coordinates.

If M is a symmetric k-tensor (like Dkf), with k ≥ 2, TM shall denote
it’s contraction along two of it’s indices, with respect to the metric gij. This
operator gives a symmetric k − 2 tensor. In our system of coordinates, for a
multi (k− 2)-index J = (i1, . . . , ik−2), and if Jij denotes the k-index obtained
by concatenation of J and (ij), this writes

TMJ = MijJgij.

(We use here the Einstein convention about the summation over repeated
indices).

Since M is symmetric, it is irrelevant to know on which indices we have
made the contraction, and here we have chosen the first coordinates.

By convention, we shall write TM = 0 if k = 1 or k = 0.

Moreover, if M is any tensor of order k, we shall denote by |M |2 it’s norm
in the metric g, i.e.

|M |2 = g(I,J)MIMJ ,

the sum running over all pairs of multindices (I = {i1, . . . , ik}, J = {j1, . . . , jk})
and for such a pair,

g(I,J) = gi1j1gi1j2 . . . gikjk .

Similarly, we shall denote M · N for the bilinear form associated to this qua-
dratic norm.

Proposition 3.3. For any smooth function in the unit ball of Rn,

Rk(f, f) =

[k/2]∑
q=0

ak
q |T qDkf |2,

where [k/2] denotes the integer part of k/2, and the ak
q are defined by induction

from a1
0 = 1 and

(3.2)


ak

q =
k(n + 2k − 2q − 4)

(k − 2q)(n + k − 3)
ak−1

q ;

ak
q = −(k + 2− 2q)(k + 1− 2q)

2q(n + 2k − 2q − 2)
ak

q−1.

(A simple verification shows that those two formulae are compatible and
that the operation which raises the first and the second index do commute.)
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Proof. — The proof of this fact is not entirely easy and requires some compu-
tations. We shall proceed by induction on k. The formula is clearly true for
k = 1, since R1(f, f) = |Df |2.

Then, let Qk,q(f, f) be the bilinear map defined by

Qk,q(f, f) = |T qDkf |2.
Our main task shall be to compute

Q̂k,q = [∆, Qk,q]− αkQk,q − βkQk−1,q(∆ + λk−1Id, ∆ + λk−1Id).

We begin by an elementary lemma

Lemma 3.4. Let X de the operator
∑

i x
i ∂
∂xi , and I be a multiindex of lenght

k. Then XDk
I = Dk

I (X − kId).

In what follows, and to simplify the notations, X(k) shall denote the operator
X − kId.

Proof. — First, we observe that, for any index i, XDi = DiX − Di. The
general case follows immediately by induction.

First, we compute [∆, Qk,q].

First, for a k-symmetric tensor M , and for q ≤ [k/2], we shall rewrite |T qM |2
as

(3.3) |T qM |2 =
∑
I,J

gI,J
q MIMJ ,

where the sum runs over all pairs of multindices I = {i1, . . . , ik} and J =
{j1, . . . , jk}, and

gI,J
q =

q−1∏
r=0

gi2r+1i2r+2gj2r+1j2r+2

k∏
s=2q+1

gisjs .

(Here, the contraction T q acts on the first 2q indices.)

Then, we introduce the Riemannian connection ∇ on symmetric tensors.
The inverse metric gij may be written in this coordinates as

gij = δij +
xixj

1− |x|2
,

where |x| is the Euclidean norm of the vector x. We shall use the usual
notation to raise and lower indices using the metrics gij and gij, and use
again the Einstein convention on the sum over repeated indices. Then, in
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this coordinate system, and for a multindex I = {i1, . . . , ik}, the tensor ∇M
(symmetric or not) may be written as

∇iMI =
∂MI

∂xi
−

k∑
r=1

∑
j

giirx
jMI∪{j}\ir .

(If the tensor M is not symmetric, we have to be a little careful in the previous
notation, and I∪{j}\ ir denotes the multindex where the index j has replaced
the index ir at place r.)

Since ∇ is the Riemannian connection, ∇g = 0 for the two tensors gij and
gij, and we have

∆|T qM |2 = 2|∇T qM |2 + 2(T q∇i∇iM) · (T qM).

We first compute the first term

Lemma 3.5.

|∇T qDkf |2 = |T qDk+1f |2

−4qT qDk+1f · T q−1Dk−1X(k−1)f

−2(k − 2q)T q+1Dk+1f · T qDk−1X(k−1)f

+4q2|T q−1Dk−1X(k−1)f |2

+(k − 2q)(k + 2q + n− 1)|T qDk−1X(k−1)f |2

Proof. — Let I = {i1, . . . , ik} be a multiindex of lenght k and iI denotes the
concatenation of i and I.

(∇Dkf)iI = Dk+1
iI f −

k∑
l=1

giilx
pDk

(I\il)pf

= DiIf −
k∑

l=1

giilXDk−1
I\il f

= DiIf −
k∑

l=1

giilD
k−1
I\il X

(k−1)f.

We have then

(3.4) |∇T qDkf |2 = gijgI,J
q (∇Dkf)iI · (∇Dkf)jJ ,

the sum running over all pairs of multiindices (I, J).

Using the formula above for ∇Dkf , this sum decomposes as A − 2B + D,
where

A = gijgIJ
q Dk+1

iI fDk+1
jJ f = |T qDk+1f |2;
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B =
∑

l

gijgIJ
q giilD

k−1
I\il X

(k−1)fD
k+1)
jJ f ;

C =
∑
l,l′

gijgIJ
q giilgjjl′

Dk−1
I\il X

(k−1)fDk−1
J\jl′

X(k−1)f.

For simplicity, for a (k−1)-multiindex I let us write MI instead of Dk−1
I X(k−1)f ,

and let us denote by M the corresponding tensor. To compute the B term, we
notice that

gijgiil = δj
il
,

and therefore
B =

∑
l

gIJ
q MI\ilD

k+1
ilJ

f.

We have then to decompose this sum again according to the fact that l ≤ 2q
or l > 2q. Each term with l ≤ 2q gives rise to T qDk+1f · T q−1M , and each
term with l > 2q gives rise to T q+1Dk+1f · T qM .

The C term is a bit more complicated. First, we observe that

gijgiilgjjl′
= giljl′

.

Then
C =

∑
l,l′

gIJ
q giljl′

MI\ilMJ\jl′
.

Each term of the sum with l and l′ less than or equal to 2q gives |T q−1Dk−1X(k−1)|2.
Then, each term with l ≤ 2q and l′ > 2q or l > 2q and l′ ≤ 2q also gives

|T q−1M |2.
The same is true for the terms with l > 2q, l′ > 2q with l 6= l′, but the terms

with l = l′ > 2q give n|T q−1M |2, since then we have

gI,J
q gililMI\ilMJ\jl

= g
I\il,J\jl

q−1 giljlgiljl
MI\ilMJ\jl

= ng
I\il,J\jl

q−1 MI\ilMJ\jl
.

We get the final result summing up all those quantities.

The next step is to compare T q∇i∇iD
kf to T qDk∆f . This is done in the

following lemma.

Lemma 3.6.

∇i∇iDk
I −Dk

I ∆ =
∑
l 6=l′

gilil′
Dk−2

I\il\il′
X(k−2)X(k−1) + k(n + k − 2)Dk

I .
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Proof. — To do this computation, we commute separately both terms.

First, from the definition of ∇i, and for a multiindex I, we have thanks to
lemma 3.4

∇iDI = DiI −
∑

l

giilDI\ilX
(k−1).

Then, we have
Digjl = xp(gikgpl + gilgpk),

which may be seen directly or from the fact that ∇igjl = 0.

With those two identities, we get

∇j∇iDI = DijI −
∑

l

giilDI\ilX
(k−1)

−gijDIX
(k) −

∑
l

giilDiI\ilX
(k)

+
∑
l 6=l′

giilgjil′
DI\il\il′X

(k−2)X(k−1).

From this, we may compute ∇i∇iDI = gij∇i∇jDI , and we get

∇i∇iDI = gijDijI −DI [(2k + n)X − k(n + 2k − 1)Id]

+
∑
l 6=l′

giilgjil′
DI\il\il′X(k−2)X(k−1) .

In order to compute DI∆, it is easier notice that

xixj ∂2

∂xi∂xj
= X2 −X,

which allows us to decompose ∆ into

∆ = ∆0 −X2 − (n− 1)X,

where ∆0 is the usual (Euclidean) Laplacian, and gives

gijDij = ∆0 −X2 + X.

Since ∆0 commutes with DI , one gets easily, using again lemma 3.4, we have

DI∆ = (∆0 − (X + k)2)DI − (n− 1)DIX

= gijDijDI −DI [(2k + n)X − k(k + 1)Id].

This gives the result.

From this, writing [∆, Dk] for ∇i∇iDk −Dk∆, we get the following
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Corollary 3.7.

T q[∆, Dk] · T qDk = k(n + k − 2)|T qDk|2

+2q(2k − 2q + n− 2)T q−1Dk−2X(k−2)X(k−1) · T qDk

+(k − 2q)(k − 1− 2q)T qDk−2X(k−2)X(k−1) · T q+1Dk.

Proof. — To see that, we use lemma 3.6, and we decompose as before according
to the position of l and l′ with respect to 2q. If l ≤ 2q, let l̂ be the index coupled
with l in the contraction T q, that is l̂ = l + 1 if l is odd and l̂ = l − 1 if l is
even.

Each of the terms with l ≤ 2q, l′ ≤ 2q, l′ 6= l̂ gives rise to T q−1Dk−2X(k−2)X(k−1)·
T qDk.

If l′ = l̂, this gives nT q−1Dk−2X(k−2)X(k−1) · T qDk.

Each of the terms with l ≤ 2q, l′ > 2q or l > 2q, l′ ≤ 2q also gives
T q−1Dk−2X(k−2)X(k−1) · T qDk.

The terms with l > 2q and l′ > 2q give T qDk−2X(k−2)X(k−1) · T q+1Dk.

It remains to compute the last term, which comes from Rk−1(∆+λk−1Id, ∆+
λk−1Id). In the core of the proof of lemma 3.6, we have computed Dk∆.

A simple computation then gives

Lemma 3.8.

|T qDk−1(∆ + λk−1Id)|2 = |T q+1Dk+1 − (n + 2k − 2)T qDk−1X(k−1)|2.

To sum up those results, let ak
q be a sequence of coefficients, with ak

q = 0 if

q > 2k or q < 0, and let Rk =
∑

q ak
qQk,q.

Then, let

R̂k(f, f) = [∆, Rk](f, f)− αkRk(f, f)− βkRk−1((∆ + λk−1)f, (∆ + λk−1)f).

To simplify the notations, we set D̂k = Dk−1X(k−1) and D̄k = Dk−2X(k−2)X(k−1).
We obtain
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R̂k =
∑

q

(ak
q − βka

k−1
q−1)|T qDk+1f |2

−
∑

q

2[2(q + 1)ak
q+1 + (k − 2q)ak

q − 2kak−1
q ]T qDk+1f · T q−1D̂kf

+[4(q + 1)2ak
q+1 + (k − 2q)(k + 2q + n− 1)ak

q − k(n + 2k − 2)ak−1
q ]|T qD̂kf |2

+[2q(2k − 2q + n− 2)ak
q + (k + 2− 2q)(k + 1− 2q)ak

q−1]T
q−1D̄kf · T qDkf.

Now, if the coefficients ak
q satisfy the two recurrence formulae given in 3.2,

then it is a simple computation to see that

R̂k(f, f) = γk

∑
q

ak+1
q |T qDk+1f |2 = γkRk+1(f, f).

This completes the proof of proposition 3.3.

It remains to show that all the Rk are positive.

To see that, at some given point x, let Sk be the space of symmetric tensors of
order k, on which we consider the Euclidean metric that we already considered,
which comes from the Riemannian metric at point x, that is, if a symmetric
tensor S has coordinates SI , where I varies along all multiindices of lenght k,

|S|2 =
∑
I,J

gI,JSISJ ,

where I = {i1, . . . , ik}, J = {j1, . . . , jk}, and gI,J =
∏k

s=1 gisjs . Similarly, we
denote by S · S ′ the scalar product of two symmetric tensors in this space.

If S ′ is a symmetric k − 2 tensor, we may consider the symmetric k-tensor
JS ′ = gij�S ′, where � denotes the symmetric tensor product. More precisely,
for any multiindex I = {i1, . . . , ik}

(JS ′)I =
1

k!

∑
σ

giσ(1)iσ(2)
S ′

iσ(3)...iσ(k)
,

the sum running over all permutations σ of k elements.

Then, we may consider the subspace JSk−2 of Sk, the image of Sk−2 under
J . For any tensor S ∈ Sk, let π(S) be it’s orthogonal projection over JSk−2.
We have
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Proposition 3.9. For any smooth function f and at every point x, in our
system of coordinates

Rk(f, f) = ak
0|Dkf − πDkf |2.

Since by our recurrence formulae 3.2 it is clear that ak
0 is positive, the proof

of the theorem shall follow immediately from this proposition.

Proof. — To understand this identity, we shall compute π(S) for any symmet-
ric tensor S, and show that it is a linear combination of the JqT qS, where q
ranges from 1 to [k/2].

To see that, let us first recall the operator T , which maps Sk into Sk−2 :

(TS)I = gijSijI .

We begin by a lemma.

Lemma 3.10.

(1) If S ∈ Sk and S ′ ∈ Sk−2, we have

S · JS ′ = TS · S ′.

(2) On Sk, one has

(3.5) TJ =
2(n + 2k)

(k + 1)(k + 2)
Id +

k(k − 1)

(k + 1)(k + 2)
JT.

Proof. — The first assertion comes directly from the definitions.

For the second one, we have, for any symmetric tensor S of order k and any
mulitindex I

(TJS)I =
1

(k + 2)!

∑
σ∈±k+2

gi1i2giσ(1)iσ(2)
Siσ(3)...iσ(k+2)

.

We have to decompose this sum in different terms.

(1) If {σ(1), σ(2)} = {1, 2}, then we obtain nSI . There are 2k! such terms.
(2) If σ(1) ∈ {1, 2} and σ(2) /∈ {1, 2}, or if σ(1) /∈ {1, 2} and if σ(2) ∈

{1, 2}, we get SI . There are 4kk! such terms.
(3) After symmetrization, all the other terms give (JTS)I . There are k(k−

1)k! such terms.

From this we get immediatly by induction:
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Corollary 3.11. On Sk, and for q = 1, . . . , [k/2],

T qJ = Ak
qT

q−1 + Bk
q JT q,

with

Ak
q =

2q(n + 2k + 2− 2q)

(k + 1)(k + 2)
; Bk

q =
(k + 1− 2q)(k + 2− 2q)

(k + 1)(k + 2)
.

We shall set in the following Ak
q = Bk

q = 0 for q > [k/2]. From the corollary,
we have

Corollary 3.12. If S ∈ Sk,

π(S) =

[k/2]∑
q=1

αk
qJ

qT qS,

where

αk
1 =

1

Ak−2
1

; αk
q = −αk

q−1

Bk−2
q−1

Ak−2
q

for q ≥ 2.

Proof. — We check that, for any tensor S ′ ∈ Sk−2, one has∑
q

αk
qJ

qT qS · JS ′ = S · JS ′.

But we have

JqT qS. · JS ′ = T qS · T qJS ′

= T qS · [Ak−2
q T q−1S ′ + Bk−2

q JT qS ′]

= Ak−2
q T qS · T q−1S ′ + Bk−2

q T q+1S · T qS ′.

The previous corrollary gives immediately that

(3.6) |S − π(S)|2 = |S|2 −
[k/2]∑
q=1

αk
q |T qS|2.

Now, if we set αk
0 = 1, we observe that the coefficients αk

q follow the same

recurrence relation than the coefficients ak
q (second line of the formula 3.2),

including for q = 1, and this completes the proof of proposition 3.9.
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4. An Extension

In this section, we shall produce another example of an operator L acting
on the algebra of smooth functions on the unit ball for which there exists
a sequence of positive bilinear applications Rk whose associated polynomials
are λ(λ − λ1) . . . (λ − λk−1), where the λi’s are the eigenvalues of −L. This
operator plays in dimension n the same rôle that the ultraspherical generator
in dimension 1.

Let B be the unit ball in Rn, and let q be a parameter larger that n. We
define Lq as

Lq(f)(x) = (δij − xixj)
∂2f

∂xi∂xj
(x)− qxi ∂f

∂xi
(x).

This operator is reversible with respect to the measure defined on the unit
ball by

dµq(x) = cn,q(1− |x|2)(q−n−1)/2dx1 . . . dxn,

which is finite as soon as q > n− 1.

The ball is a manifold with boundary, which is at a finite distance if we
equip it with the metric inherited from the spherical metric. Therefore, if
we have to consider L as a self adjoint operator, we shall impose Neumann
boundary conditions. (In fact, a more precise analysis shows that this operator
is essentially self adjoint as soon as q > n + 1 but this is irrelevant for our
purpose.)

In what follows, we shall restrict our attention to the case where q ≥ n,
although it would be interesting to find similar results for n− 1 < q < n.

If we want to describe the eigenvectors of this operator, it is simpler to notice
that the operator Lq maps polynomials into polynomials, and moreover poly-
nomials of degree less than k into polynomials of degree less than k. Therefore,
we may choose the space of polynomials to be the algebra A.

Proposition 4.1. The eigenvalues of Lq are exactly λq
k = −k(q + k− 1). The

eigenspace associated to λk
q is the space Hk of polynomials of degree less than

k which are orthogonal in L2(µq) to polynomials of degree less than k − 1.

Proof. — To compute the eigenvalues of Lq, we first observe that, if I is a
multiindex of lenght k, then

DILq = (Lq+2k − λq
kId)DI .

This comes immediately by induction from the case k = 1.



EXTENSION OF BOCHNER-LICHNÉROWICZ FORMULA ON SPHERES. 19

Since Lq is symmetric with respect to the measure µq, it maps the space
Hk into itself. Let λ be an eigenvalue of the restriction of Lq to Hk, and P
an eigenvector. There exists a multindex I of lenght k such that DIP is a
constant c different from 0. Then, we write

λc = DILqP = Lq+2kDIP − λq
kDIP = −λk

qc.

For this operator, we may also find a sequence Rq
k of intrinsic positive qua-

dratic maps associated to the polynomials λ(λ−λq
1) . . . (λ−λq

k−1). In fact, we
shall recopy exactly theorem 3.2, and just change everywhere n to q.

Proposition 4.2. Let Rq
0(f, f) = f 2, Rq

1 = [Lq, R0], and, for any k ≥ 2, let

γq
kR

q
k+1(f, g) = [∆, Rq

k](f, g)−αq
kR

q
k(f, g)−βq

kR
q
k−1((∆+λq

k−1I)f, (∆+λq
k−1I)g),

where

αq
k = k(q + k − 2); λq

k = k(q + k − 1); βq
k =

k

q + 2k − 2
; γq

k =
q + k − 2

q + 2k − 2
.

Then,

(1) PRq
k
(λ) = λ(λ− λq

1) . . . (λ− λq
k−1).

(2) For each k, Rq
k is positive.

Proof. — The proof of the first assertion in theorem 3.2 was a purely algebraic
computation and nothing is changed if we replace n by q everywhere.

For the second assertion, let us first begin by the case where q is an integer
larger than n. Then, let f be a function on the unit ball of Rq, which depends
only on the first n coordinates. If we compute it’s spherical Laplacian, in
our system of coordinates, we get exactly Lqf . Therefore, Lq is the spherical
Laplacian of dimension q acting on the functions depending only on the first
n coordinates. We may then apply our main theorem 3.2 without any further
computation.

To ge beyond the case where q is an integer, we first prove the extension of
proposition 3.3:

Proposition 4.3. For any smooth function in the unit ball of Rn,

Rq
k(f, f) =

[k/2]∑
p=0

ak,q
p |T pDkf |2,
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where [k/2] denotes the integer part of k/2, and the ak,q
p are defined by induction

from a1
0 = 1 and

(4.7)


ak,q

p =
k(q + 2k − 2p− 4)

(k − 2p)(q + k − 3)
ak−1,q

p ;

ak,q
p = −(k + 2− 2p)(k + 1− 2p)

2p(q + 2k − 2p− 2)
ak,q

p−1.

Proof. — We first observe that, from the definition of Rq
k, it is clear that Rq

k

is a rational expression with respect to q. It is also the case for the formula
proposed for Rq

k. From what we have just seen, those two formulae coincide
when q is an integer larger than n, since then we just apply the proposition
3.3 to functions on the unit ball of Rq depending on the first n coordinates.

Therefore, those expression coincide for all q.

It remains to prove that the Rq
k are positive. For this, we may not just

extend the expression of Rk as an orthogonal projection identity, since this
has no meaning for a non integer q.

This shall be done in the next lemma

Lemma 4.4. Let E be an Euclidean space of dimension n and define the
norm |T pM |2 as in formula 3.3 for symmetric k-tensors M over E. Then, for

p ≤ [k/2], define the sequence ak,q
p by ak,q

0 = 1 and

ak,q
p = −(k + 2− 2p)(k + 1− 2p)

2p(q + 2k − 2p− 2)
ak,q

p−1

for p ≥ 1. Then, for any q ≥ n, and any symmetric k-tensor M ,

[k/2]∑
q=0

ak,q
p |T pM |2 ≥ 0.

Proof. — Up to a change of coordinates, we may as well suppose that gij = δij.
Then, we imbed E into Ê = E × R, on which we put the standard Euclidean
metric ĝij = δij. The tensor M shall be extended to a symmetric k-tensor M̂
which is such that M̂I = MI if all the components of the multiindex I are less
than or equal to n, and 0 otherwise.

We chose ĝij to be δij if i, j ≤ n, and ĝn+1,n+1 = q − n, all other coefficient
being 0.

For the new metric ĝ, and for a symmetric k tensor M on E, we have
T qM̂ = ˆT qM .
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Then, for a symmetric k-tensor M on E, we set ĴM = ĝij � M̂ . Let π̂M be

the orthogonal projection of M̂ over the subspace of the tensors of the form
ĴM , where M ranges over all symmetric k − 2 tensors over E.

[k/2]∑
q=0

ak,q
p |T pM |2 = |M̂ − π̂M |2.

In fact, if we look at the proof of formula 3.9, which gave the case q = n, we
see that the only place where the parameter n appears is formula 3.5. There,
n comes from gijg

ij = n. Here, we have replaced gij by a matrix which is not
the inverse of ĝij, but which satisfy ĝij ĝ

ij = q.

From this, following the same argument, it is easy to see that we have, for
symmetric k-tensors M ,

T ĴM =
2(q + 2k)

(k + 1)(k + 2)
M +

k(k − 1)

(k + 1)(k + 2)
ĴT,

and this formula leads to the explicit computation of π(M), and hence of
|M − π(M)|2.

This completes the proof of the positivity of the bilinear maps Rq
k.
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C55830, Université Paul Sabatier, 118, route de Narbonne, 31062, Toulouse Cedex, France;
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