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Given a second order differential operator L, we define the vector space of "intrinsic bilinear operators" associated with it. They are constructed only from the operator L itself and the algebra structure given by the product of functions. When the operator is symmetric with respect to some positive measure, every positive quadratic form in this space provides information on the spectrum of the operator. The positiveness of a form relies only on the local structure of the operator.

The purpose of this paper to construct a sequence (R k ) of positive intrinsic quadratic forms on spheres (in this case, L is the Laplace-Beltrami operator) which carry all the information on the spectrum. More precisely, if f is an eigenvector of the Laplace-Beltrami operator associated to the eigenvalue λ and g is any smooth function, then, for the Riemann measure µ,

where 0, λ 1 , . . . , λ k-1 are the k first eigenvalues of the Laplace-Beltrami operator. This extends to the full spectrum the Bochner-Lichnérowicz formula which gives on the sphere a sharp lower bound on the first non-zero eigenvalue. An extension of this property is given for a family of operators which extends the ultraspherical operator on the real line.

Introduction

The famous Bochner-Lichnérowicz formula in Riemannian geometry asserts that on a Riemannian manifold on dimension n with Ricci curvature bounded below by a constant ρ > 0, the first non zero eigenvalue of the Laplace operator is bounded below by ρn/(n -1), and this inequality is optimal on spheres [START_REF] Berger | Le spectre d'une variété riemannienne[END_REF][START_REF] Chavel | Eigenvalues in Riemannian geometry[END_REF][START_REF] Lichnérowicz | Géométrie des groupes de transformations[END_REF][START_REF] Obata | Certain Conditions for a Riemannian manifold to be isometric with a sphere[END_REF]. This inequality is very simple to obtain: let ∆ be the Laplace-Beltrami operator on the smooth manifold M (which we assume to be compact for simplicity), then, for any smooth function f on M , if we compute

Γ(f, f ) = (1/2)∆(f 2 ) -f ∆f, we get Γ(f, f ) = |∇f | 2
, where |∇f | is the lenght of the gradient of the function f computed in the Riemannian metric. Then, we may define the so-called iterated squared gradient by

Γ 2 (f, f ) = (1/2)∆(|∇f | 2 ) -∇f.∇∆f.
It turns out (and this is the Bochner-Lichnérowicz formula) that this may be computed from the Ricci tensor and is equal to

|∇∇f | 2 + Ric(∇f, ∇f ),
where Ric denotes the Ricci tensor, ∇∇f denotes the (symmetric) tensor wich is the second covariant derivative of f , and |M | 2 is the square of the Hilbert-Schmidt norm of the symmetric tensor M . Therefore, it is equivalent to say that the Ricci tensor is bounded below by ρ or to say that, for any smooth function f , Γ 2 (f, f ) ≥ ρΓ(f, f ). This inequality is not by itself sufficient to produce the Bochner-Lichnerowicz lower bound, but if we recall that ∆f is the trace of ∇∇f , and that for any n-dimensional symmetric matrix, we have |M | 2 ≥ (1/n)(trace M ) 2 , then we get that a lower bound ρ on the Ricci tensor is equivalent to the fact that Γ 2 (f, f ) ≥ ρΓ(f, f ) + (1/n)(∆f ) 2 .

In fact, to get from this the lower bound on the non zero eigenvalues of -∆, let us introduce the Riemann measure µ and denote by f the integration of a function f with respect to it. We know that -∆ is symmetric with respect to µ, which means that g∆f = f ∆g , for any pair of smooth functions, from which we deduce that ∆f = 0 for any smooth function f . Now, if we call R 2 the positive quadratic form

R 2 (f, f ) = n n -1 [Γ 2 (f, f ) -ρΓ(f, f ) -(1/n)(∆f ) 2 ],
and R 2 (f, g) the associated bilinear form. From what preceedes, we get, if ∆f = -λf , and for any smooth functions g, Γ(f, g) = λ f g and R 2 (f, g) = λ(λ -ρn/(n -1)) f g .

From the first one we get that the eigenvalues of -∆ are positive, and from the second one the fact that no eigenvalue lies between 0 and ρn/(n -1).

If we replace ∆ by a general second order differential operator L, with no zero order term, we may follow the same construction, and define the operators Γ and Γ 2 , which are built only from L and the product of two functions (we shall say later that those quadratic forms are intrinsic).

We may say that L satisfies a curvature-dimension inequality CD(ρ, n) if, for any smooth function f ,

(1.1) Γ 2 (f, f ) ≥ ρΓ(f, f ) + (1/n)(Lf ) 2 .
(Here, n does not need to be an integer and is only assumed to be positive, and may be infinite). If L is symmetric with respect to some measure µ, then the CD(ρ, n) inequality carries the same information as before about the first non zero eigenvalue, but it says a lot more. For example, the CD(ρ, ∞) inequality implies the celebrated logarithmic-Sobolev inequality, the gaussian isoperimetry, the property of concentration of measures, while the CD(ρ, n) inequality for finite n implies the Sobolev inequality, and therefore the compactness of the resolvant, upper bounds on the diameter, upper bounds on the heat kernel, etc. [START_REF] Bakry | On Sobolev and logarithmic Sobolev Inequalities for Markov Semigroups[END_REF].

Therefore, as we saw before, for the Laplace-Beltrami operator of a Riemannian manifold, it is equivalent to say that the Ricci curvature is bounded below by some constant ρ or to say that the (intrinsic) bilinear form Γ 2 (f, f ) -

1 n (∆f ) 2 -ρΓ(f, f ) is positive.
The purpose of this note is to show that, for any integer k, we may construct on the n-dimensional sphere an intrinsic quadratic form defined on smooth functions, say R k (f, f ), which is positive (∀f , R k (f, f ) ≥ 0), and which is such that if ∆f = -λf , for any smooth function g, we have

R k (f, g) = λ(λ -λ 1 ) . . . (λ -λ k-1 ) f, g , where λ k = k(k + n -1)
is the k th eigenvalue of the operator -∆. Those inequalities are for each k a kind of CD(ρ, n) inequality, but at an higher order.

Therefore, the positivity of this sequence of operators R k encodes the full spectrum of the sphere. More precisely, the R k are constructed on the sphere by a recurrence formula only by means of algebraic manipulations on the Laplace-Beltrami operator ∆ of the sphere (see definition 3.1 below). Assume that some elliptic operator L is defined on a smooth compact manifold M , and that it is self-adjoint with respect to some measure finite measure . Let R k (L) be the family of bilinear operators constructed from L in the same way, replacing ∆ by L. Then, if, for i = 1, . . . , n, R i (L)(f, f ) ≥ 0 for any smooth f on the manifold, the spectrum of -L must lie in {0, λ 1 , . . . , λ n-1 } ∪ [λ n-1 , ∞[, where the λ i are the eigenvalues of the spherical Laplace-Beltrami operator. (See proposition 2.2 in the next section.)

We then extend this sequence of sharp inequalities to a family of operators which generalizes in dimension n the one dimensional operator which is associated to the ultraspherical polynomials in dimension one.

Intrinsic bilinear operators

In what follows, we shall adopt a naïve point of view which avoids all problems which may occur on a non compact Riemannian manifold when dealing with the spectrum of the Laplace-Beltrami operator.

Let M be a set and A be an algebra of real valued functions on M . To fix the ideas, in most of the cases, M is a smooth manifold, and A is the set of compactly supported smooth functions on M , or may be some other set of smooth functions with a growth condition at infinity in the non compact case.

We consider a linear operator L from A into A. If Q is a symmetric bilinear application mapping A×A into A, we may define three new symmetric bilinear applications, LQ(f, g), Q(f, Lg) + Q(g, Lf ), Q(Lf, Lg).

Among those constructions, we shall distinguish the operation [L, Q] as follows

[L, Q](f, g) = (1/2)[L(Q(f, g)) -Q(f, Lg) -Q(Lf, g)].
The vector space of bilinear operations which closed under those three operations and which contains the bilinear form Q 0 (f, g) = f g shall be called the space of intrinsic bilinear operators : they are contructed only from the operator L itself and the algebra structure. We shall call this space I(L). Those bilinear applications are just the bilinear members of the Lie algebra associated with L introduced by Ledoux [START_REF] Ledoux | L'algèbre de Lie des gradients itérés d'un générateur Markovien[END_REF].

We shall say that a element Q of I(L) is positive whenever, for each f in A, one has Q(f, f ) ≥ 0.

To understand the link between the positivity of such quadratic forms and the spectrum of L, we shall assume that we are given on the set M a measure space structure, that A is made of measurable functions, and that a positive measure µ is given such that each element of A is integrable with respect to µ. The basic assumption is that L is symmetric in L 2 (µ), that is, for each pair (f, g) in A 2 , one has f Lg dµ = gLf dµ.

We shall moreover assume that Lf dµ = 0, for any f in A. It is always the case if A contains the constant functions and if L(1) = 0. We shall call this measure µ a reversible measure associated to L. It needs not to be unique, but this shall be the case under mild conditions when it exists.

Those conditions are always fulfilled when L is the Laplace-Beltrami operator of a Riemannian manifold if we choose for µ the Riemann measure, but there are many other examples (we shall see some of those examples later on).

Under those conditions, to each Q in I(L), one may associate a real polynomial P Q which has the following property : if f ∈ A satisfies Lf = -λf , then, for any g ∈ A, one has

Q(f, g) dµ = P Q (λ) f g dµ.
To see that, it is clear that it is the case for Q 0 (f, g) = f g, with P Q 0 (λ) = 1, and the polynomials associated to LQ(f, g), Q(Lf, g)+Q(Lg, f ) and Q(Lf, Lg) are repectively 0, -2λP Q , λ 2 P Q .

In particular,

P [L,Q] (λ) = λP Q (λ).
(Formally, we do not need the reversible measure µ to associate those polynomials to a Q in I(L): it would be enough to describe exactly how the quadratic form Q is constructed from the basic multiplication Q 0 .)

The main interest of those construction is the following: Proposition 2.1. Assume that Q is a positive intrinsinc bilinear operator. Then, for any eigen value λ of L in A, (i.e. there exists an non zero element in A such that Lf = -λf ), then

P Q (λ) ≥ 0. Proof. -It is straight forward. We write 0 ≤ Q(f, f ) dµ = P Q (λ) f 2 dµ.
Therefore, it is interesting to look for positive bilinear forms associated to a given operator L. For example, we have Proposition 2.2. Assume that, for some sequence 0 < λ 1 < λ 2 , . . . < λ k-1 , there exists a sequence of intrinsic bilinear operators R 1 , . . . , R k which are positive

(R i (f, f ) ≥ 0, ∀f ∈ A, ∀i = 1, . . . , k) and that P R i (l) = λ(λ - λ 1 ) . . . (λ -λ i-1 ). If for some f ∈ A, f = 0, we have Lf = -λf , then λ ∈ {0, λ 1 , . . . , λ k-1 } ∪ [λ k-1 , ∞[.
Proof. -The proof of this proposition is straightforward. From the previous proposition, we have P R i (λ) ≥ 0, for any i = 1, . . . , k, and the conclusion follows by an easy induction.

In the next section, we shall show that it is precisely what happens for the spherical Laplacian.

In fact, the positivity of R 2 is exactly the CD(n -1, n) inequality of the sphere (1.1). The positivity of R 2 has proven to carry a lot of important information on the operator L, far beyond spectral properties. But up to now, we do not see what kind of information on the operator L could be deduced from the positivity of R 3 (not to talk of the other ones) although we have the feeling that it should carry similar properties. (See [START_REF] Ledoux | L'algèbre de Lie des gradients itérés d'un générateur Markovien[END_REF] for example, where a similar analysis is carried in a case where no dimensional information is involved.)

The spherical case.

In what follows, we consider an n dimensional sphere (that is a sphere of radius 1 in R n+1 ), and it's Laplace-Beltrami operator, which may be seen as the usual Euclidean Laplacian acting in R n+1 on functions which in a neighborood of the sphere are constant on the radius.

The eigenvalues of the Laplace-Beltrami operator ∆ are λ k = -k(n + k -1). The eigenvectors are the restrictions to the sphere of homogeneous harmonic polynomials in R n+1 . We refer to [START_REF] Stein | Introduction to Fourier Analysis on Euclidean spaces[END_REF] for a complete analysis of the spectral properties of the sphere.

To define the sequence R k of intrinsic bilinear operators acting on functions, we shall proceed in the following way:

Definition 3.1. R 0 (f, g) = f g, R 1 (f, g) = [∆, R 0 ](f, g). For k ≥ 2,
we shall proceed by induction and set

γ k R k+1 (f, g) = [∆, R k ](f, g)-α k R k (f, g)-β k R k-1 ((∆+λ k-1 I)f, (∆+λ k-1 I)g),
where

α k = k(n + k -2); λ k = k(n + k -1); β k = k n + 2k -2 ; γ k = n + k -2 n + 2k -2 .
(Recall that n is the dimension of the sphere.)

Then, the main result of this paper is the following: Theorem 3.2. Let m be the Riemann measure of the sphere and R k be defined as in definition 3.1. Then,

(1) For each pair of smooth function g, and each eigenvector f solution of ∆f = -λf , one has

R k (f, g)dm = P R k (λ) f gdm, with P R k (λ) = λ(λ -λ 1 ) . . . (λ -λ k-1 ). (2) For each k, R k is positive.
Remark. -For the radial functions on the sphere (i.e. functions wich depends only on the distance to some given point), this result was already obtained in [START_REF] Bakry | Une suite remarquable d'inégalités pour les opérateurs ultrasphériques[END_REF], where it may be seen as a result on ultraspherical operators on the unit interval on R. In this case, through a change of variables, the operator may be seen as

L(f ) = (1 -x 2 )f -nxf on the interval [-1, 1], and the operator R k (f, f ) = a k (1 -x 2 ) k (f (k) ) 2 .
The vector space generated by the k lowest eigenvalues of L is the space of polynomials of degree less than k (the eigenvectors are precisely the ultraspherical polynomials), and R k is precisely 0 on the space generated by the first k -1 eigenvectors. A bit of algebraic computations in this case shows that this is the unique intrinsic bilinear operator satisfying this property, up to some constant, and which is in each argument a differential operator with degree less than k.

It is remarkable that the same construction, whith the same values of the coefficients, still produce positive bilinear maps on the spheres. Moreover, if we compare R k to R 2 , one has the feeling that the coefficients γ k should appear as the ratio of the dimensions of some fiber bundles of symmetric tensors. We had been unable to give such an interpretation.

Proof. -(of theorem 3.2). The first assertion is easy to prove by induction. If Q is an element of I(L) associated with the polynomial P Q , then it is a direct consequence from the definitions that

P [∆,Q] (λ) = λP Q (λ), and that if Q 1 (f, f ) = Q(∆f + µf, ∆f + µf ), then P Q 1 (λ) = (λ -µ) 2 P Q .
Therefore, if P k denotes the polynomial associated to R k , we have

P k+1 (λ) = 1 γ k [λP k (λ) -α k P k (λ) -β k (λ -λ k-1 ) 2 P k-1 (λ).
Assume that, for q ≤ k,

P q (λ) = q-1 i=0 (λ -λ i ),
then we get

P k+1 (λ) = 1 γ k P k (λ)[λ -α k -β k (λ -λ k-1 )],
and the result is the consequence of the obvious identities

1 -β k = γ k ; α k -β k λ k-1 = γ k λ k .
The formula is clearly true for R 0 and R 1 , since P 0 = 1 and P 1 (λ) = λ, and this proves the first part.

The second assertion is more delicate and shall require some steps.

First, we shall compute an explicit formula for R k , and to do so we shall use a specific system of coordinates on the sphere. Since everything is invariant under rotations, it is enough to prove the positivity of the R k 's on the upper half sphere.

Let X ∈ S n be on the unit sphere in the Euclidean space R n+1 , and let x be its orthogonal projection on R n (removing the last coordinate of X to fix the ideas). Then, x belongs to the unit ball of R n and this unit ball shall be our local system of coordinates for the upper half-sphere (as well as for the lower one, in fact). In this system of coordinates, the Laplace-Beltrami operator has a simple form

∆(f )(x) = ij (δ ij -x i x j ) ∂ 2 f ∂x i ∂x j -n i x i ∂f ∂x i .
In all what follows, we shall denote g ij the associated cometric in those coordinates, that is

g ij = δ ij -x i x j .
For a multindex I = (i 1 , . . . , i k ) ∈ {1, . . . , n} k , and a smooth function f defined on the unit ball, let D I (f ) denotes the partial derivative along those coordinates

D k I (f ) = ∂ k f ∂x i 1 . . . ∂x i k .
Then, D k f shall denotes the symmetric k-tensor whose coordinates are D k I (f ) in this system of coordinates.

If M is a symmetric k-tensor (like D k f ), with k ≥ 2, T M shall denote it's contraction along two of it's indices, with respect to the metric g ij . This operator gives a symmetric k -2 tensor. In our system of coordinates, for a multi (k -2)-index J = (i 1 , . . . , i k-2 ), and if Jij denotes the k-index obtained by concatenation of J and (ij), this writes

T M J = M ijJ g ij .
(We use here the Einstein convention about the summation over repeated indices).

Since M is symmetric, it is irrelevant to know on which indices we have made the contraction, and here we have chosen the first coordinates.

By convention, we shall write

T M = 0 if k = 1 or k = 0.
Moreover, if M is any tensor of order k, we shall denote by |M | 2 it's norm in the metric g, i.e.

|M | 2 = g (I,J) M I M J , the sum running over all pairs of multindices (I = {i 1 , . . . , i k }, J = {j 1 , . . . , j k }) and for such a pair, g (I,J) = g i 1 j 1 g i 1 j 2 . . . g i k j k . Similarly, we shall denote M • N for the bilinear form associated to this quadratic norm. Proposition 3.3. For any smooth function in the unit ball of R n ,

R k (f, f ) = [k/2] q=0 a k q |T q D k f | 2 ,
where [k/2] denotes the integer part of k/2, and the a k q are defined by induction from a 1 0 = 1 and

(3.2)            a k q = k(n + 2k -2q -4) (k -2q)(n + k -3) a k-1 q ; a k q = - (k + 2 -2q)(k + 1 -2q) 2q(n + 2k -2q -2) a k q-1 .
(A simple verification shows that those two formulae are compatible and that the operation which raises the first and the second index do commute.)

Proof. -The proof of this fact is not entirely easy and requires some computations. We shall proceed by induction on k. The formula is clearly true for

k = 1, since R 1 (f, f ) = |Df | 2 .
Then, let Q k,q (f, f ) be the bilinear map defined by

Q k,q (f, f ) = |T q D k f | 2 .
Our main task shall be to compute Qk,q = [∆,

Q k,q ] -α k Q k,q -β k Q k-1,q (∆ + λ k-1 Id, ∆ + λ k-1 Id).
We begin by an elementary lemma Lemma 3.4. Let X de the operator i x i ∂ ∂x i , and I be a multiindex of lenght k.

Then XD k I = D k I (X -kId).
In what follows, and to simplify the notations, X (k) shall denote the operator X -kId.

Proof. -First, we observe that, for any index i, XD i = D i X -D i . The general case follows immediately by induction.

First, we compute [∆, Q k,q ].
First, for a k-symmetric tensor M , and for q ≤ [k/2], we shall rewrite |T q M | 2 as

(3.3) |T q M | 2 = I,J g I,J q M I M J ,
where the sum runs over all pairs of multindices I = {i 1 , . . . , i k } and J = {j 1 , . . . , j k }, and

g I,J q = q-1 r=0 g i 2r+1 i 2r+2 g j 2r+1 j 2r+2 k s=2q+1 g isjs .
(Here, the contraction T q acts on the first 2q indices.)

Then, we introduce the Riemannian connection ∇ on symmetric tensors. The inverse metric g ij may be written in this coordinates as

g ij = δ ij + x i x j 1 -|x| 2 ,
where |x| is the Euclidean norm of the vector x. We shall use the usual notation to raise and lower indices using the metrics g ij and g ij , and use again the Einstein convention on the sum over repeated indices. Then, in this coordinate system, and for a multindex I = {i 1 , . . . , i k }, the tensor ∇M (symmetric or not) may be written as

∇ i M I = ∂M I ∂x i - k r=1 j
g iir x j M I∪{j}\ir .

(If the tensor M is not symmetric, we have to be a little careful in the previous notation, and I ∪ {j} \ i r denotes the multindex where the index j has replaced the index i r at place r.)

Since ∇ is the Riemannian connection, ∇g = 0 for the two tensors g ij and g ij , and we have

∆|T q M | 2 = 2|∇T q M | 2 + 2(T q ∇ i ∇ i M ) • (T q M ).
We first compute the first term Lemma 3.5.

|∇T q D k f | 2 = |T q D k+1 f | 2 -4qT q D k+1 f • T q-1 D k-1 X (k-1) f -2(k -2q)T q+1 D k+1 f • T q D k-1 X (k-1) f +4q 2 |T q-1 D k-1 X (k-1) f | 2 +(k -2q)(k + 2q + n -1)|T q D k-1 X (k-1) f | 2
Proof. -Let I = {i 1 , . . . , i k } be a multiindex of lenght k and iI denotes the concatenation of i and I.

(∇D k f ) iI = D k+1 iI f - k l=1 g ii l x p D k (I\i l )p f = D iI f - k l=1 g ii l XD k-1 I\i l f = D iI f - k l=1 g ii l D k-1 I\i l X (k-1) f.
We have then

(3.4) |∇T q D k f | 2 = g ij g I,J q (∇D k f ) iI • (∇D k f ) jJ , the sum
running over all pairs of multiindices (I, J).

Using the formula above for ∇D k f , this sum decomposes as

A -2B + D, where A = g ij g IJ q D k+1 iI f D k+1 jJ f = |T q D k+1 f | 2 ; B = l g ij g IJ q g ii l D k-1 I\i l X (k-1) f D k+1) jJ f ; C = l,l g ij g IJ q g ii l g jj l D k-1 I\i l X (k-1) f D k-1 J\j l X (k-1) f.
For simplicity, for a (k-1)-multiindex I let us write M I instead of D k-1 I X (k-1) f , and let us denote by M the corresponding tensor. To compute the B term, we notice that g ij g ii l = δ j i l , and therefore

B = l g IJ q M I\i l D k+1 i l J f.
We have then to decompose this sum again according to the fact that l ≤ 2q or l > 2q. Each term with l ≤ 2q gives rise to T q D k+1 f • T q-1 M , and each term with l > 2q gives rise to

T q+1 D k+1 f • T q M .
The C term is a bit more complicated. First, we observe that

g ij g ii l g jj l = g i l j l . Then C = l,l g IJ q g i l j l M I\i l M J\j l .
Each term of the sum with l and l less than or equal to 2q gives

|T q-1 D k-1 X (k-1) | 2 .
Then, each term with l ≤ 2q and l > 2q or l > 2q and l ≤ 2q also gives

|T q-1 M | 2 .
The same is true for the terms with l > 2q, l > 2q with l = l , but the terms with l = l > 2q give n|T q-1 M | 2 , since then we have

g I,J q g i l i l M I\i l M J\j l = g I\i l ,J\j l q-1 g i l j l g i l j l M I\i l M J\j l = ng I\i l ,J\j l q-1 M I\i l M J\j l .
We get the final result summing up all those quantities. The next step is to compare T q ∇ i ∇ i D k f to T q D k ∆f . This is done in the following lemma. Lemma 3.6.

∇ i ∇ i D k I -D k I ∆ = l =l g i l i l D k-2 I\i l \i l X (k-2) X (k-1) + k(n + k -2)D k I .
Proof. -To do this computation, we commute separately both terms.

First, from the definition of ∇ i , and for a multiindex I, we have thanks to lemma 3.4 1) .

∇ i D I = D iI - l g ii l D I\i l X (k-
Then, we have D i g jl = x p (g ik g pl + g il g pk ), which may be seen directly or from the fact that ∇ i g jl = 0.

With those two identities, we get 1) .

∇ j ∇ i D I = D ijI - l g ii l D I\i l X (k-1) -g ij D I X (k) - l g ii l D iI\i l X (k) + l =l g ii l g ji l D I\i l \i l X (k-2) X (k-
From this, we may compute ∇ i ∇ i D I = g ij ∇ i ∇ j D I , and we get

∇ i ∇ i D I = g ij D ijI -D I [(2k + n)X -k(n + 2k -1)Id] + l =l g ii l g ji l D I\i l \i l X (k-2) X (k-1) .
In order to compute D I ∆, it is easier notice that

x i x j ∂ 2 ∂x i ∂x j = X 2 -X, which allows us to decompose ∆ into ∆ = ∆ 0 -X 2 -(n -1)X,
where ∆ 0 is the usual (Euclidean) Laplacian, and gives

g ij D ij = ∆ 0 -X 2 + X.
Since ∆ 0 commutes with D I , one gets easily, using again lemma 3.4, we have

D I ∆ = (∆ 0 -(X + k) 2 )D I -(n -1)D I X = g ij D ij D I -D I [(2k + n)X -k(k + 1)Id].
This gives the result.

From this, writing [∆, D k ] for ∇ i ∇ i D k -D k ∆, we get the following Corollary 3.7.

T q [∆, D k ] • T q D k = k(n + k -2)|T q D k | 2 +2q(2k -2q + n -2)T q-1 D k-2 X (k-2) X (k-1) • T q D k +(k -2q)(k -1 -2q)T q D k-2 X (k-2) X (k-1) • T q+1 D k .
Proof. -To see that, we use lemma 3.6, and we decompose as before according to the position of l and l with respect to 2q. If l ≤ 2q, let l be the index coupled with l in the contraction T q , that is l = l + 1 if l is odd and l = l -1 if l is even.

Each of the terms with l ≤ 2q, l ≤ 2q, l = l gives rise to

T q-1 D k-2 X (k-2) X (k-1) • T q D k . If l = l, this gives nT q-1 D k-2 X (k-2) X (k-1) • T q D k .
Each of the terms with l ≤ 2q, l > 2q or l > 2q, l ≤ 2q also gives

T q-1 D k-2 X (k-2) X (k-1) • T q D k .
The terms with l > 2q and l > 2q give

T q D k-2 X (k-2) X (k-1) • T q+1 D k .
It remains to compute the last term, which comes from R k-1 (∆+λ k-1 Id, ∆+ λ k-1 Id). In the core of the proof of lemma 3.6, we have computed D k ∆.

A simple computation then gives Lemma 3.8.

|T q D k-1 (∆ + λ k-1 Id)| 2 = |T q+1 D k+1 -(n + 2k -2)T q D k-1 X (k-1) | 2 .
To sum up those results, let a k q be a sequence of coefficients, with a k q = 0 if q > 2k or q < 0, and let

R k = q a k q Q k,q . Then, let Rk (f, f ) = [∆, R k ](f, f ) -α k R k (f, f ) -β k R k-1 ((∆ + λ k-1 )f, (∆ + λ k-1 )f ).
To simplify the notations, we set Dk = D k-1 X (k-1) and Dk = D k-2 X (k-2) X (k-1) . We obtain

Rk = q (a k q -β k a k-1 q-1 )|T q D k+1 f | 2 - q 2[2(q + 1)a k q+1 + (k -2q)a k q -2ka k-1 q ]T q D k+1 f • T q-1 Dk f +[4(q + 1) 2 a k q+1 + (k -2q)(k + 2q + n -1)a k q -k(n + 2k -2)a k-1 q ]|T q Dk f | 2 +[2q(2k -2q + n -2)a k q + (k + 2 -2q)(k + 1 -2q)a k q-1 ]T q-1 Dk f • T q D k f.
Now, if the coefficients a k q satisfy the two recurrence formulae given in 3.2, then it is a simple computation to see that

Rk (f, f ) = γ k q a k+1 q |T q D k+1 f | 2 = γ k R k+1 (f, f ).
This completes the proof of proposition 3.3.

It remains to show that all the R k are positive.

To see that, at some given point x, let S k be the space of symmetric tensors of order k, on which we consider the Euclidean metric that we already considered, which comes from the Riemannian metric at point x, that is, if a symmetric tensor S has coordinates S I , where I varies along all multiindices of lenght k,

|S| 2 = I,J g I,J S I S J ,
where I = {i 1 , . . . , i k }, J = {j 1 , . . . , j k }, and g I,J = k s=1 g isjs . Similarly, we denote by S • S the scalar product of two symmetric tensors in this space.

If S is a symmetric k -2 tensor, we may consider the symmetric k-tensor JS = g ij S , where denotes the symmetric tensor product. More precisely, for any multiindex

I = {i 1 , . . . , i k } (JS ) I = 1 k! σ g i σ(1) i σ(2) S i σ(3) ...i σ(k) ,
the sum running over all permutations σ of k elements.

Then, we may consider the subspace JS k-2 of S k , the image of S k-2 under J. For any tensor S ∈ S k , let π(S) be it's orthogonal projection over JS k-2 . We have Lemma 3.10.

(1) If S ∈ S k and S ∈ S k-2 , we have

S • JS = T S • S .
(2) On S k , one has

(3.5) T J = 2(n + 2k) (k + 1)(k + 2) Id + k(k -1) (k + 1)(k + 2)
JT.

Proof. -The first assertion comes directly from the definitions.

For the second one, we have, for any symmetric tensor S of order k and any mulitindex I

(T JS) I = 1 (k + 2)! σ∈± k+2 g i 1 i 2 g i σ(1) i σ(2) S i σ(3) ...i σ(k+2) .
We have to decompose this sum in different terms. From this we get immediatly by induction:

Corollary 3.11. On S k , and for q = 1, . . . , [k/2],

T q J = A k q T q-1 + B k q JT q , with

A k q = 2q(n + 2k + 2 -2q) (k + 1)(k + 2) ; B k q = (k + 1 -2q)(k + 2 -2q) (k + 1)(k + 2) .
We shall set in the following A k q = B k q = 0 for q > [k/2]. From the corollary, we have Corollary 3.12.

If S ∈ S k , π(S) = [k/2] q=1 α k q J q T q S,
where

α k 1 = 1 A k-2 1 ; α k q = -α k q-1 B k-2 q-1 A k-2 q
for q ≥ 2.

Proof. -We check that, for any tensor S ∈ S k-2 , one has q α k q J q T q S • JS = S • JS .

But we have

J q T q S. • JS = T q S • T q JS = T q S • [A k-2 q T q-1 S + B k-2 q JT q S ] = A k-2 q T q S • T q-1 S + B k-2 q T q+1 S • T q S .
The previous corrollary gives immediately that

(3.6) |S -π(S)| 2 = |S| 2 - [k/2] q=1 α k q |T q S| 2 .
Now, if we set α k 0 = 1, we observe that the coefficients α k q follow the same recurrence relation than the coefficients a k q (second line of the formula 3.2), including for q = 1, and this completes the proof of proposition 3.9.

An Extension

In this section, we shall produce another example of an operator L acting on the algebra of smooth functions on the unit ball for which there exists a sequence of positive bilinear applications R k whose associated polynomials are λ(λ -λ 1 ) . . . (λ -λ k-1 ), where the λ i 's are the eigenvalues of -L. This operator plays in dimension n the same rôle that the ultraspherical generator in dimension 1.

Let B be the unit ball in R n , and let q be a parameter larger that n. We define L q as

L q (f )(x) = (δ ij -x i x j ) ∂ 2 f ∂x i ∂x j (x) -qx i ∂f ∂x i (x).
This operator is reversible with respect to the measure defined on the unit ball by dµ q (x) = c n,q (1 -|x| 2 ) (q-n-1)/2 dx 1 . . . dx n , which is finite as soon as q > n -1.

The ball is a manifold with boundary, which is at a finite distance if we equip it with the metric inherited from the spherical metric. Therefore, if we have to consider L as a self adjoint operator, we shall impose Neumann boundary conditions. (In fact, a more precise analysis shows that this operator is essentially self adjoint as soon as q > n + 1 but this is irrelevant for our purpose.)

In what follows, we shall restrict our attention to the case where q ≥ n, although it would be interesting to find similar results for n -1 < q < n.

If we want to describe the eigenvectors of this operator, it is simpler to notice that the operator L q maps polynomials into polynomials, and moreover polynomials of degree less than k into polynomials of degree less than k. Therefore, we may choose the space of polynomials to be the algebra A.

Proposition 4.1. The eigenvalues of L q are exactly λ q k = -k(q + k -1). The eigenspace associated to λ k q is the space H k of polynomials of degree less than k which are orthogonal in L 2 (µ q ) to polynomials of degree less than k -1.

Proof. -To compute the eigenvalues of L q , we first observe that, if I is a multiindex of lenght k, then D I L q = (L q+2k -λ q k Id)D I . This comes immediately by induction from the case k = 1.

Since L q is symmetric with respect to the measure µ q , it maps the space H k into itself. Let λ be an eigenvalue of the restriction of L q to H k , and P an eigenvector. There exists a multindex I of lenght k such that D I P is a constant c different from 0. Then, we write λc = D I L q P = L q+2k D I P -λ q k D I P = -λ k q c.

For this operator, we may also find a sequence R q k of intrinsic positive quadratic maps associated to the polynomials λ(λ -λ q 1 ) . . . (λ -λ q k-1 ). In fact, we shall recopy exactly theorem 3.2, and just change everywhere n to q.

Proposition 4.2. Let R q 0 (f, f ) = f 2 , R q 1 = [L q , R 0 ], and, for any k ≥ 2, let γ q k R q k+1 (f, g) = [∆, R q k ](f, g)-α q k R q k (f, g)-β q k R q k-1 ((∆+λ q k-1 I)f, (∆+λ q k-1 I)g), where 
α q k = k(q + k -2); λ q k = k(q + k -1); β q k = k q + 2k -2 ; γ q k = q + k -2 q + 2k -2 . Then, (1) 
P R q k (λ) = λ(λ -λ q 1 ) . . . (λ -λ q k-1 ). (2) For each k, R q k is positive.
Proof. -The proof of the first assertion in theorem 3.2 was a purely algebraic computation and nothing is changed if we replace n by q everywhere.

For the second assertion, let us first begin by the case where q is an integer larger than n. Then, let f be a function on the unit ball of R q , which depends only on the first n coordinates. If we compute it's spherical Laplacian, in our system of coordinates, we get exactly L q f . Therefore, L q is the spherical Laplacian of dimension q acting on the functions depending only on the first n coordinates. We may then apply our main theorem 3.2 without any further computation.

To ge beyond the case where q is an integer, we first prove the extension of proposition 3.3:

Proposition 4.3. For any smooth function in the unit ball of R n , R q k (f, f ) = [k/2] p=0 a k,q p |T p D k f | 2 ,
where [k/2] denotes the integer part of k/2, and the a k,q p are defined by induction from a 1 0 = 1 and (4.7)

          
a k,q p = k(q + 2k -2p -4) (k -2p)(q + k -3) a k-1,q p ; a k,q p = -(k + 2 -2p)(k + 1 -2p) 2p(q + 2k -2p -2) a k,q p-1 .

Proof. -We first observe that, from the definition of R q k , it is clear that R q k is a rational expression with respect to q. It is also the case for the formula proposed for R q k . From what we have just seen, those two formulae coincide when q is an integer larger than n, since then we just apply the proposition 3.3 to functions on the unit ball of R q depending on the first n coordinates. Therefore, those expression coincide for all q.

It remains to prove that the R q k are positive. For this, we may not just extend the expression of R k as an orthogonal projection identity, since this has no meaning for a non integer q.

This shall be done in the next lemma Lemma 4.4. Let E be an Euclidean space of dimension n and define the norm |T p M | 2 as in formula 3.3 for symmetric k-tensors M over E. Then, for p ≤ [k/2], define the sequence a k,q p by a k,q 0 = 1 and a k,q p = -(k + 2 -2p)(k + 1 -2p) 2p(q + 2k -2p -2) a k,q p-1

for p ≥ 1. Then, for any q ≥ n, and any symmetric k-tensor M , Proof. -Up to a change of coordinates, we may as well suppose that g ij = δ ij . Then, we imbed E into Ê = E × R, on which we put the standard Euclidean metric ĝij = δ ij . The tensor M shall be extended to a symmetric k-tensor M which is such that MI = M I if all the components of the multiindex I are less than or equal to n, and 0 otherwise.

We chose ĝij to be δ ij if i, j ≤ n, and ĝn+1,n+1 = q -n, all other coefficient being 0.

For the new metric ĝ, and for a symmetric k tensor M on E, we have T q M = T q M . Then, for a symmetric k-tensor M on E, we set ĴM = ĝij M . Let πM be the orthogonal projection of M over the subspace of the tensors of the form ĴM , where M ranges over all symmetric k -2 tensors over E.

[k/2] q=0 a k,q p |T p M | 2 = | M -πM | 2 .
In fact, if we look at the proof of formula 3.9, which gave the case q = n, we see that the only place where the parameter n appears is formula 3.5. There, n comes from g ij g ij = n. Here, we have replaced g ij by a matrix which is not the inverse of ĝij , but which satisfy ĝij ĝij = q.

From this, following the same argument, it is easy to see that we have, for symmetric k-tensors M , T ĴM = 2(q + 2k) (k + 1)(k + 2)

M + k(k -1) (k + 1)(k + 2) ĴT, and this formula leads to the explicit computation of π(M ), and hence of

|M -π(M )| 2 .
This completes the proof of the positivity of the bilinear maps R q k .

( 1 )

 1 If {σ(1), σ(2)} = {1, 2}, then we obtain nS I . There are 2k! such terms. (2) If σ(1) ∈ {1, 2} and σ(2) / ∈ {1, 2}, or if σ(1) / ∈ {1, 2} and if σ(2) ∈ {1, 2}, we get S I . There are 4kk! such terms. (3) After symmetrization, all the other terms give (JT S) I . There are k(k-1)k! such terms.

[k/ 2 ]

 2 q=0 a k,q p |T p M | 2 ≥ 0.

Proposition 3.9. For any smooth function f and at every point x, in our system of coordinates

Since by our recurrence formulae 3.2 it is clear that a k 0 is positive, the proof of the theorem shall follow immediately from this proposition.

Proof. -To understand this identity, we shall compute π(S) for any symmetric tensor S, and show that it is a linear combination of the J q T q S, where q ranges from 1 to [k/2].

To see that, let us first recall the operator T , which maps S k into S k-2 :

We begin by a lemma.