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1. Problem A: Multiplicities in diag.

1.1. Setting

Let H(F, G) be the Hadamard exponential product as defined below by

F (z) =
∑

n≥0

an
zn

n!
, G(z) =

∑

n≥0

bn
zn

n!
, H(F, G) :=

∑

n≥0

anbn
zn

n!
. (1)

In the case of free exponentials, that is if we write the functions as

F (z) = exp

(

∞
∑

n=1

Ln
zn

n!

)

, G(z) = exp

(

∞
∑

n=1

Vn
zn

n!

)

, (2)

and using the expansion with Bell polynomials in the sets of variables L = {Ln},

V = {Vm} (see [6, 10] for details), we obtain

H(F, G) =
∑

n≥0

zn

n!

∑

P1,P2∈UPn

LType(P1)VType(P2) (3)

where UPn is the set of unordered partitions of [1 · · ·n].

An unordered partition P of a set X is a subset of P ⊂ P(X) − {∅}‡ (that is an

unordered collection of blocks, i. e. non-empty subsets of X) such that

• the union
⋃

Y ∈P Y = X (P is a covering)

• P consists of disjoint subsets, i. e.

Y1, Y2 ∈ P and Y1 ∩ Y2 6= ∅ =⇒ Y1 = Y2.

The type of P ∈ UPn (denoted above by Type(P )) is the multi-index (αi)i∈N+ such that

αk is the number of k-blocks, that is the number of members of P with cardinality k.

Let P1, P2 be two unordered partitions of the same set. To each labelling of the blocks

Pr = {B
(r)
i }1≤i≤nr

; r = 1, 2 (4)

one can associate the intersection matrix

M =
(

card(B
(1)
i ∩ B

(2)
j )
)

1≤i≤n1 ; 1≤j≤n2

. (5)

As (P1, P2) are, in essence, unlabelled, the arrow so constructed

(P1, P2) 7→ class(M) = d (6)

aims at classes of packed matrices [7] under permutations of rows and columns.

These classes have been shown [2, 3] to be in one to one correspondence with Feynman-

Bender diagrams [1] which are bicoloured graphs with p (= card(P1)) black spots, q

(= card(P2)) white spots, no isolated vertex and integer multiplicities. We denote the

‡ The set of subsets of X is denoted by P(X) (this notation [4] is that of the former German school).



set of such diagrams by diag [8, 9].

Then, the correspondence goes as showed below.

j j j j

z z z

{1} {2, 3, 4}{5, 6, 7, 8, 9}{10, 11}

{2, 3, 5}{1, 4, 6, 7, 8}{9, 10, 11}

Fig 1. — Diagram from P1, P2 (set partitions of [1 · · · 11]).

P1 = {{2, 3, 5}, {1, 4, 6, 7, 8}, {9, 10, 11}} and P2 = {{1}, {2, 3, 4}, {5, 6, 7, 8, 9}, {10, 11}}

(respectively black spots for P1 and white spots for P2).

The incidence matrix corresponding to the diagram (as drawn) or these partitions is




0 2 1 0

1 1 3 0

0 0 1 2



. But, due to the fact that the defining partitions are unordered, one can

permute the spots (black and white, between themselves) and, so, the lines and columns of this

matrix can be permuted. The diagram could be represented by the matrix





0 0 1 2

0 2 1 0

1 0 3 1



 as

well.

Noting mult(d) the cardinality of each fibre of (6), formula (3) reads

H(F, G) =
∑

n≥0

zn

n!

∑

d∈diag

|d|=n

mult(d)Lα(d)Vβ(d) (7)

where α(d) (resp. β(d)) is the “white spots type” (resp. the “black spots type”) i.e.

the multi-index (αi)i∈N+ (resp. (βi)i∈N+) such that αi (resp. βi) is the number of white

spots (resp. black spots) of degree i (i lines connected to the spot) and mult(d) is the

number of pairs of unordered partitions of [1 · · · |d|] (here |d| = |α(d)| = |β(d)| is the

number of lines of d) with associated diagram d.

1.2. Problem A

Give a formula (as smart as possible) for mult(d) as a function of d (in the language

of [7], as a function of the class of a packed matrix under the permutation of rows and

columns).

Hint. — For practical computations, one of the two partitions may be kept fixed, say

P1 and the result of the enumeration multiplied by n!
|stab(P1)|

.



2. Problem B: Combinatorics of Riordan-Sheffer one-parameter groups.

We start with the (vector) space CN×N of complex bi-infinite matrices.

Let RF(N, C) = (C(N))N the space of row-finite matrices (i. e. matrices for which

every row is finitely supported). To every matrix T ∈ RF(N, C), one can associate the

sequence transformation

(ak)k∈N 7→ (bn)n∈N (8)

given by

bn =
∑

k∈N

T [n, k]ak (9)

this sum is finitely supported as T ∈ RF(N, C). One can prove that the set RF(N, C)

is exactly the algebra of continuous endomorphisms of CN endowed with the topology

of pointwise convergence.

This transformation can be transported on EGFs by

f =
∑

k∈N

ak
zk

k!
7→ f̂ =

∑

n∈N

bn
zn

n!
(10)

and, in case f̂ is given by

f̂(z) = Φg,φ[f ](z) = g(z)f(φ(z)). (11)

with

g(z) = 1 + higher terms and φ(z) = z + higher terms. (12)

we say that the matrix is a matrix of substitutions with prefunction.

In classical combinatorics (for OGF and EGF), the matrices Mg,φ(n, k) are known

as Riordan matrices (see [11, 12] for example). One can prove, using a Zariski-like

argument, the following proposition [10, 5].

Proposition 2.1 [10] Let M be the matrix of a substitution with prefunction; then so

is M t for all t ∈ C.

2.1. Problem B

a) Provide a combinatorial proof of the preceding proposition for t ∈ Q (without using

the ”pro-algebraic” structure of the group of substitutions with prefunctions, directly

or indirectly).

b) Give a combinatorial interpretation of M1/2 for some Sheffer matrices.

3. Problem C: A corpus for combinatorial vector fields.

With the preceding notations one can show that, if M is a matrix of substitution with

prefunction, the limit

lim
q→+∞

q(M
1
q − I) (13)



exists (call it L) and the associated transformation of sequences (see above) is the sum

of a vector field and a scalar field. One can see that

M ∈ QN×N =⇒ L ∈ QN×N . (14)

in addition, if M is a matrix of substitution (i. e. the prefunction is ≡ 1) then the

scalar field is zero and so the associated differential operator is a pure vector field (with

coefficients in Q if M is in QN×N).

On the other hand, if C is a class of labelled graphs for which the exponential formula

applies, the matrix M such that

M [n, k] = Number of graphs labelled by [1..n] and with k connected components (15)

is a matrix of substitution [10]. For example with the graphs of equivalence relations on

finite sets, the substitution is z 7→ ez − 1; for graphs of idempotent endofunctions, the

substitution is z 7→ zez .

3.1. Problem C

a) What is the combinatorial interpretation of the coefficients of the vector field for the

two preceding examples ?

b) Can we give any insight of the form of this vector field for general classes of graphs ?

Hint. — Mz = ezlog(M) where log(M) is the matrix of a differential operator of the

form q(z) d
dz

+ v(z).

4. Problem D Probabilistic study of approximate substitutions

Our motivation, in this section, consists in approximating the matrices of infinite substi-

tutions by finite matrices of (approximate) substitutions. We are then interested in the

probabilistic study of these matrices. To this end, we randomly generate unipotent (uni-

triangular) matrices and observe the number of occurrences of matrices of substitutions.

We start by giving some examples of our experiment which are summarized in the table

below:

Size Number of drawings Range of variables Probability

[3 × 3] 300 [1 · · ·10] 1

[1 · · ·100] 1

[1 · · ·10000] 1

[4 × 4] 275 [1 · · ·10] 0.0473

[1 · · ·100] 0.0001

[1 · · ·10000] 0+

[10 × 10] 1500 [1 · · ·10] 0.0327

[1 · · ·100] 0+

[1 · · ·10000] 0+



According to the results obtained, we observe that the (approximate) substitution

matrices are not very frequent. However, in meeting certain conditions such as size, the

number of drawings and the range of the variables, we can obtain positive probabilities

that these matrices appear.

Let us note that the smaller the size of the matrix the more probable one obtains a

matrix of substitution in a reasonable number of drawings.

We also notice that, if we vary the range of variables, and this in an increasing way and

by keeping unchanged the number of drawings and size, the probability tends to zero.

We also notice that the unipotent matrices of size 3 are all matrices of approximate

substitutions. This is easy to see because the exponential generating series of the 3rd

column will always have the form ck =
x2

2!
.

Thus, we can say that the test actually starts from the matrices of size higher or equal

to 4.

Result 4.1 Let r represent the cardinality of the range of variables and n × n be the

size of the matrix.

According to the results obtained; we can say that the probability pn of appearance of the

matrices of substitutions depends on r and n and we have the following upper bound:

pn ≤
r2n−3

r
n(n−1)

2

(16)

which shows that

pn −→ 0 as n −→ ∞ (17)

4.1. Problem D

One can conjecture that the effect of the range selection vanishes when n tends to

infinity. More precisely:

pn ∼
r2n−3

r
n(n−1)

2

(18)
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