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A LOGARITHMIC SOBOLEV FORM

OF THE LI-YAU PARABOLIC INEQUALITY

D. Bakry, M. Ledoux

University of Toulouse, France

Abstract. – We present a finite dimensional version of the logarith-
mic Sobolev inequality for heat kernel measures of non-negatively curved
diffusion operators that contains and improves upon the Li-Yau parabolic
inequality. This new inequality is of interest already in Euclidean space
for the standard Gaussian measure. The result may also be seen as an
extended version of the semigroup commutation properties under curva-
ture conditions. It may be applied to reach optimal Euclidean logarithmic
Sobolev inequalities in this setting. Exponential Laplace differential in-
equalities through the Herbst argument furthermore yield diameter bounds
and dimensional estimates on the heat kernel volume of balls.

1. Introduction and main result

The celebrated Li-Yau parabolic inequality [L-Y] on a Riemannian manifold M with
dimension n and non-negative Ricci curvature expresses that for any positive function f
on M and any t > 0,

−∆(logPtf) ≤ n

2t
(1)

(pointwise) where ∆ is the Laplace-Beltrami operator on M and Pt = et∆ the heat
semigroup. This crucial bound has been widely used towards Harnack inequalities and
refined heat kernel bounds (cf. [L-Y], [Da], [SC]...)

On the other hand, gradient estimates have been used in the context of abstract
Markov diffusion operators to establish sharp functional inequalities for heat kernel
measures. A convenient setting where this may be developed is presented in [Ba1], [Ba2].
On some measure space (E, E , µ), let L be a Markov generator associated to a semigroup
(Pt)t≥0, continuous in L2(µ), with invariant measure µ. For a given nice algebra A of
functions on E in the L2-domain of L, let Γ be the symmetric non-negative bilinear
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operator on A×A defined by

2 Γ(f, g) = L(fg)− f Lg − g Lf, f, g ∈ A.

The operator L is then said to be a diffusion if for every C∞ function Ψ on R and every
f in A,

LΨ(f) = Ψ′(f) Lf + Ψ′′(f) Γ(f, f). (2)

This hypothesis essentially expresses that L is a second order differential operator with
no constant term and that we have a chain rule formula for Γ, Γ(Ψ(f), g) = Ψ′(f) Γ(f, g),
f, g ∈ A.

One basic example is of course the Laplace-Beltrami operator ∆ on a complete
connected Riemannian manifold M (with its Riemannian measure). For A the class,
say, of C∞c functions on M , Γ(f, f) is simply the Riemannian length (squared) |∇f |2 of
the gradient ∇f of f ∈ A. The previous abstract framework includes a number of further
examples of interest (cf. [Ba1]). For example, one may consider L = ∆ +X where X is
a smooth vector field on M , or more general second order differential operators with no
constant term. In particular, we deal below with the Ornstein-Uhlenbeck generator on
Rn, Lf(x) = ∆f(x) − x · ∇f(x) with invariant measure the standard Gaussian measure
dγn(x) = (2π)−n/2e−|x|

2/2dx. In all these explicit examples, it is easy to describe a
nice algebra A of (bounded) functions on E dense in the L2-domain of L, stable by L
and Pt, and by the action of C∞ functions. The stability by Pt may not be satisfied
even in basic examples such as non-degenerate second order differential operators with
no constant term on a smooth (non-compact) manifold. This assumption is however not
strictly necessary, and each example of interest has actually to be analyzed in its own. In
order not to obscure the main ideas, we prefer to restrict to such a convenient framework.

Curvature, and dimension, in this setting are introduced via the Γ2 operator defined
by

2Γ2(f, g) = LΓ(f, g)− Γ(f,Lg)− Γ(g,Lf), f, g ∈ A.

For simplicity, we write below Γf = Γ(f) = Γ(f, f) and similarly for Γ2. In a Riemannian
setting, Bochner’s formula (cf. [Ch], [G-H-L]) indicates that

Γ2(f) = Γ2(f, f) = Ric(∇f,∇f) + ‖Hess f‖22

where Ric is the Ricci tensor on M and ‖Hess f‖2 is the Hilbert-Schmidt norm of the
tensor of the second derivatives of f . We will say that L satisfies a curvature-dimension
inequality CD(R,n) of curvature R ∈ R and dimension 0 < n ≤ ∞ if, for all functions f
in A (µ-almost everywhere),

Γ2(f) ≥ RΓ(f) +
1
n

(Lf)2. (3)

Clearly, if L satisfies a curvature-dimension inequality CD(R,n), then it also satisfies
CD(R′, n′) for R′ ≤ R and n′ ≥ n. A n-dimensional complete Riemannian manifold
(M, g) with Ricci curvature bounded below, or rather the Laplacian ∆ on M , satisfies the
inequality CD(R,n) with R the infimum of the Ricci tensor over all unit tangent vectors
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and n the topological dimension (since ‖Hess f‖22 ≥
1
n (∆f)2). If L = ∆+∇h for a smooth

function h, and if (and only if), as symmetric tensors,

∇h⊗∇h ≤ (m− n)
[
Ric−∇∇h− ρg

]
with m ≥ n, then L satifies CD(ρ,m) (cf. [Ba1], Proposition 6.2). The dimension
n in (3) is not necessarily an integer, and reflects the analytic dimension of diffusion
operators L (cf. [Ba1] for further examples). The Ornstein-Uhlenbeck operator is of
curvature-dimension CD(1,∞), but of no finite dimension whatsoever the dimension of
the underlying state space.

One important aspect in this framework, at the starting point of this investigation, is
that an infinite dimensional curvature condition CD(R,∞) on the infinitesimal generator
L may be translated equivalently on the associated semigroup (Pt)t≥0. One classical such
description is that Γ2 ≥ RΓ, R ∈ R, if and only if for every f in A and every t ≥ 0,

Γ(Ptf) ≤ e−2RtPt(Γf). (4)

(This type of inequalities, here and below, are understood either everywhere or µ-almost
everywhere.) For further comparison, let us briefly recall the argument [Ba2], [Le1]. Let,
for f ∈ A and t > 0 fixed, φ(s) = e−2RsPs(Γ(Pt−sf)), 0 ≤ s ≤ t. Now, by definition of
the Γ2 operator,

φ′(s) = 2 e−2RsPs

(
Γ2(Pt−sf)−RΓ(Pt−sf)

)
.

Hence, by CD(R,∞) applied to Pt−sf for every s, φ is non-decreasing and (4) follows.
For the converse, note that (4) is an equality at t = 0 and

0 ≤ lim
t→0

1
2t

[
e−2RtPt(Γf)− Γ(Ptf)

]
= Γ2(f)−RΓ(f).

If we let now

φ(s) = e−2RsPs

(
Γ(Pt−sf))
Pt−sf

)
= e−2RsPs

(
Pt−sf Γ(logPt−sf)

)
, 0 ≤ s ≤ t,

for a strictly positive function f , then

φ′(s) = 2 e−2RsPs

(
1
g

Γ2(g)−
1
g2

Γ(g,Γg) +
1
g3

Γ2(g)−Rg Γ(log g)
])

where g = Pt−sf . The change of variable formula for the Γ2 operator, consequence of the
diffusion property (2) (cf. [Ba1]), reads

Γ2(log g) =
1
g2

Γ2(g)−
1
g3

Γ(g,Γg) +
1
g4

Γ2(g).

Therefore,
φ′(s) = 2 e−2RsPs

(
g
[
Γ2(log g)−RΓ(log g)

])
.

Hence, again, under CD(R,∞), φ′(s) ≥ 0, 0 ≤ s ≤ t, and therefore

Ptf Γ(logPtf) ≤ e−2RtPt
(
f Γ(log f)

)
. (5)
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Applying (5) to 1 + εf and letting ε→ 0 recaptures (4) so that (5) is a further alternate
characterization of the CD(R,∞) condition. Observe also that when R = 0, inequality
(5) is equivalent by the diffusion property to

Ptf L(logPtf) ≥ Pt
(
f L(log f)

)
(6)

(for every f ∈ A and t ≥ 0). These commutation properties are typically used in proofs of
both spectral and logarithmic Sobolev inequalities for heat kernel measures. For example,
if L satisfies CD(R,∞) for some R ∈ R, then for every f in A and t ≥ 0,

d(t) Γ(Ptf) ≤ Pt(f2)− (Ptf)2 ≤ c(t)Pt(Γf) (7)

and
d(t)
2

Ptf Γ(logPtf) ≤ Pt(f log f)− Ptf logPtf ≤
c(t)
2

Pt
(
f Γ(log f)

)
(8)

where

c(t) = 2
∫ t

0

e−2Rsds =
1− e−2Rt

R
(= 2t if R = 0)

and

d(t) = 2
∫ t

0

e2Rsds =
e2Rt − 1

R
(= 2t if R = 0).

For the proof of (7), write

Pt(f2)− (Ptf)2 =
∫ t

0

d

ds
Ps

(
(Pt−sf)2

)
ds = 2

∫ t

0

Ps
(
Γ(Pt−sf)

)
ds.

Now, since φ(s) = e−2RsPs(Γ(Pt−sf)), 0 ≤ s ≤ t, is non-decreasing, we get on the one
hand

Pt(f2)− (Ptf)2 ≤ 2
∫ t

0

e−2R(t−s)Pt(Γf)ds = c(t)Pt(Γf),

while on the other

Pt(f2)− (Ptf)2 ≥ 2
∫ t

0

e2R(t−s)Γ(Ptf)ds = d(t)Γ(Ptf).

For the proof of the logarithmic Sobolev inequalities (8), write for f > 0,

Pt(f log f)− Ptf logPtf =
∫ t

0

d

ds
Ps

(
Pt−sf logPt−sf

)
ds

=
∫ t

0

Ps

(
Pt−sf Γ(logPt−sf)

)
ds,

and apply then in the same way that φ(s) = e−2RsPs(Pt−sf Γ(logPt−sf)), 0 ≤ s ≤ t, is
non-decreasing.

Arguing as for (4), but differentiating twice, shows that (7) and (8) holding for all
f and t > 0 are also equivalent to the curvature condition CD(R,∞). More refined
isoperimetric inequalities are discussed in [B-L].
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One crucial defect of the preceding approach is that it does not take into account
the dimensional parameter n. For Laplace-Beltrami operators, conditions CD(R,n) and
CD(R,∞) are actually equivalent, but the dimensional parameter n is then hidden in
the very definition of the operator L. Therefore, the equivalent form of the Ricci lower
bound given for example by (5), while well suited for infinite dimensional diffusions,
is not accurate when one deals with finite dimensional problems (such as for example
compactness problems in the Gromov-Hausdorff topology).

On the other hand, the Li-Yau inequality strongly relies on the finite dimensional
property of the operator L, but is not a priori equivalent with a lower bound on the Ricci
curvature.

One of the main observations of this work, that seemed to be have been overlooked,
is that the semigroup procedure presented above may actually be performed similarly
in finite dimension, and that the argument includes in this way the Li-Yau inequality
(1). We thus describe, in a unified treatment, both functional inequalities for heat kernel
measures and parabolic inequalities of finite dimensional Markov operators. The various
inequalities take a simple form only when the curvature R is zero, case on which we
restrict ourselves henceforth. The main result of this paper is the following theorem.

Theorem 1. Let L be a diffusion operator. The following are equivalent:

(i) L satisfies a CD(0, n) inequality;

(ii) For any positive function f in A and any t ≥ 0,

Ptf L(logPtf) ≥ Pt
(
f L(log f)

)(
1 +

2t
n

L(logPtf)
)

; (9)

(iii) For any positive function f in A and any t ≥ 0,

tLPtf −
n

2
Ptf log

(
1 +

2t
n

L(logPtf)
)
≤ Pt(f log f)− Ptf logPtf ; (10)

(iv) For any positive function f in A and any t ≥ 0,

Pt(f log f)− Ptf logPtf ≤ tLPtf +
n

2
Ptf log

(
1− 2t

n

Pt(f L(log f))
Ptf

)
. (11)

The infinite dimensional case n = ∞ reduces to (6) and (8) (for R = 0) respectively.
Using that log(1 + u) ≤ u, u > −1, Theorem 1 actually clearly shows how the new
logarithmic Sobolev inequalities (10) and (11) improve upon (8) (when R = 0).

As announced, Theorem 1 also encompasses the Li-Yau inequality (1). Actually, if we
analyze (9), it turns out that whenever Ptf L(logPtf) < 0, then (by (6)) Pt(f L(log f)) <
0 so that necessarily

1 +
2t
n

L(logPtf) > 0,

which is the Li-Yau inequality in this context (it is obvious when L(logPtf) ≥ 0). This
inequality is implicit in the statement of the logarithmic Sobolev inequality (10) that
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may thus be considered as a logarithmic Sobolev form of the parabolic Li-Yau inequality.
The new proof here may also be considered as a simplification over the original Li-Yau
argument based on the maximum principle. Note that (9) (or (11)) also expresses, as a
kind of converse, that

Pt(f L(log f))
Ptf

<
n

2t
.

Proof of Theorem 1. We first show that (9), (10) or (11) imply the CD(0, n)
hypothesis. Namely, if we apply (9), (10) and (11) to 1 + εf and let ε → 0, we find
respectively that

Γ(Ptf) ≤ Pt(Γf)− 2t
n

(
LPtf

)2
, (12)

Pt(f2)− (Ptf)2 ≥ 2tΓ(Ptf) +
2t2

n

(
LPtf

)2
, (13)

and

Pt(f2)− (Ptf)2 ≤ 2tPt(Γf)− 2t2

n

(
LPtf

)2
. (14)

As in infinite dimension, noticing that the first inequality (12) is an equality at t = 0, we
see that

0 ≤ lim
t→0

1
2t

[
Pt(Γf)− Γ(Ptf)− 2t

n

(
LPtf

)2
]

= Γ2(f)− 1
n

(Lf)2,

and therefore the CD(0, n) condition holds. Differentiating twice yields the same
conclusion for (13) or (14). This shows that any of the inequalities (9), (10) or (11)
imply the curvature-dimension CD(0, n) hypothesis. The theorem establishes that (12),
(13) and (14) are also equivalent forms of the CD(0, n) inequality.

Let us turn to the converse and assume that n <∞. Start with the proof of (9) that
follows the one of (5). Given f > 0 on A, if

φ(s) = Ps

(
Pt−sf Γ(logPt−sf)

)
, 0 ≤ s ≤ t,

we have seen that
φ′(s) = 2Ps

(
Pt−sf Γ2(logPt−sf)

])
.

Hence, under the CD(0, n) condition,

φ′(s) ≥ 2
n
Ps

(
g
[
L(log g)

]2)
where we set g = Pt−sf as before. Since g [L(log g)]2 = 1

g [Lg − Γg
g ]2, by the Cauchy-

Schwarz inequality in the form of

Ps

(A2

g

)
≥ Ps(A)2

Ps(g)
,

it follows that
φ′(s) ≥ 2

nPtf

[
φ(s)− LPtf

]2
, 0 ≤ s ≤ t. (15)

In other words,

−
(

1
φ− LPtf

)′
≥ α
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on [0, t], where we set for simplicity α = 2
nPtf

> 0. We then only need to integrate
between 0 and t to get that, for every 0 ≤ u < v ≤ t,

1
φ(u)− LPtf

− 1
φ(v)− LPtf

≥ α(v − u). (16)

Since φ is non-decreasing,[
φ(v)− LPtf

]
−

[
φ(u)− LPtf

]
≥ α(v − u)

[
φ(u)− LPtf

][
φ(v)− LPtf

]
whatsoever the signs of φ(u)−LPtf and φ(v)−LPtf . Since φ(0)−LPtf = −Ptf L(logPtf)
and φ(t) − LPtf = −Pt(f L(log f)), the preceding with u = 0 and v = t already yields
(9).

To reach the logarithmic Sobolev inequalities (10) and (11), write as above

Pt(f log f)− Ptf logPtf =
∫ t

0

φ(s)ds.

We derive from (16) that for every 0 ≤ s ≤ t,

1
αs− [φ(0)− LPtf ]−1

≤ φ(s)− LPtf ≤
1

α(t− s)− [φ(t)− LPtf ]−1
.

Actually, the left-hand side follows from (16) when φ(0) > LPtf , and is obvious when
both φ(0) ≤ LPtf and φ(s) ≤ LPtf since φ is non-decreasing. Similarly for the right-hand
side. Integrating from 0 to t then yields the two inequalities (10) and (11). The proof of
the theorem is complete.

While some statements analogous to Theorem 1 may be produced under a curvature-
dimension condition CD(R,n) with R 6= 0, it rapidly appears that the corresponding
conclusions are much less appealing, as it is also the case with the classical Li-Yau
inequality [L-Y]. Indeed, the differential inequality (15) on φ(s) = Ps

(
Pt−sfΓ(logPt−sf)

)
,

0 ≤ s ≤ t, now takes the form

φ′(s) ≥ 2
nPtf

[
φ(s)− LPtf

]2 + 2Rφ(s).

Solutions of the differential inequality heavily depend on the initial condition. (In case
R = 0, the Li-Yau inequality is just the fact that this differential inequality does not
explode on [0, t].) Let us briefly discuss the resulting conclusion in case R > 0, and for
simplicity only at the level of the Li-Yau estimates. As a result, when 4LPtf/nRPtf ≥ 1,

−L
(
logPtf) ≤ nR

2

[
Z cotan

(
tRZ

)
− 1

]
(17)

where Z =
∣∣(4 LPtf/nRPtf)− 1

∣∣1/2. When 4LPtf/nRPtf ≤ 1, replace cotan by coth.

Inequality (17) may be used towards useful semigroup bounds under positive curva-
ture. Observe namely that −L

(
logPtf) ≥ −LPtf/Ptf . Then, in case 4 LPtf/nRPtf ≥ 1,

it follows in particular from (17) that

1
2

( 1
Z
− Z

)
≤ cotan

(
tRZ

)
,
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or in other words,

Rt ≤ 1
Z

(
π

2
− arctan

(
1
2

( 1
Z
− Z

))
.

The map x 7→ 1
x

(
π
2 − arctan( 1

x − x)
)

is non-increasing on (0,∞), and converges to 2 at
x = 0. Hence, in this case, Rt ≤ 2. As a conclusion,

∂t(logPtf) ≤ nR

4

as soon as t ≥ 2/R. This bound has been put forward first in [B-Q] by a completely
different method (the maximum principle as for the classical Li-Yau inequality).

Consider now the case 4 LPtf/nRPtf ≤ 1 that thus occurs as soon as t is large
enough. We then get that

1
2

(
Z +

1
Z

)
≤ coth (RtZ),

or in other words,

Rt ≤ 1
Z

log
(

1 + Z

|Z − 1|

)
.

The map H : x 7→ 1
x log

(
1+x
|x−1|

)
increases from 2 to +∞ on (0, 1), and decreases from +∞

to 0 on (1,∞). It follows that Z is bounded from below by K(Rt) where K is the inverse
map of H on (0,∞). As x→∞, K(x) = 1− 2 e−x

(
1 +O(x e−x)

)
so that

∂t(logPtf) ≤ nR

4
(
1−K2(Rt)

)
.

This leads to an upper bound on the heat semigroup of the form

Ptf ≤ exp
(
n e−Rt

(
1 + ε(t)

))
as t → ∞ for positive functions f such that

∫
fdµ = 1. Lower bounds may be obtained

similarly from the upper bound on Z by the inverse function of H on the interval (1,∞).
(When R = 0, the Li-Yau inequality actually implies that tn/2Ptf is non-decreasing.)

The extension of Theorem 1 to a CD(R,n), R 6= 0, hypothesis thus takes a somewhat
intricate form. However, it might be worthwhile mentioning that among the heat kernel
inequalities equivalent to CD(0, n), (12), (13) and (14) may easily be adapted under a
CD(R,n), R 6= 0, condition. Arguing indeed as for (4) and (7) shows that the CD(R,n)
curvature-dimension assumption is equivalent to either

Γ(Ptf) ≤ e−2RtPt(Γf)− c(t)
n

(
LPtf

)2

or

d(t) Γ(Pt) +
2D(t)
n

(
LPtf

)2 ≤ Pt(f2)− (Ptf)2 ≤ c(t)Pt(Γf)− 2C(t)
n

(
LPtf

)2
,

t ≥ 0, f ∈ A, where we recall that c(t) = 1−e−2Rt

R and d(t) = e2Rt−1
R (c(t) = d(t) = 2t if

R = 0), and where C(t) =
∫ t
0
c(s)ds and D(t) =

∫ t
0
d(s)ds, t ≥ 0.
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The rest of the paper will be devoted to several consequences of the main Theorem 1.
As a first by-product, we show in Section 2 that under the finite dimensional CD(0, n)
hypothesis, and provided that for any function f in A,

lim
t→∞

(4πt)n/2Pt(f) =
∫
fdµ

(together with the corresponding asymptotics on LPtf), then the optimal logarithmic
Sobolev inequality of Rn holds, namely, for all f > 0 with

∫
fdµ = 1,∫

f log fdµ ≤ n

2
log

(
1

2nπe

∫
Γ(f)
f

dµ

)
.

We actually discuss how this logarithmic Sobolev inequality is related to the one of
Theorem 1 for the heat kernel on Rn, and thus the standard Gaussian measure. In
particular, we emphasize a new finite dimensional version of the standard logarithmic
Sobolev inequality for Gaussian measures, of interest in its own. In the last section, we
discuss exponential bounds on Laplace transforms of Lipschitz functions that are drawn
from the improved logarithmic Sobolev inequalities by the Herbst argument. With this
tool, we investigate dimensional lower estimates on heat kernel measures of balls as well
as bounds on the diameter when the underlying measure µ is finite. The important aspect
is that these bounds will reflect, in accordance with the Euclidean case, the underlying
finite dimension.

2. Optimal Euclidian logarithmic Sobolev inequalities

The optimal logarithmic Sobolev inequality in Rn states that for any smooth positive
function f on Rn with

∫
fdx = 1,∫
f log fdx ≤ n

2
log

(
1

2nπe

∫
|∇f |2

f
dx

)
. (18)

After a change of functions, this inequality is actually equivalent to the logarithmic
Sobolev inequality for Gaussian measures, and has been first put forward in this way
in [Ca]. Start indeed from the Gross logarithmic Sobolev inequality [Gr] for the standard
Gaussian measure γn on Rn with density ϕn(x) = (2π)−n/2 exp(−|x|2/2) with respect to
Lebesgue measure, which indicates that, for every smooth positive function g on Rn with∫
g dγn = 1, ∫

g log g dγn ≤
1
2

∫
|∇g|2

g
dγn. (19)

Set f = ϕng so that
∫
fdx = 1. Then∫

f log
(
f(2π)n/2e|x|

2/2
)
dx ≤ 1

2

∫
1
f

∣∣∇f + xf
∣∣2dx.

An integration by parts easily yields∫
f log fdx ≤ 1

2

∫
|∇f |2

f
dx− n

2
log(2π)− n.

9



Changing f into σnf(σx), σ > 0, which still satisfies the normalization
∫
fdx = 1, shows

that, for every σ > 0 thus,∫
f log fdx ≤ σ2

2

∫
|∇f |2dx− n

2
log(2π)− n− n log σ.

Optimizing in σ > 0 then yields (18). Since we started from the logarithmic Sobolev
inequality for γn with its best constant for which exponential functions are extremal, the
constant in (18) is optimal, and Gaussian functions saturate the inequality.

Inequality (18) is closely related to the logarithmic Sobolev inequality of Theorem 1.
Rather surprisingly, it turns out (and this is actually the way we discovered Theorem 1)
that if we perform back a change of functions from (18) with the Gaussian extremals, we
end up with the logarithmic Sobolev inequality of Theorem 1. Indeed, applying (18) to
f(y) = g(y)pt(x, y) where

pt(x, y) =
1

(4πt)n/2
exp

(
− |x− y|2

4t

)
,

and proceeding as above now yields (11) for the heat kernel measure Pt(dy) = pt(x, y)dy.
If we read this inequality at time t = 1

2 , we obtain the following finite dimensional
improved version of the Gross logarithmic Sobolev inequality (19) for the Gaussian
measure γn on Rn.

Proposition 2. Let dγn(x) = (2π)−n/2 exp(−|x|2/2)dx be the standard Gaussian

measure on Rn. For any smooth positive function g on Rn such that
∫
g dγn = 1,∫

g log g dγn ≤
1
2

∫
∆g dγn +

n

2
log

(
1− 1

n

∫
g∆(log g)dγn

)
.

Extremal functions are given here by the Gaussian kernel. Using that log(1+u) ≤ u,
u > −1, we recover the classical form of the logarithmic Sobolev inequality for γn. As for
(10), note that the logarithmic Sobolev inequality of Proposition 2 contains implicitely
that

1− 1
n

∫
g∆(log g)dγn > 0.

It might worthwhile mentioning further that if we rewrite the spectral gap inequality
(14) for γn (equivalently, apply Proposition 2 to 1 + εg and let ε→ 0), we get∫

g2dγn −
( ∫

g dγn

)2

≤
∫
|∇g|2dµ− 1

2n

( ∫
∆g dγn

)2

. (20)

The meaning of this inequality is somewhat strange. By integration by parts,∫
∆g dγn =

∫
x · ∇g dγn = −

∫
g L

(
|x|2

)
dγn

where L = ∆−x ·∇ is the Ornstein-Uhlenbeck generator with invariant measure γn. Now
|x|2 − n is an eigenfunction of −L with eigenvalue 2, −L(|x|2 − n) = 2(|x|2 − n). Applied

10



to a mean zero function g = g2 +G where g2 = C(|x|2 − n) (C 6= 0) and G is orthogonal
to g2, (20) amounts to∫

G2dγn ≤
∫
g2
2dγn +

∫
|∇G|2dγn −

1
2n

( ∫
g2

(
|x|2 − n

)
dγn

)2

.

Since
∫

(|x|2−n)2dγn = 2n, we see that (20) simply follows from the spectral gap inequality∫
G2dγn ≤

∫
|∇G|2dγn applied to G.

As a consequence of Theorem 1, we state next the logarithmic Sobolev inequality of
the type (18), with the optimal Euclidean constant, for the invariant measure µ under a
CD(0, n) condition.

Theorem 3. Let L be a diffusion operator with curvature-dimension CD(0, n),
n <∞. Assume that for all functions f ,

lim
t→∞

(4πt)n/2 tLPtf = −n
2

∫
fdµ. (21)

Then, for every f > 0 with
∫
fdµ = 1,∫

f log fdµ ≤ n

2
log

(
1

2nπe

∫
Γ(f)
f

dµ

)
.

It is immediate from (21) that

lim
t→∞

(4πt)n/2Pt(f) =
∫
fdµ. (22)

The proof of Theorem 3 is then an immediate consequence of Theorem 1 by letting t→∞.
It partially answers a question left open in [B-C-L] where it was asked whether Theorem
3 holds true under (22) rather than (21). In a Riemannian manifold M with dimension
n and non-negative Ricci curvature, it follows from the work of P. Li [Li] that whenever
(22) holds, then M is isometric to Rn, and thus Theorem 3 holds. While (21) and (22)
indifferently hold in Rn, we have not been able so far to convince ourselves that (21)
follows from (22) in the general setting. We may nevertheless observe from the Li-Yau
inequality that tn/2Ptf is non-decreasing and that

lim inf
t→∞

(4πt)n/2 tLPtf ≥ −n
2

lim
t→∞

(4πt)n/2Pt(f).

The main interest in Theorem 3 however lies in more general diffusion operators L than
Laplacian on Riemannian manifolds. In particular, the logarithmic Sobolev inequality
(with optimal Euclidean constants) of Theorem 3 has been used in [B-C-L] to derive
optimal (Euclidean) heat kernel bounds in the form of ‖Ptf‖∞ ≤ (4πt)−n/2‖f‖1, t > 0.

It should be observed furthermore that the form of the Gaussian logarithmic Sobolev
inequality given by Proposition 2 is equivalent in Euclidean space to the CD(0, n)
condition through dilations and translations. There are other functional inequalities in
Euclidean spaces which share the same property: For example, a modified form of the
spectral gap inequality on the sphere read through stereographic projection (see [Sc]). It
would be worthwhile to study which are the functional inequalities with this property.
Neither the classical Euclidean Sobolev inequality, nor the spherical Sobolev inequality
(through stereographic projection) share this property.

11



3. Exponential integrability and diameter bounds

In this final section, we exploit the logarithmic Sobolev inequalities (11) of Theorem 1
towards bounds on the Laplace transform of Lipschitz functions by the Herbst argument.
We namely take advantage of the improved finite dimensional logarithmic Sobolev
inequalities to produce quantitative estimates reflecting the underlying dimension. These
bounds may be used to estimate heat kernel measures of balls in accordance with the
Euclidean example. They may also be used for diameter bounds when the underlying
measure µ is finite.

To this task, let f be a (bounded) function in A such that Γ(f) ≤ 1, and set

ψ(λ, t) =
1
λ

logPt(eλf ), λ ∈ R, t ≥ 0

(with the convention that ψ(0, t) = Ptf). Applying the logarithmic Sobolev inequality
(8) to eλf , λ ∈ R, the classical Herbst argument [An], [Le2] shows that, for every fixed t,

∂λψ ≤
c(t)
2

,

so that
ψ(λ, t) ≤ λPtf + 1

2 c(t)λ, λ ∈ R,

(c(t) = 2t when R = 0).

Here, we make use of the improved, finite dimensional, logarithmic Sobolev inequality
(11) by further introducing a partial derivative in time. In the context thus of Theorem 1,
under a finite dimensional CD(0, n) hypothesis, inequality (11) applied to eλf now shows
that, for every λ > 0, t > 0,

λ∂λψ − t∂tψ ≤
n

2λ
log

(
1 +

2λt
n

[λ− ∂tψ]
)
. (23)

To analyze this differential inequality, set t = (aλ + b)−1, and bound above log u by
ρu− log ρ− 1 at ρ = b(aλ+ b)−1 > 0, so that the function

ψ
( 1
aλ+ b

, λ
)

+
n

2λ
log

(aλ+ b

b

)
+

b

a(aλ+ b)

is non-increasing for all choices of the parameters a and b as long as aλ+ b > 0. In other
words, along the curves t = (aλ+ b)−1,

ψ − n

2λ
log(bt) +

bt

a

is non-increasing. Under the conditions λ2 > λ1 > 0 and λ2t2 > λ1t1 > 0, we may take

b =
λ2t2 − λ1t1
t1t2(λ2 − λ1)

and
b

a
=
λ2t2 − λ1t1
t1 − t2

.

We then get

ψ(λ2, t2)− ψ(λ1, t1)

≤ λ2t2 − λ1t1 +
n

2λ1λ2

(
λ2 log t2 − λ1 log t1 − (λ2 − λ1) log

(λ2t2 − λ1t1
λ2 − λ1

))
.

12



This general inequality may be used to produce various bounds of interest on the
Laplace transform of f under Pt. For example, letting λ1 → 0, we get, for every λ > 0,

ψ(λ, t2) ≤ Pt1f + λt2 +
n

2λ

(
log

( t2
t1

)
+
t1
t2
− 1

)
.

Alternatively, letting λ1 → λ2 = λ, one also gets

ψ(λ, t2) ≤ ψ(λ, t1) + λ(t2 − t1) +
n

2λ
log

( t2
t1

)
.

In another direction, one may fix (λ1, t1) and set λ2t2 = a > λ1t1, and let then t2 → 0.
Using Jensen’s inequality ψ(λ, t) ≥ Ptf , we get in the limit a bound on f of the form

f ≤ ψ(λ1, t1) + a− λ1t1 +
n

2λ1
log

( a

a− λ1t1

)
. (24)

The optimal bound is achieved by the choice of

a =
λ1t1

2

(
1 +

√
1 +

2n
λ2

1t1

)
. (25)

We now briefly sketch how to produce from the preceding Laplace inequalities, sharp
dimensionl bounds on heat kernel measures of balls. Starting from (24) with the optimal
choice of a given by (25), we have that

f ≤ ψ(λ, t) +
1
λ
G

( 1
λ2t

)
where

G(x) =
1
2x

(√
1 + 2nx− 1

)
− n

2
log

(
1− 2√

1 + 2nx+ 1

)
.

Now, G(x) ∼ −n
2 log x as x → 0 while G(x) ∼

√
2n
x as x → ∞. More precisely, the

Taylor expansion of G at x = 0 yields

G(x) = −n
2

log
(nx

2e

)
+O(x).

For simplicity, denote by C the best constant such that G(x) ≤ −n
2 log x + C for

x ∈ (0, 1]. Take then f = −d(x0, x) where x0 is a fixed point in E, and let B be
the ball B = {x; d(x, x0) ≤ r}. Since

eλf ≤ e−λr1Bc + 1B ,

it follows that
eλψ(λ,t) = Pt(eλf ) ≤ e−λr + Pt

(
1B

)
(x0).

We thus draw the lower bound

Pt
(
1B

)
(x0) ≥ exp

(
−G

( 1
λ2t

))
− e−λr.

13



For example, setting λ = 1
r , so far as r ≤

√
t, we get that

Pt
(
1B

)
(x0) ≥ e−C

( r√
t

)n
− e−1. (26)

In the range r ∼
√
t, this lower bound may of course be compared with the Euclidean

case for which
Pt

(
1B

)
(x0) ≥ e−1/4 ωn

(4π)n/2

( r√
t

)n
, r ≤

√
t ,

where ωn is the volume of the unit ball in Rn. We did not investigate carefully optimal
constants in (26).

In the last part, we turn to diameter bounds. To this task, assume for what follows
that µ is finite, normalized to be a probability measure. If we let λ1 → 0 with t1 = t ≥ 0
fixed in (24), we get in the limit that, for every f with Γ(f) ≤ 1,

f ≤ Ptf +
√

2nt . (27)

(Such inequalities appear implicity in earlier contributions, such as for example [Va]).

A typical choice for the function f is the distance function. To this task, assume that
we may speak of the distance between x and y in E defined by

d(x, y) = sup
{
h(x)− h(y); Γ(h) ≤ 1

}
.

Let D = D(L) be the diameter of L (relative to A). As a consequence of the
preceding, we will conclude that under a finite dimensional CD(0, n) hypothesis and
a finite invariant measure, the diameter is bounded as soon as the distance function
is integrable. The conclusion applies in particular to Riemannian manifolds with non-
negative Ricci curvature and finite volume (we are not aware of a reference where such a
result appears).

Proposition 4. Let L be a diffusion operator with curvature-dimension CD(0, n),
n <∞, and finite (normalized) invariant measure µ. Then, if∫ ∫

d(x, y)dµ(x)dµ(y) <∞,

we have D = D(L) <∞. Moreover,

D ≤ Cn

∫ ∫
d(x, y)dµ(x)dµ(y)

where Cn only depends on n.

The integrability condition on the distance function in Proposition 4 is of course
equivalent to saying that

∫
d(x, x0)dµ(x) <∞ for some, or all, x0 ∈ E.

Proof. The proof makes use of the Harnack inequality

Ptf(x) ≤ 2nP2tf(y) ed(x,y)
2/4t, (28)

14



f ≥ 0, t > 0, x, y ∈ E, consequence of the Li-Yau inequality, cf. [L-Y], [Da], [SC]..., (and
we henceforth assume the required setting for this to apply). Assume furthermore that
Γ(f) ≤ 1. Then, integrating the Harnack inequality (28) with respect to dµ(y) on the
ball B(x, r) with center x and radius r > 0, it follows together with (27) that, for every
x ∈ E, r, t > 0,

µ
(
B(x, r)

)
f(x) ≤ 2n er

2/4t

∫
fdµ+

√
2nt. (29)

We proceed in two steps and first show that when d is integrable,

Z = sup
x∈E

∫
d(x, z)dµ(z) <∞. (30)

To this aim, apply (29) to the 1-Lipschitz function f(x) =
∫
d(x, z)dµ(z) to get

µ
(
B(x, r)

) ∫
d(x, z)dµ(z) ≤ 2n er

2/4t

∫ ∫
d(y, z)dµ(y)dµ(z) +

√
2nt.

Using that

µ
(
B(x, r)

)
≥ 1− 1

r

∫
d(x, z)dµ(z)

and letting r = 2
∫
d(x, z)dµ(z) and t = r2/128n proves that∫

d(x, z)dµ(z) ≤ 2n+2 e32n

∫ ∫
d(y, z)dµ(y)dµ(z). (31)

Since x is arbitrary, (30) follows.

In the second step, apply (29) to f(x) = d(x, z) for every z ∈ E to get that, for every
x, z ∈ E, r, t > 0,

µ
(
B(x, r)

)
d(x, z) ≤ 2n er

2/4tZ +
√

2nt. (32)

It already follows that the diameter of E is finite. Indeed, x being fixed, choose r = r(x)
such that, for example, µ(B(x, r)) ≥ 1

2 so that d(x, z) ≤ C(x) < ∞ for every z. Hence
D <∞. Apply then (32) to r = D to obtain that

D ≤ 2n eD
2/4tZ +

√
2nt.

When t = D2/8n, we thus conclude that

D ≤ 2n+1 e2nZ.

The quantitative bound of the statement follows together with (31). The proof of the
proposition is thus complete.
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