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Abstract

Combinatorial maps define a general framework which allows to encode any sub-
division of an nD orientable quasi-manifold with or without boundaries. Combinato-
rial pyramids are defined as stacks of successively reduced combinatorial maps. Such
pyramids provide a rich framework which allows to encode fine properties of the ob-
jects (either shapes or partitions). Combinatorial pyramids have first been defined
in 2D. This first work has latter been extended to pyramids of nD generalized com-
binatorial maps. Such pyramids allow to encode stacks of non orientable partitions
but at the price of a twice bigger pyramid. These pyramids are also not designed
to capture efficiently the properties connected with orientation. The present work
presents our first result on the design of an nD pyramid of combinatorial maps.
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1 Introduction

Pyramids of combinatorial maps have first been defined in 2D [1], and latter
extended to pyramids of n-dimensional generalized maps by Grasset et al.
[6]. Generalized maps model subdivisions of orientable but also non-orientable
quasi-manifolds [7] at the expense of twice the data size of the one required for
combinatorial maps. For practical use (for example in image segmentation),
this may have an impact on the efficiency of the associated algorithms or
may even prevent their use. Furthermore, properties and constrains linked to
the notion of orientation may be expressed in a more natural way with the
formalism of combinatorial maps. For these reasons, we are interested here in
the definition of pyramids of n-dimensional combinatorial maps. This paper is
a first step toward the definition of such pyramids, and the link between our
definitions and the ones that consider G-maps is maintained throughout the
paper. In fact, the link between n-G-maps and n-maps was first established
by Lienhardt [7] so that it was claimed in [3], but not explicitly stated, that
pyramids of n-maps could be defined.

The key notion for the definition of pyramids of maps is the operation of
simultaneous removal or contraction of cells that satisfy some criterions. Thus,
we define the operation of simultaneous removal and the one of simultaneous
contraction of cells in an n-map, the latter being introduced here as a removal
operation in the dual map.

We first raise in Section 3.1 a minor problem with the definition of ”cells with
local degree 2 in a G-map” used in [5,3] and more precisely with the criterion
for determining if a cell is a valid candidate for removal. We provide a formal
definition of the local degree, which is consistent with the results established
in the previous papers, using the notion of a regular cell that we introduce.

An essential result of this paper, presented in Section 3.1, is that the removal
operation we introduce here is well defined since it indeed transforms a map
into another map. Instead of checking that the resulting map satisfies from its
very definition the properties of a map, we use an indirect proof by using the
removal operation in G-maps defined by Damiand in [3,4]. If needed, this way
again illustrates the link between the two structures.

Eventually, in Section 3.2 we will state a definition of simultaneous contraction
of cells in a G-map in terms of removals in the dual map, definition which we
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prove to be equivalent to the one given by Damiand and Lienhardt in [3]. We
finally define in the same way the simultaneous contraction operation in maps
and provide a first result (Proposition 23) that justifies this definition using
the latter equivalence.

2 Combinatorial maps
2.1 Basic definitions

Definition 1 (n-G-map [7]) Letn > 0, an n-G-map is defined as an n+2-
tuple G = (D, v, . . ., ) where:

e D is a finite non-empty set of darts;
® qy,...,q, are involutions on D (i.e. Vi € {0,...,n}, a?(b) = b) such that:
- Vi €A{0,...,n— 1}, a; is an involution without fixed point (i.e. Yb € D,
a;(b) # b);

- Vie{0,...,n—=2}, Vje{i+2,...,n}, aa; is an involution.

If o, is an involution without fixed point, GG is said to be without boundaries
or closed. In the following we only consider closed n-G-maps with n > 2.

Remark 1 For any i,j € {0,...,n} such that j > i + 2, the permutation
a5 is an involution. Therefore, in any n-G-map we have:

Vie{0,...,n—=2}, Vie{i+2,...,n},qa; = ajo
Indeed, if cyoja05 = 1p, then oyojo; = a;l = a; and oo = ajajl = ajq;.

Definition 2 (n-map [7]) An n-map (n > 1) is defined as an (n + 1)-tuple
M = (D, 6o, ...,0n_1) such that:

e D is a finite non-empty set of darts;
® 0y, ...0,_o are involutions on D and d,_1 is a permutation on D such that
Vie{0,...,n—2}, Vje{i+2,...,n}, §0; is an involution.

Definition 3 (Orbit) Let ® = {¢1,..., ¢} be a set of permutations on D
(a set of darts). We denote by < ® > the permutation group generated by
®, i.e. the set of permutations obtained by any composition and inversion of
permutations contained in ®. The orbit of a dart d € D relatively to & s
defined by < ® > (d) = {gb(d) ‘ p e<® >}. Furthermore, we extend this

notation to the empty set by defining <0> as the identity map.

Definition 4 (Connected component) Let M = (D,7y,...,Vn-1) be an
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n-map (resp. G = (D, ag, ..., ) ba an n-G-map). A subset D' of D is called
a connected component of M (resp. G) if D' =< p,...,Yn-1 > (d) (resp.
D' =<ag,...,a,-1>(d)) for some dart d € D'.

An n-map may be associated to an n-G-map, as stated by the next definition.
In this paper, we use this direct link between the two structures to show that
the removal operation we introduce for maps is properly defined (Section 3.1).
For that purpose, we notably use the fact that a removal operation (as defined
by Damiand and Lienhardt) in a G-map has a counterpart (according to our
definition) in its associated map and vice versa.

Definition 5 (Map of the hypervolumes) Let G = (D, «y,...,a,) be an
n-G-map (n > 1). The n-map HV = (D,0y = ano,...,0p_1 = QpQp_1) IS
called the map of the hypervolumes of G.

Lienhardt [8] proved that if the n-G-map G is orientable, HV has two con-
nected components. In the following we only consider orientable n-G-maps
and assume that an arbitrary component of the map HV is chosen.

Definition 6 (Dual and inverse) Let G = (D, «y,...,q,) be an n-G-map
and let M = (D, dg, . ..,0,_1) be an n-map.

e The dual of G, denoted by G, is defined by:
G=(D,an,an 1,...,00)
e The dual and the inverse of M are respectively defined by:
M = (D,5", 65 00 1,...,00'61)

= (D’ 507 50571—1, cee ,5051)
Mil = (D7 507 cee 75n—2, 5;,11)

Note that we also have M~ = (D, 55", ..., 6,25, 0,11) since (8:)icto...n—2)
18 an involution.

Proposition 1 If we consider the function HV which maps each n-G-map G
to an n-map of the hypervolumes HV (G). We have if n > 1:

HV(G) = HV(G).

In other words the following diagram commutes:
G 2, @

HV JHV

M dual M
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Proof:

G = (D,(Xo,...,(ln)
HV(G) = (D, anaq, ..., 0n0,_1) | G=(D,ap, ..., o)

HV(G) = (D, pay, . .., paq) HV(G) = (D, g, - . ., apa)

Indeed, since n > 1, a,a9 = apay, and Vi € {1,...,n — 1}, a,apa,0; =
QO Ol O = Q0. U

Proposition 2 (Associated maps of an n-G-map [7]) The two n-maps
associated to an n-G-map G = (D, ay, . .., a,) are defined as:

M, = HV(G) = (D, apag, pay, . . ., iyt 1) "g'(D,fyO, ey Y1)
M2 - M = Hv(é) = (D7 Aoy, OpUp—1, . .. ,OéoOél) ng.(D7WO’ coe 7771*1)

Since there is a one-to-one correspondence between i-cells® of My and (n—1)-
cells of My = M, and since there is a direct link between the subscripts of
the permutations of a map and the way cells are defined, it is convenient to

denote® (D, %g, -, Vp_1) ng'(D, By -y 1)

..........

following relationships (n > 2):

Bi = Y0V

Yo =0n and Vi € {1,...,n— 1}

Proof: From Definition 6 My = (D, B,, Buf1, - - -, BufBn_1). Since My = ﬁl =
M, we have 79 = (B, and Vi € {1,...,n— 1}, v = B0

In the same way, we have M; = (Y0, %0Vn—1, - - - » Yo71)- We also have by Propo-

sition 1, My = HV(G) = HV (G) = M. Therefore:

Bn=20and Vi € {1,...,n—1}5; =y

O

The two maps M; and M, associated to an n-G-map G are respectively defined
as the maps of the hypervolumes of G and G. However, whenever the reference

1 Cells are formally defined in subsection 2.3.
2 These notation are also used for example in [2].
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to the n-G-map will not be required we will simply consider that we have two
dual maps describing a same partition of the space. The equivalence between
these two representations is illustrated in Fig. 1 where the 2-G-map G is the
triple (D = D; U Ds, 9, 71) with

Dy = {1,2,3,4,5,6}, Dy = {—1,-2,—3,—4, -5, —6}
ao = (1, —1)(2, —2)(3, —3)(4, —4) (5, —5)(6, —6)

ar = (—1,-2)(2,—1)(3, —4)(4, —3)(5, —6) (6, —5)

(1, =6)(2, —3)(3,—2)(4, =5)(5, —4)(6, —1)

6%)
The 2-map HV (Q) is (D1, 0,71) where

Yo = (17 6)(27 3)<47 5)(_1? _6>(_2> _3>(_47 _5)
Y= (1, 0, 3)(2, 4, 6)(—2, —4, —6)(—1, -9, —3)

The 2-map HV (G) is (Da, 32, 31) where

B2 =0
pr = (1’ 2)(37 4)(5’ 6)(_17 _2)(_37 _4)(_57 _6)

14 A-6
14 kg -2
2 3 -
- 15 —4y
3
4 15 B A C B A
44 A5
-3
44 b_g P D
3 16 -1y
2
¥ Y6 M, = HV(G) = (D1, v, M)
4 3 2 1 6 5
- — > ———=— 00— =— 00— >
G = (D,Om,OQ,OQ) A B C
-4 -3 -2 -1 -6 -5
- — ————=—@— 4@ — > —————
A B C

My = HV(G) = (Dy, 2, 51)

Fig. 1. A closed 2-G-map G (left). The 2-maps HV (G) and HV (G) (right).
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Fig. 2. A part of a closed 2-G-map g (left) and a part of a connected component
of the associated n-map My = HV(G) (right).

2.2 From maps to G-maps and vice versa

We first define the notion of an n-G-map associated to a given n-map. We
need a precise construction scheme of the associated G-map, since Lienhard’s
Theorem 4 [7] only stated the existence of such a G-map.

Definition 7 Let M = (D, 7o, .. .,Yn-1) be an n-map. We denote by AG(M)
the (n + 1)-tuple
(157 o, 1, - .. 7an)
where
D =DUTD, where D' is a finite set with the same cardinal as D,

o is a onte-to-one correspondance between D and D’.

«; is defined fori € {0,...,n—2} by:

o 0 D —

Qn_1 1S defined by:

D
dy, o ifd €D
do~'y,_1 ifd €D



S. Fourey and L. Brun GREYC Technical Report - TR-2009-01

e «, is defined by:
o, : D—D
do ifd €D
do~tifdeD

d —

Remark 2 Any map «; of Definition 7 satisfies:

jjp : D — D’
(1)

Gfi"Dl : D' — D

Furthermore, c;p and oy p are both one-to-one correspondances, as the com-
position of bijective maps for v < n, and from the very definition of «,.

Proposition 3 Let M = (D,,...,Vn-1) be an n-map and G = AG(M) =
(D=DUD, ay,...,a,). We have HV(G)jpr =~ M.

Proof:

O

Lemma 1 IfM = (D,7, ..., Y1) is ann-map and AG(M) = (D, o, . . ., o).
For alli € {0,...,n — 1} we have (ana;)ip = vi. We also have (cpon)p = Yo
and for alli € {1,...,n— 1} and (o)ip = Y0%i-

Proof: This comes from the very definition of the involutions «;, i € {0,...,n}
(Definition 7). Indeed, let d be a dart of D, we have do; =€ D’ for all j €

{0,...,n}.

If i € {0,...,n — 1}, by Definition 7 we obtain that da,a; = doo™lv; = dv;.
We also have daga,, = dypoo~! = dvyp. In the last case, if i € {1,...,n — 1}
we have doga; = dygoo™1y; = dvyyy;. O

Proposition 4 For any n-map M, AG(M) is an n-G-map.

Proof: We show that AG (M) satisfies the properties of G-maps (Definition 1).
The set D is indeed finite and non-empty, so we need to check that the appli-
cations «; from D’ to D’ are involutions that satisfy the conditions given by
the definition.

For i € {0,...,n}, following Remark 2 and the fact:

e DND' =, and
e the maps o;p and a;p are one-to-one
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we conclude that «; is one-to-one. Indeed, if dya; = daay; for di,dy € 15, it
follows from (1) that either {dy,d>} C D or {d;,d2} C D'. In both cases, it
implies that d; = dy since a;jp/ (resp. a;pr) is a one-to-one map.

Now, let d € D =D UD'. Either d € D or d € D'. In either case, by (1) and
the fact that a;jp and a;p are onto, there exists b € D such that d = ba;. The
map «; is therefore onto. (If i < n — 1 we have b = dv;o if d € D, b = dovy; if
deD. Fori=n—1wehaveb=dy,_oifde€ D, b=doy,}, if d € D' For
i=nb=dotifdeDandb=doifde D)

Eventually, the maps «; are both one-to-one and onto, so they are permuta-
tions of D. Let us check that they are involutions.

The map «, is an involution since do? is either equal to doo™ = d (if d € D)
ortodolo=d (ifd e D).

For i =n — 1, we have do? = dv, 00~ v, or doy = do~'7y, 17,110, which
in both cases is equal to d, so «,,_1 is an involution.

If i < n—1, from the definition of o; we have doya; = dyjoo™'y; if d € D
since in this case dy;oc € D’. Since ~;, i < n — 1 is an involution we obtain
doo; = d, so oy is an involution. (The case when d € D’ is similar.)

We conclude that all the maps «; are involutions on D and is also readily seen
from (1) and the fact that D N D’ = ) that they have no fixed points.

Now, we need to check that for all i € {0,...,n—2} and all j € {i+2,...,n},
o,y is an involution. For that purpose, we simply follow Definition 7 to build
the following table. The two last columns will show that the equality holds for
any possible value of ¢ and j.

1 j d € dOéiOéj dOéjOéj
<n-1 n D | dyoo = doo™'y; = i
<n-—1 n D' | do v do~ o

<n—2| n—1 | D |dyoo Y1 =% | dv ooy = vt

<n—2| n—1 D’ da‘lvwn__lla do_l%f—ll%ﬂ
<n—-3|<n—1| D d%Ucfl'yj = %Y d’YjUUA% =YY
<n-=3|<n—1|7D |do vy do~" 0

In the last four rows of the table, we simply use the fact that v;v; = ;7
(since M is an n-map) to conclude that do;a; = daja.
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The overall conclusion is that AG(M) is indeed an n-G-map. O

Remark 3 If M = (D,7o,...,%—1) s an n-map and D' is a subset of D
such that for all d € D and all i € {0,...,n — 1}, dy; € D'; then the map
Viipr is well defined for all j € {0,...,n — 1} and the (n — 1)-tuple M' =
(D/’%ID” e ’7”—1@’) satisfies all the conditions of Definition 2.

Using the next lemma, it follows from the latter remark that M’ is a valid
n-map if and only if D’ is the union of connected components of M, which
will lead to the notion of an induced sub-map (Definition 8).

Lemma 2 Let M = (D,7o,...,Yn-1) be an n-map and D’ be a subset of D.
The two following properties are equivalent:

i) D' is a union of connected components of M ;
ii) Vde D', Vi €{0,...,n—1}, dv; € D".

Proof: (i = i) since dv; belongs to the same connected component of M as
d, thus it belongs to D’ if d € D'.

(17 = i) Let R be the relation on D’ defined by
ARd' = Fi, dy; = d

It is readily seen that the reflexive and transitive closure of R is an equivalence
relation whose equivalence classes are orbits in M that use all the permutations
v’s, i.e. they are connected components of M. O

Definition 8 Let M = (D,v,...,Vn-1) be an n-map and D' be a union
of connected components of D. The n-map (D’,%m,, e ,’yn_lm,), following
Remark 3, is called the sub-map of M induced by D', which we denote by
M|D’-

In the same way, the notion of a sub-map of an n-G-map is used in the sequel.
Its definition is similar.

Proposition 5 If M = (D, 7, ...,Vn-1), then we have M = HV (AG(M))|p.
Proof: Let us consider the following (G-)maps:

o M = (DufyOa"wf}infl)
e G=AGM)=(D=DUD, a,...,ap)

hd HV(G> - (D7 /Y(/b s 77;1,—1)

following Definitions 7 and 5.

10
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We first prove that for all d € D and all i € {0,...,n— 1}, dv; = dv;. In other
word, we prove that %b = ;. Indeed, by Definition 5 and Definition 7, we
have for all d € D:

Ifi=n—-1, dy,_, =doa,a, Definition 5

Definition 5

( )

=doo Yy, = dy, (Definition 7)
ifi<n-—1, dy =doyq; ( )
( )

= doo vy = dv; Definition 7

Let b be a dart of D. Since M is connected, we have D =<7, ..., Vn—1>(b).
Since v, = v we deduce that D C<1,...,7,_1>(b) in G. On the other
hand, if d €<7g, ..., 7,_1>(b), we have d = by;, v, ... 3, for by € {0,...,n—
1}, p € N, and it is readily seen by a recurence on p that d = byp, Va, - - - W,
thus b € D. Eventually, we have D =<~{,...,v,_1>(b) (in G).

The orbit <7y, ...,7,_1>(b), which uses all the permutations of HV (G), is
then a connected component of D in G. Therefore, since %{\D = 7;, we obtain
that M = (D, vgp, - - - ,’y;flm) is one of the n-maps induced by the connected
component <7, ...,%,_;>(b) of HV(G). In other words, M = HV (G)p. O

2.8  Cells in maps

Definition 9 (n-G-maps and cells [7]) Let G = (D, aq,...,a,) be an n-
G-map (n > 1). Let us consider d € D. The i-cell, or cell of dimension i,
which contains d is denoted by C;(d) and defined by the orbit:

(‘fz(d) =<, ey Qe ,Oén>(d)
where a; denotes the absence of the involution «;.
Definition 10 (n-maps and cells [7]) Let M = (D,~o,...,Vn_1) be an n-

map. The i-cell or cell of dimension i (vertex, edges,...) of M which owns a
given dart d € D is denoted by C;(d) and defined by the orbits:

Vi € {0,...,7’L— 1} (?Z(d) = <’}/0,...,’}A’i,...7 n—1>(d)
Fori=n Cnld) = <YV, -+, Y0Vn-1>(d)

In both an n-map and an n-G-map, two cells € and €’ with different dimensions
will be called incident if € N € # (.

11
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Proposition 6 The cells of the map M = (D,fyOL. . Yn—1) may be equiva-
lently expressed according to the permutations of M = (D, [, ..., [31) using
the following equations:

Fori=20 eo(d) = <ﬁ1_1527 s 7ﬁl_lﬂn>(d)

VZ.G{L.‘.,TL} @l(d) :<607---7ﬁi7-'~7ﬁn>(d)

Proof: Using Proposition 2, we have for any i € {2,...,n — 1}, ;'8 =
Y1 0% = 1 i Moreover, BB, = 1 100 = 71 L. We have thus:
e For i =0,
Co(d) = <71,7%2, -, Yn—1>(d)

= <Bnbr, Bufa, - BpBp—1>(d)

= <07 Bns BulBos -+ Bulln1>(d)

= <P B, By Bay -, B Bur>(d)

= <P B, B Buer, B Bu>(d)
e Forie{l,...,n—1},

Ci(d) = <9071+ -5 Vie1s Vitds - -+ V1> (d)
= <0, Y0V1s - - -5 V0 Vie1s YO Vit 15 - - - s Y0 Yn—1>>(d)
= <Bn, b1, Bic1, Big1, -+ Ba1>(d)
=<B1,.,0i-1,Bit1, - Bn-1, Bn>(d)

e For i =n,
Cn(d) = <7071, V0 Vn—2,Y0Yn-1>(d)
= <ﬂ17 s 7ﬁn727ﬁn71>(d)

O

Definition 11 (Degree and dual degree of a cell) Let C be an i-cell in
an n-(G-)map, 0 < i <n.

e The degree of C is the number of (i + 1)-cells incident to C.
e The dual degree of € is the number of (i — 1)-cells incident to C.

Property 1 Following Definition 11, the degree of a cell € in an n-G-map
G = (D,ap,...,ap) is precisely the number of sets in the set A = {< Q1>

(d)|dec}.

12
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€2
e 3Mh4 v ={1,2}
1 w S vo ={-1,3,4,—4,-3, -2}
U1 ‘2 ) s 61:{17_1727_2}
e =143,4,—-3,—4
"M 2= { }

Fig. 3. Degree and local degree: The cell v has a degree 2 and a local degree 3.
Dual degree and dual local degree: The cell e; has a dual degree and a dual local
degree 2, whereas eo has a dual degree 1 and a dual local degree 2.

Proof: This characterization is a direct consequence of the definition of the

degree (Definition 11) and the one of an (i + 1)-cell in a G-map (Definition 9).
O

Notation 1 Let (D, ay,...,a,) be an n-G-map. For d € D, we denote by
<y, Oy, - - ., Qg >(d), where all the involutions are excluded, the orbit <®>

(d) where ® = {ag, ..., a0} \ {Qr, Q- - g, }

Definition 12 (Local degree in G-maps) Let C be an i-cell in an n-G-
map.

e Forie{0,...,n— 1}, the local degree of C is the number
[{< i, dig1>(b) | b e €Y
e Forie€{l,...,n}, the dual local degree of C is the number
[{< @i, ai>(b) | be €}
Le local degree (resp. dual local degree) of an n-cell (resp. a 0-cell) is 0.

More intuitively, the local degree of an i-cell € is the number of i + 1-cells that
locally appear to be incident to C. It is called local because it may be different
from the degree since an 7+ 1-cell may be incident more than once to an i-cell,
as illustrated in Figure 3 where the 1-cell e; is multi-incident to the 0-cell vs.

On the other hand, the dual local degree of an i-cell € is the number of (i —1)-
cells that appear to be incident to C. As in the example given in Figure 3 where
the egde ey locally appears to be bounded by two vertices, as it is always
the case for a 1-cell, whereas the darts involved by the orbits considered in
Definition 12 all belong to a unique vertex (vs).

Property 2 The degree of a cell in an n-G-map is greater than zero and less
than or equal to its local degree.

13



S. Fourey and L. Brun GREYC Technical Report - TR-2009-01

Proof: Let € be an i-cell in an n-G-map and d € C. Following Definition 9,
Cit1(d) is not empty and d € €N C;41(d). Thus, € is incident to at least one
(i + 1)-cell.

The degree of € is the number |A| where A = {< a;>(d) ‘ de G} (Property 1).
By Definition 12, the local degree of € is the number of sets in the set A =
{<di+1,di+1>(d) de @}

Now, for any dart b of € we have <&;, &;11>(b) C<d;41>(b) (see the definition
of an orbit). Furthermore, for any orbit < d;,;>(b") distinct from < d&;41>(b),
we have < di, di—l—l > (b) ¢< OA./H_l > (bl) Indeed, if < @i+1 > (b) 7é< di-‘,—l > (b/),
then b ¢<d&;1>(b') while b <@, & 1> ().

It follows that the above inclusion relation induces a map from A to A which
is onto, hence |A| < |A]. O

Property 3 (Cell with local degree 1) An i-cell C in an n-G-map is of
local degree 1 if and only if for all d € C, do 1 €< &y, dyp1>(d).

Proof: 1f € is of local degree 1, we have H< &4, Giyq > (d) ‘ d e G}‘ =11t
follows that <d;, &;41>(d) = C for all d € C. From the definition of an i-cell,
doy 1 € € so that daj €<y, Gi1>(d), hence the “only if” part.

If dovi 1 €<y, dp1>(d) for all d € C, it is readily seen that

Vb € G, < OAZZ', di+1>(b> =< (361>(b)
Indeed, in &' = bay, ...ap, €< &; > (b) any involution oy, = ;41 may be
replaced by a composition of involutions in < &;, &;11> since bay, . .. ay,_, € C.

Thus we have < &; > (b) C< &;, &;+1> (b), and obviously < &;, &;+1>(b) C<
&;>(b). Hence the “if” part. O

The following definition for a cell € with a local degree 2 is given in [5].
Definition 13 (Cell with local degree 2 [5])
e Foralli€{0,...,n—2}, ani-cell C is of local degree two if
Vb € C, baj1040 = baypaiig
e Foralli€{2,...,n}, an i-cell C is of dual local degree two if
Vb € C, ba;_10;_9 = bay_s0;_q
In fact, according to the above definition, the 0-cell v; in Figure 3 would have

a local degree of 2, although this is obviously not what was meant by Grasset

14
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in her definition. Beside the fact that Grasset’s definition does not distinguish
cells with local degree 1 from cells with local degree 2, it is also far more
restrictive then our definition for a cell with local degree 2 (Definition 12).

However, Grasset’s definition was intended to characterize cells that could be
removed from a G-map, producing a valid new G-map. To that extend, and
except for the case of cells with a local degree 1, it is a good criterion but again
not a proper definition for cells with local degree 2. (The removal operation
in maps is the purpose of Section 3).

For clarity, we introduce here a criterion for a cell to be removable. This
criterion may be expressed as a modified version of Grasset’s definition for the
local degree 2 that actually excludes cells with a local degree of 1. But we also
provide an equivalent characterization, in terms of several conditions among
which appears clearly the exact notion of local degree 2 (Theorem 1).

Lemma 3 For anyi € {0,...,n — 2}, and any i-cell C if:

Z) db € G, bOéZ‘+1 ¢< é[i,ééi+1>(b), and
ii) Vb € C, bay1aita = bayaai

then C is of local degree 2.

Proof: Let € be an i-cell that satisfies conditions 7) and ). Let b € C be a
dart such that ba; 1 €< &y, 41> (b), following condition ii). Eventually, let
d be any other dart of C.

From the definition of a cell, we have d = bay, ay, ... oy, with ky # i for all
he{l,...,p}.

For all h > 1 such that k;, = ¢ + 1, let us consider d' = bay, ...y, ,. If
kn—1 = i+ 2 then from condition ) we know that d'ay, o, = d'ay, oy, _, -
In the remaining cases (kn—1 ¢ {i,7 + 2}) we have either |kj — kp_1| > 1 or
kn, = kp_1, so that in both cases d'ay,_, o, = d'ay, o, , (see Definition 1 when
|k, — kp—1| > 1). In other words, a;,1 always commutes with its predecessor
in the sequence of compositions oy, o, . . . o, .
It follows that we way write d = baj, jap oy . .. cuy With ky, ¢ {i,i+ 1} for all
h€{0,...,q} and r € N. Eventually, if 7 is even we have d = (b)ay . .. cuy
and if 7 is odd, d = (ba1)ap agy ... ;. In other words,

d e< di, @7,+1>(b)

or

de< OAéZ', &i+1 > (bOéH_l).

15
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Since ba 1 ¢< &y, iy >(b), it follows that the two above orbits are distinct.
As any dart d € C belongs to one of them, they form a partition of € and the
local degree of € is 2 according to Definition 12. O

At this point, we introduce the notion of a regular cell that will help us to
clarify (with Theorem 1) the link between the proper notion of a local de-
gree 2 and the one of cells that may indeed be removed while preserving the
properties of a G-map.

Definition 14 (Regular cell) An i-cell (i < n —2) in an n-G-map is said
to be regular if it satisfies the two following conditions:

a) Vd € C, daj10po = dopotipy or day0pe &< Gy, Qi > (daypoaipr),
and

b) Vb e C, bayy1 €<y, diy1>(b)

Lemma 4 Let G be an n-G-map and € be an i-cell of G fori € {0,...,n—2}.
If both conditions i) and ii) below are satisfied,

Z) db € @, bai+1 ¢< di,di+1>(b), and
it) Vb € C, bap1tito = boyyo0iq

then C is reqular.
Proof: The proposition a) of Definition 14 is trivial from 7).

Let us consider a dart b which satisfies ) and an arbitrary dart d € C. Using
Lemma 4, de< Q;, di+1>(b) or de< &;, di+1>(b0éi+1) with:

< di, d1+1>(b) 7é< @i, OA{i+1><bOdi+1).

Let us suppose that d €< d;, &;41 > (b). We have thus d = baj, ...« , with
o€ {0, n} — {i,i + 1} for all k.

o If ji, # i+ 2, for any k € {1,...,p} then ;11 commutes with any «;,,
ke {l,...,p} and we have:

dai—H = bozi+1ozj1 c. Oéjp.

e Otherwise, let us consider the greatest index h such that j, = i + 2. By
definition of h we have:

dai+1 = bOéjl .. ajpai+1
= bOéjl Ce ajh_1ai+2ai+1ajh+1 ce O[jp

with both sequences aj, ..., and aj, , ...«a;, being possibly empty.

16
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Since by, ...y, , belongs to € we have by #i):
bOéjl .. ajh_lai+2ai+lajh+1 c. O[jp = bOéjl . Oéjh_lai+105i+205jh+1 e Oéjp

This process may be iterated on the sequence doy, ..., a1 until oy
reaches the dart b. We obtain thus finally:
dOéi_H = bOéH_lOéjl e

Jp

We have thus in both cases da; 1 €< &;, &1 > (bayyq). Since < &, Gy >
(bavi1) #<é;, 1> (b) and d €< é;, dy1>(b) by hypothesis we obtain:

daipy <, Q1> (d)

The same demonstration may be conducted if d €< &;, dp1>(bay). O

Theorem 1 For anyi € {0,...,n—2}, ani-cell C is a reqular cell with local
degree 2 if and only if

Z) db € C‘,’, bai—l—l ¢< di,di+1>(b), and
i1) Vb € C, bayp10ito = boviyo0iiya

Proof: The reverse implication is provided by Lemma 3 (local degree 2) and 4
(regular). Let us show the implication. First, if € is of local degree 2 it is not
of local degree 1 and the property i) is provided by Property 3.

Secondly, let us now consider a dart d € €. We have by condition b) of Defi-
nition 14 (and the fact that do;,o € C):

dop1 €<y, Gy >(d) and doy o0y €<y, G >(d)
Therefore if da; 1 €< &, iy > (dayieaii1), the three orbits < &;, &1 > (d),
< @y Q1> (dagyr) and < @y, g > (doyio0y1 1) are distinet. However, in this
case C would be of local degree at least 3, which contradicts the hypothesis
about the local degree 2 of €. We have thus:
doiy1 €< by, Q1> (dovyoaip)
which implies that
dovip10iqp €<y, Gy > (dao0ry 1)

Using property a) given by Definition 14, this last point implies that da; 10 =
da 1911 which corresponds to i), O

Definition 15 (Local degree in maps) Let C be an i-cell in an n-map.
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e The local degree of C is the number
{<4, 3> (0) [ b e €} ificfo,... .n—2}
‘{<7071, ey Y0 V2> (D) ‘ be GH ifi=n-—1

e The dual local degree of C is the number
H <%7’%—1>(b)‘b€€}’ forie{l,...,n—1}
‘{<7071; e 02> (b) ’ be @}’ fori=n

The local degree (resp. dual local degree) of an n-cell (resp. a 0-cell) is 0.

Let us justify the orbits considered in the definition of the local degree when
i €{0,...,n—2}. As for G-maps, we consider the darts that may be reached
from d while allowing no change of i-cell (hence 4;) and no change of (i+1)-cell
(hence 4;11). In the case when i = n — 1, preventing any change of (n — 1)-cell
means that the allowed involutions are in {7, ...,7n—2}, and preventing any
change of n-cell means, according to Definition 10, that the set of allowed
involutions is {YoY1,.-.,%Vn-1}. Overall, only the involution ~yy,_; of the
latter set is not allowed by the first one, therefore we obtain the orbit that
must be considered, i.e. <yoV1,- -, V0 Vn_2>"

Definition 16 (Regular cell in n-maps) A cell in an n-map is said to be
regular if it satisfies the two conditions a) and b) below:

a) If i <n—3, for all d € C we have:
dVit1Yivz = dVir2Yier O AYig1Yive E<5i, Vi1 > (dViveyir1)
If i =n—3, for all d € C we have:
dYn—2VYn-1 = d%;lﬂn—Q and d%—ﬂr;ll = dVYn-1Yn—2, OT
d’}/an ¢ (< ’A}/nf?n ;Yn72>(d7;—117n72)'77:_11U <fAYn737 ':)/n72>(d7n717n72)7n71>
If it =n—2, for all d € C we have:
dy,t, = dvy,_1, or
Ayt <y Yaes>(dyns1) and doyoy <71, .. s> (dyn )
b) If i <n —2, for all b € C we have:

bYit1 €<%, Yir1>(b)

18
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If i =n—2, for all b € C we have:

{b’}/n—la b%j_ll}ﬂ <7, --- a’)/n—3>(b) = @

Remark 4 If v is a permutation of a set S, then for all s € S there exists

p € N such that

p
——

sy=sy b .yl =sy7?
Conwversly, for all s € S there exists ¢ € N such that sy~ = sv1.

Notation 2 If D and D' are sets, 0 : D — D', and S C D, we denote by
So the image of S by o, i.e.

So = {O’(S) ‘ s € S}
Proposition 7 Let M be an n-map and~C~¥ = AG(M). If € is an i-cell of M,

then the set € = CU Co is an i-cell of G if i < mn, and € = CU Cyo is an
n-cell of G if i = n.

Corollary 2 With the notations of Proposition 7 we have:

vd e @, <d;>(d) =0

Proof of Proposition 7:

e If i < n. We prove that for all b € CUCo, <d;>(b) = CUCo = CUCa,. Let
us show first that <a@;>(b) C CUCo. Let b € CUCo and d €< @;>(b). We have
d = boy, v, . .. o, where p € N and &y € {0,...,n}\ {i}, 0 < h < p. (Note
that following Remark 4 we suppose wlog that the sequence ay, a, . . . oy, does
not involve any inverse of an involution.)

We prove by recurence on p, the length of the sequence ay, ay, ...y, that
d € CU Co. First, if p = 0 we have d = b € € and there is nothing left to
prove. Thus, the property holds for p = 0.

Now we suppose that the property is satisfied for p € N* and we consider a
dart d = bay, ...a,ar, . We denote b = bay, ... g, Since the property is
valid for p, we have b’ € C or V/ € Co.

If b € €, we deduce from Definition 7 that

VVippr0 i kppr <n—1
Vo, , =Wy o ifkyy=n—1

bo if kpy1 =n

so that in all cases V'ay,,, €<7;>(d)o.
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If o/ € Co we have b’ = b'o with b € C. Again, following Definition 7 and the
fact that Co C D', we have

d _ b/ _ b// _ bllo-ohilryk‘erl = b//’y’i‘p+1 1f kp+1 < n
— Olk;p+1 - O—Oka+1 - b/, -1 _ b,, f k .
oo - = L Kpp1 =N
so that b'ay,,, € € since b” € C and kyy1 # 1.

From the two latter cases, we obtain that bay, ...ox,a,,, € €U Co; hence
the property is valid for all p € N*. We conclude that <a&;>(b) C CU Co.

Now, we have € =<+;>(b). From Lemma 1 we deduce that the orbit
<Y1, ,")A/i, c ,’}/n,1>(b) in M

is precisely

<R,y -+ oy Ay ey A0y —1>(0) in AG(M)
and since ¢ < n we have
L AROQ, -+ s Ay ooy Q1> (b) C<vgy .y Ay ooy > (D)
Eventually, ¢ C< @; > (b). Since ¢ # n, we immediatly obtain that Co =
Ca,, C< ;> (b). Therefore, CU Co C< a@;>(b) and we conclude that < a; >

(b) =CUCo.

o If i =n. Let b € C, we prove that <a,,>(b) = CU Cvyyo where

¢ =<%71,--- 7707’n—1>(b)
(<ap>(b) C CUCyo) Let d e<a,>(b). We have d = bay, ... ay, for p € N,
with k, € {0,...,n—1} for 1 < h <p.

We prove by recurence on p, the length of the sequence ay, ...ayg,, that d €
CUCygo. If p =0, we have d = b € C and there is nothing left to prove.

Thus, we suppose that the property holds for some p € N and we consider a
dart d = bay, ... ag,ax,,,. We denote d =bay, ... g, so from the recurence
hypothesis we have d' € C U Cyyo.

If d’ € @, from Definition 7 we obtain that:

~ I kp =0, day, ., = d ooy, = d'ayagoy, = d'(790) € Cygo.
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IO <hp <n—1,

bo, ., = bag,,, 0" V000
= bag,,, Y000
= b(an iy, )~ Y0700
= 571;,1170700 (By Lemma 1)
= b(’Yo’Ykp+1)_1700

Since b € € we have b(yo) ™" € €, hence bay,,, € Cyyo.

If d' € Cygo then d' = d"~yo for some dart d” € € and we have

’ o
d'ay,,, = d"voop,,,

= d"ygo0 ., (since d"yo0 € D’ and kyiq < n)

= d"V0Vky 41
Since d” € €, we obtain that d'oay,,,, € C =<v71,...,%Vn-1>(D).

Eventually, either d € Cyyo or d € C, i.e. d € CUCy0, and the property holds
for p+ 1.

(CUCyyo C<a,>(b)) We have C =<7071,---,%Vn—1>(b). From Lemma 1
we deduce that the orbit <~v¢7y1,...,%7m-1>(b) in M is precisely

< WALy -« -« 5 Qg 1> (0) in AG(M)

and since n > 2 we have

< A Oy -« -y QO Ol 1> (b) = < oy, - . .y QoL Oty — 1> (B)
= <apQy,...,Q0,—1>(b)
We observe that < apaq, ..., apa,—1 > (b) C<a,>(b), hence € C< a, > (b).

On the other hand, for all dart d € C, dyo = da,apq,. Since n > 2 we
obtain dyyo = daga,a, = dag. From € C< @, > (b) and d € C we deduce
that d e<d,,>(b), thus day €<a,,>(b). Eventually, dyoo €<d,,>(b) so that
Cyoo C<an>(b).

We conclude that a,,b = CU Cvyyo. O

Definition 17 (Associated cell) The cell C as defined in Proposition 7 will
be called the associated cell of € in AG(M).
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Now, we will prove that if a cell of a map M has a local degree of 2, then
its associated cell in AG(M) also has a local degree of 2. This result will be
stated by Proposition 8.

Lemma 5 Let M = (D,%,..., V1) be an n-map and AG(M) = (D =
DUD, ag,...,a,) be the associated n-G-map of M. Let C be an (n — 1)-
cell with local degree 2 in M and Cy, Cy be the two sets of darts defined by
{C1,C} = {< YoV1s -+ > Y0 Yn—2 > (B) ‘ b € (3} (according to Definition 15),
then we have

(01 U 01’70@”) N (OQ U Cg’)/(]Oén) = @

Proof: We first rewrite

(Cl U Cl’yoOén) N (Cg U Cg’yo()én) = ((Cl U Cl’yoOén) N Cg) U ((Cl U leyoan) N CQ’}/OOén)
= ((01 M 02) U (01’700&,1 N OQ)) U ((Cl N CQ’Y()Oén) U (C’w()ozn M 02’700671))

From C; N Cy = () and the fact that vy, is a one-to-one map from D to D’
we deduce that Ciypa, N Covoar, = 0. Since D ND' = B and Yy, is a map
from D to D’ we also have C; NCypa, = 0, C1 N Coypar, = 0, CoNCoypo = 0,
and C; N Cyypa,, = (0. Thus, all the intersections of the above union of sets
are empty. O

Lemma 6 If C is an (n — 1)-cell with local degree 2 in an n-map M, then the
associated cell of € in AG(M) has local degree 2.

Proof: Let M = (D, 7o, ..., %n-1), AG(M) = (D =DUTD, ay,...,o,) follow-
ing Definition 7.

If € has local degree 2 in M we have:

{<%717 Y0 Yn—2>(b) ‘ be 6’} = {C,Cy}

where C and C5 are non-empty and disjoint sets. Thus, there exist by, by € C
such that

o O =<YM1;- -+, Y0Yn—2>(b1),

o Oy =<%71, -, 702> (b2),

o Vd € C, <y071,- -, 70 m—2>(d) € {C1, Ca}.
Now, with € = CU Cyyo, we prove that

‘{<Oé7;_1,02n>(d) ‘ de é}‘ = {Cl U Cl’}/()O', CQ U CQ’}/OO'}

Let d € C. We may suppose wlog that d € Cy if d € € and that dony, € C, if
d € Cvyyo. In all cases, we prove that <a,,_1, a,>(d) = C; U C1yy0.
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Thus, let d € €U Cyyo, we consider the set <a,_1,q,>(d). If d’' is a dart of
the latter orbit, we have

d':dozkl...ozkp,pGN
where k; € {0,...,n—2}, 1 <j <p.

We prove by recurence on p, the length of the sequence oy, ...y, that d' €
01 U 01’}/00 with
Cr =<%M, - - -+ 70Y¥n—2>(d) (2)

The case p = 0 comes from the assumption we made on d or do~y,. Therefore,
we suppose that the property holds for some p € N.

We have d' = doy, ...ap,op,,, with k; € {0,...,n =2}, 1 < j < p+ 1L
Let us denote b = day, ... ay,. From the recurence hypothesis we know that
be Cl U Cl’}/oO'.

If b € C}, from Definition 7 and the fact that k,;; <n — 2 we have
d =bay,,, =dy,,, 0

We may rewrite

d/ _ b’}/oO' if kp+1 =0
b")/kp+10'(0_1’}/0’}/00) = d(’)/kp+1’}/0)’}/00' if 0 < kp+1 <n-—1

In the second case, 7, , is an involution since k41 < n—1 therefore d(vx,.,7) =
d(fyofykp+1)_1. Thus, in both cases b € C implies that d' € Cyyo (see 2).

If b € Civyyo, then b = b'vyyo for some dart b’ € C;. Then again from Defini-
tion 7 we have d' = bo "y, ., = V000 0 = U0 vk I Kppr = 0 we
obtain that d’ = V"yyy = b" € C\, otherwise d' = b"yyy,,, € C1 by (2).

We conclude that bag,,, € Cy U Ciypo, so that the property holds for p + 1,
hence for all p € N. Eventually, <a,,_1, d,>(d) C C; U Cyyg0.

Now, from the definition of C'y (2) it is straightforward that C; C<ay,...,a,_o>
(d). On the other hand, we have Ciyy0 = Cra,apay,. Since n > 2 we obtain
Civ0 = Chiag. Therefore, C; C< ay,...,q,_2>(d) implies that Cyyy0 C<
ag, ..., ap_o>(d). Thus we have C; U Cyyp0 C<ay, . .., q,_2>(d).

Finally, for all dart d € €, we have proved that < ag, ..., o> (d)=Cy U
Ciyo0 or <o, ..., an_3>(d) = C2 U Cyypo. Since C U Crypo and Cy U Cyypo
are distinct sets (Lemma 5), we obtain that € has a local degree 2 according
to Definition 12. O
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Lemma 7 Let M = (D,7o,...,Va_1) be an n-map and AG(M) = (D =
DUD a,...,ap) be the associated n-G-map of M. Let C be an i-cell with
local degree 2 in M for 0 < i < n —1 and Cy, Cy be the two sets of darts
defined by {Cy,Cy} = {< iy Yie1 > (D) ’ b e C‘Z} (according to Definition 15),
then we have

(Cl U Cl’}/o()én> N (C2 U CQ’)/(]Oén) = @

Proof: We first rewrite
(Cl U C’lozn) M (02 U CQOén) = ((Ol U C’lozn) M 02) U ((01 U C’lan) N CQOén)
= ((Cl N CQ) U (Clan N Cg)) U ((Cl N CgOén) U (C’lan N CQOZTL))

From C; NCy = () and the fact that o, is a one-to-one map from D to D’ we
deduce that Cia, NCha,, = 0. Since DND’ = () and v, is a map from D to D’
we also have C;NCLay, = 0, C1NChary, = 0, CoNCahar,, = B, and C,NCyr,, = 0.
Thus, all the intersections of the above union of sets are empty. O

Lemma 8 If C is an i-cell with local degree 2 in an n-map M fori <n —1,
then the associated cell of € in AG(M) has local degree 2.

Proof: Let M = (D,%,...,m-1) and AG(M) = (D = DUTD, a,...,an)
following Definition 7.

Since ¢ < n — 1 and C has local degree 2 in M we have:
{<’?¢;%’A+1>(b) ‘ be G} ={C1,Ca}

where (' and C5 are non-empty disjoint sets. Thus, there exists by,by € C
such that

= 1 =<9, 751> (b1),

- C12 :<’?i7%'A+1><b2)’

- Vd € D, <'?i77iti-l>(d) € {01,02}.
With € = CU o, we prove that

{<di,ain>(d) |d € C} = {C UCio,CL U Cayo}
Let d € C. We may suppose wlog that d € C} if d € € and that do~! € C, if
d € Co. In all cases, we prove that <a;, o/ 1>(d) = C; U Cyo.

Thus, let d € €, we consider the set < dy, @iy1 > (d). Let d’ be a dart of the
latter orbit. We have:

d = d@kl&kQ ce Oy 4 eN
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where k; € {0,...,n}\ {i,i+ 1} for j € {1,...,q¢}.

We prove by recurence on p, the length of the sequence oy, oy, ... ay,, that
d € Cy UCio with C7 =< 4;, 941> (b1). If p = 0, since we supposed that
d € Cyordo~t € Cy (i.e. d € Cyo) the property holds and there is nothing
left to prove.

Now, we suppose that the property is verified for some p € N. Let d' =
dag, g, . .. ag,ap,,, with d" = day, o, . . . oy, From the recurence hypothesis
we have d” € C,UC0.1f d" € Cy, by Definition 7 we obtain that d' = d"v,,, 0
(if kpr1 <n—1),d =d"v;, o (f kyyy =n—1),or d = d"0 (if kpyy = n)
; therefore in all cases d' € Cyo. If d" € Cio, we have d' = d"o" 'y, (if
kpi1 < n)or d = d'o"" (if kyy1 = n); so that in both cases d' € C;. We
conclude that d' = doy, € Cy U Cio and the property holds for p + 1, hence
for any p € N.

Eventually, we obtained that

<o§i,a{+1>(d) c C1uUCio

Now, we show that C; U Cio C< a;, a1 > (d). We have C =< ;, 741 >
(b1) =<7i,vi+1>(d) and by Lemma 1:

<’?Z‘, ’%A—ﬁ-l>(d) =<an0p, ..., Oz,;ozi, andi+17 R O[nOén_1>(d)
Since i < n — 1, we have a,, € {aw, ..., an} \ {as, a;t1}, therefore
<OpGg, ..., CMT:OQ', Oéné(i+1, c ,OénC(n,1>(d) < 021-, CkiA+1>(d)

Finally, C1 C<d;, aiy1>(d). Since i + 1 < n, this also implies that Ch«,, =
Cio C< di, OélA+1>(d)

We conclude that <a;, oy 1>(d) = C; U Cio.
The overall result is that for all d € €, either

’l) <02i,a{+1>(d) = Cl U 010', or
Z’L> <di, Oé{+1>(d) = 02 U 020'.

where C; U Cyo and Cy U Cyo are disjoint sets (by Lemma 7). In other words:

H<O§Z‘,Oé{+1>(d) ‘ de é}’ =2

or again, C has a local degree 2 according to Definition 12. O
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Proposition 8 If M is an n-map and C is an i-cell with local degree 2 in M
(Definition 15) for 0 < i < n—1, then the associated cell of C in AG(M) has
a local degree of 2 (Definition 12).

Proof: The case i =n — 1 is proved by Lemma 6, and the case ¢ < n — 1 by
Lemma 8. O

Lemma 9 Let G = (D, 7o, ..., 1) be an n-G-map and AG(M) = (D =
DUTD, a,...,a,) be an associated n-G-map of M following Definition 7.
For allt <n—2 and all b € D, we have

<, Qi1 >(b) CT<Ai, Yig1>(0)U <Ay Yig1>(b) oy

Proof: Let d €<y, &;41>(b), we may write
d=bay, ...ap, forp e N

with k, € {1,...,i — 1} U{n} for 1 < h < p. We prove by recurence on p,
the length of the sequence of involutions ay, ...y, that d €<4;, 4i11>(b) or
d €<4;,Yi+1> (b)ay,. The property obviously holds for p = 0. Thus, we may
suppose that it is true for some p € N. Next, we consider a dart d such that d =
bay, ... ag,op,,,. By the recurence hypothesis, if we denote b’ = bay, ...y,
we know that either ¢/ E<’A)/i, ’A}/Z'+1>(b) or v/ €<’%, ’A}/i+1><b)04n.

— Let us suppose that V' €<4;,¥i41>(b). If k11 = n, then we have d = V' a,,
hence d €<4;, ¥iy1>(b)ay. If kpiy € {0,...,n—1}, then d = 0oy, which we
may write d = b'ay,,,, p0r = d’fy,;pilan. Again, we have d €<#;, 541> (b)a,.

— Let us suppose that b €< 4;, 941 > (b)a,. Then ¥’ = V', for some dart
b €<i, Yig1>(b). If k1 = n, then we have d = b, = Va0, = ", hence
d e< ’A)/i,’A}/i+1> (b)an If kp-i—l € {O, o, n = 1}, then d = b”anakp+1 = bl/ﬁ)/kp+17
thus again d €<%;, 541> (b).

The property is therefore true for a sequence with length p + 1, thus true for
any p € N. O

Lemma 10 Let M = (D, %, ...,4m-1) be an n-map and AG(M) = (D =
DUD ay,...,an) be an associated n-G-map of M following Definition 7. Let

U= {0, %t C {105 st} forp < n, and ® = {ay,,..., o, }. For
all b € D we have

<d>(b) C (< U>(b)U <\I/>(b)an)
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Proof: Let d e<WU>(b). We may write
d=bay, ...an, q€N
where h; € {k1,...,k,} forall j € {1,...,¢}.
We prove by recurence on ¢, the length of the sequence of involutions ay, . .. ay,,
that either d e< V> (b) or d €<V >(b)ay,. The property is immediately ver-

ified for ¢ = 0. Thus we assume that the property is valid for some integer p
and we consider the dart d with

d=bay, ...ap,an,.,,q€Nand hj € {ki,... kfor 1 <j<qg+1

By the recurence hypothesis, we have d = b'ay,,,, where b e<¥>(b)U <W¥>
(b)),

If b/ e<U>(b) we write d = Yoy, 00, = V(oo ) Fan = U (Y,,) Fan
and we obtain that d e<VU>(b)a,.

If e<U>(b)ay,, bV =0, for some dart b” €< ¥ >(b) and we obtain that
d=Vb"anan,,, = 0", €<U>(D).

Eventually, we have proved that d e< ¥ > (b) or d €< V¥ > (b)a, when the

sequence of involutions has a length p 4+ 1. The property is thus true for any
sequence. O

Later on, we use the fact that a regular cell in M is associated with a regular
cell in AG(M). This will be stated by Proposition 9, whose proof is based on
the next Lemmas.

Lemma 11 If C is an i-cell, 0 < i < n — 2, in a map that salisfies property
a) of Definition 10, than C in AG(M) satisfies property a) of Definition 1.

Proof: Let M = (D, o, ..., m-1) and G = AG(M) = (D = DUD’, a, . . ., ).
oIfi<n—3.

We may write € =<4;>(b) for some b € D. Following Definition 17 we have
C=CUCa.

Let d € C.
— If d € D, by Definition 16 we know that either dvy; 17v;1o = dvizo7yir1 Or

div17Vis2 §Z< Vi> Vig1> (d%'+2%‘+1)- By Lemma 1 we may write day,a 410,012 =
dou iy o0ty 1 OF dou, Q10 Qe <A, Yig1 > (dan o0y ).
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Since 1 + 1 < n — 2 and AG(M) is an n-G-map, we have bo, ;11 = bay 1,
and bay, a0 = bayoa, for all b € D. Hence, either doy 1010 = daioai,q or
doviy 10y <5, Vi1 > (daipoaigy).

NOW, if dai+1ai+2 7’é dOéiJrQOéiJrl we have dCYZ;HOdiJrQ §é< 'A}/Z',’A}/Z'Jrl > (dai+2ai+l).
In this case, let us suppose that da;ij0ie €< &, Qi1 > (dayiacii). By
Lemma 10, we know that

<y Qg1 > (dovipoiivr) C<His Yig1 > (dovipoip)U <Y, Yigr > (dapo0tg1) oy

Thus, either da;i1aire €< Fi,Yig1 > (daipaqiy1) or dagiairs €< g, Y1 >
(daipo0tir)ay,. Since doy 100 = dyip1Vip2 € D and <4;, Yip1> (daipo0iqr) oy, C
D' we necessarily have do;i 1o €< i, Yiv1 > (dagioaiy), a contradiction.
Therefore, da; 1o <&y, Qi1 >(daypo041).

Eventually, we have proved that either da; 1190 = daypoqyq or doy 1040 €<
&, Giyq > (day oy 1) which is property a) of Definition 14.

—If d € D', then d = d'«,, for some dart d' € € (Definition 17). From Defi-
nition 16 we know that either do,yii1vite = danYiroYir1 or dayYiv1vVite €<
Yis Yirr> (donYiraYigr)-

If dovyyiz1Viv2 = dayYigaYiv1, we have:

Ao, 0 Qi1 O Qo = do, Qo041 (Lemma 1)

dovi 10,040 = da 20001y
dOZZ‘_HOzH_QOén = dOéi+QOéi+1()tn (Z <n-— 3)
dovy1Qigo = da2041

If doyYig1Vie2 7# damYigoYier, then dogyyip1vieo ¢< Vi> Yig1 > (dan7i+27i+1)-
Since da,, € D, we have proved that day,o; 100 €<y, Qi > (dagagoaiiq).
Since 1 < n — 3, dap,Qiroip1 = dapa0ip 10y dopi1iy = dog oy,
Futhermore, since n ¢ {i,i + 1}, < &;, &ip1 > (dapoqiion,) =< &, Qi >
(dOéH_QOéH_l). It follows that dOéH_lOéH_QOén ¢< (Séi,OAéH_l > (dOéH_QOéH_l), which
in turn implies that dog 010 €< Gy, Gy > (dagioyy ). Eventually, either
dai+1ai+2 = dozi_,_gozi_,_l or dO!i+1OZZ‘+2 ¢< ééi, ééi+1> (dai—l—Qai—l—l)a which is prop-
erty a) of Definition 14.

elfi=n—3.
—If d € D. Following Definition 16, either dv,_oY,_1 = dv,1Yn_2, ot [...].
If dv,_oVn_1 = dv;_ll%_g, by Lemma 1 we deduce that da,o, sana, 1 =

do, 10,000, _o. Since do,oy,—9 = do,_sa,, we obtain that do,_sca,—1 =
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danfl Qp_2.

Now, if dyn_oYn—1 # dY, 1 Yn—1, it follows (Definition 16) that

d/yn—2 ¢ (</$/n—37/?n—2>(d77:_117n—2)7;_11U </3/n—37'?n—2><d7n—1’7n—2)’}/n—1)
(3)
Suppose that da,, a0, 1 €<dy,_3, @y2>(doy,_100,_2), which we may rewrite
Ao, o000, 1 €< A3, Qo > (dt, 100,00, _3), OF day, 20,00, 1 €<
A3, Qp_o > (day, 10, _2). Since d € D we obtain that dy,_27,-1 €<
dn—?n OAfn—2 > (d’)/q;—llﬁ)/n—Q)'
By Lemma 10, we deduce that dy,_sVn—1 €< Yn-3, Yn—2 > (dV, 1 n_2)U <
An-3,n—2 > (dy; 1 m—2)n. Finally, the fact that dy,_sV,1 € D and <
V-3, An-2 > (dyp 1 Yn—2)a, C D' implies that dy,_2¥n-1 €< Yn-s, Yn-2 >
(d777—117n72)7 Le. dean €<’Ayn737 :}/n72>(d7;—117n72)%;—11 ) which is a contradic-
tion with (3). Therefore, da,,_o0v,—1 €< du_3, &> (day, 10, —2).

~If d € D', we have d = ba,, for some b € C. If € is regular, since da,, = b € C,
following Definition 16 either deau,yn—ov, 'y = doyYn—1Yn—2, OF [...].

If danfyn,ﬂ;_ll = dapYp—1Yn—2, by Lemma 1 we deduce that do,, o, 20, 1,
Ao, 0, Oy 10, 0ty o Since do, o, —o = day, o0, we obtain that do,_sa, 10, =
dov, 10y, _oay,, hence day,_sa,_1 = day,_100,_s.

Now, if doyYn—2Ymt1 7 A0 Yn—1Vn—o- it follows (Definition 16) that

danf)/n—Q ¢<;Yn—37 :Yn—2>(dan7n—l'yn—2)’)/n—l (4)

Let us suppose that da,, o0y, €< dy_3, Gp—2>(do,_100,—2). Since n ¢ {n —
2,n — 3} we have <&,,_3, &p_o>(day,_100,—2) =<3, Qo> (dov, 100, _201,).

It follows that

A0t 2010t € <Gin—3, Q2> (A0 A Oty 1 Oty —201y,)

Since day, € D, by Lemma 1 and from the fact that bay, a2 = ba,_2ay, for
all b € D, we obtain

dan’)’n—z%;ll € <p-3, Qp_o>(doyYn-1Vn—2)
By Lemma 10 and the fact that do,y,_27, ", € D we deduce that

danr)/n—Q’Yq;—ll e< /?n—S) ;5/71—2 > (dan/yn—l/yn—Q)
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in other words,

dan’Yn—Z e< ’S/n—?n ’S/n—2 > (dan’)/n—llyn—Z)’yn—l

which is a contradiction with (4). Therefore, doy, scv, 1 €< G435, 0o >
(dan—lan—Q)-

Enventually, we have proved that condition a) of Definition 14 is satisfied for
all d € C.

o lfi=n—-2.

— If d € D. Following Definition 16, we know that either dvy,', = dy,_; or
Dty E< s s> (dYnn)

If dv, 'y = dy,_1, by Lemma 1 we have da,_1a, = doyc,_;.

Now, let us consider the case when dv, ', # dy,_i. Necessarily, we have
s E<T1, - V3> (dyn-1).

Suppose that da,_1a, €< &u_9,d,—1 > (daya,—1). Since d € D, we can
write dy,; €< Gp_o,dn_1 > (dy,_1), and using Lemma 10 we obtain that
Ayt €< An—2, Yna1>(dYn_1)U <Ap_2, An1>(dYn_1)an. Since dv, ', € D and
< Ap2s A1 > (dYp_1 ), C D' it follows that dvy, ', €<An_2,n-1>(dYn_1), a
contradiction. Finally, we obtain that do,, 1, €<dy,—2, y_1>(dayan—1).

We conclude that either da,,_ 1, = doya,—1 or da, 10, &< Gpy_9, Gpq >
(doa,—1), which is property a) of Definition 14.

—If d € D', we have d = d'«a, for some dart d’ € D.

Following Definition 16, we know that either d'v,'; = d'v,_1 or d'y,_, &<
Ty - - - 7’Yn—3>(d/,}/7:711)‘

If d’%;ll = d'7y,_1 we obtain that do,, v, 10, = da,a,,_1, thus da, o, 10, =
day,_1 or again day,,_1 = da,_10u,.

If d'y, Yy # d'v,—1 we have necessarily d'v,_1 €<71,. .., Yn_3>(dv,2).

Let us suppose that da, 10, €< Gy_9,0, 1> (daya,_1). Since n ¢ {n —
2,n — 1} we deduce that da,, 1 €<dy,_o, &y 1>(da,a,, 1) and then also that
don—1 €< Qp_9, Gp1 > (dapo,—10ay,). Substituting with d = d'«,, we obtain
d' a1 €< by_g, 01> (d apanon,_10y,), eventually d'vy,—1 €< dy_o, Gp1 >

(d'v;,11), a contradiction. Eventually, de, 1, &< Ao, Gpn_1>(da,an,_1).

We obtain that property a) of Definition 14 is satisfied by C.O
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Lemma 12 If C is an i-cell in an n-map for i < n — 2 and such that it
satisfies property b) of Definition 16, then C in AG(M) satisfies property b)
of Definition 14.

Proof: Let us denote M = (D,v,...,7-1) and G = AG(M) = (f) =
DUD', g, ..., ay). Furthermore, let C be an i-cell of M that satisfies property
b), and let d be a dart of C.

o Ifi<n—2.

— If d € D. Suppose that da; 1 €< 44,5541 >(d). By Lemma 10, < &y, 1>
(d) < ’A}/i, "A}/Z'+1 > (d)U < 'A}/Z’, ’A}/Z'Jrl > (d)Oén so that either dai+1 e< "A)/Z‘, ’A}/i+1 > (d)
or daj1 €< i, Jiy1 > (d)ay,. Necessarily, we have do; 1 €< 94, Yip1 > (d)ay,
since do;1 1 € D'. We deduce that da; 1o, €<F4,Yip1>(d), 6. dayaiq €<
Fis Yir1>(d), since i+ 1 < n—1. Thus, we have dv; 11 €<%, 541> (d). But this
is a contradiction with the fact that € is regular in M (point b of Definition 16).
Hence, da; 11 €<%i,%i+1>(d) which is property b) of Definition 14.

—If d € D', we have d = ba,, for some dart b € C. Suppose that do;,; =
b, iv1 €<y, Giyq>(bay,). Since n & {i,i+ 1} we have ba, a1 €<y, Q1>
(b). By Lemma 10,

< B, Qg1 >(b) C<Hi, Yigr > (0)U <Ay Yipr > (b)
so either bay i1 €<%, Yip1>(b) or banitr €<Fi, Fir1>(b)an.

Since bayair1 € D, necessarily ba,aip1 €< i, Yig1 > (b). In other words,
byit1 €< i, Yir1 > (d), which is a contradiction with the fact that b belongs
to a regular i-cell of M (property b) of Definition 16). Therefore, da;; ¢<
&4, i1 >(d) so that property b) of Definition 14 is verified.

olfi=n—2.
—If d € D, following Definition 14 we have by, 1 €<7o,...,Vn_3>(b).

Now, let us suppose that da,_; €<d,_2,d,_1>(d). Since n ¢ {n —2,n — 1}
we deduce that do,_j0n, €< dy_g, Gp—1>(d) and by Lemma 9 that dv, ', €<
An—2,Yn—1>(d), which is a contradiction. Thus, do,—1 ¢<d&y,—2, &1 >(d).

—If d € D', we have d = d'«,, for some dart d' € D. Let us suppose that
do,—1 €< Gy_9,0,-1 > (d). Since d' = do,, we obtain that d'a,a,— 1 €<
G2, Gp1 > (d'ay,). Again, since n ¢ {n — 2,n — 1} we have d'a,a,_1 €<
Gp_o,0y_1>(d"), and by Lemma 9 (since d' € D) d'v,,—1 €<An_2, Yu_1>(d').
A contradiction with the fact that € is regular (Definition 16). Thus, again
do,_1 ¢< (Sén,Q, dn,1><d)

Enventually, condition b) of Definition 14 is satisfied by C.O
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Proposition 9 Let M = (D, ..., Yn_1) be an n-map and AG(M) = (D =
DUTD, ag,...,a,) be an associated n-G-map of M following Definition 7. If
C is a regular i-cell in M for 0 <i < n—2 (Definition 16), then the associated
cell of € in AG(M) is reqular (Definition 14).

Proof: 1f € satifies properties a) and b) of Definition 16 then by Lemma 11 e
satisifies property a) Definition 14 and by Lemma 12 it satisifies property b)
of Definition 14. Hence C is regular in G. O

Proposition 10 Let G = (D, o, ..., Va—1) be an n-map and let us consider
d € D. The i-cell C;(d) is of local degree at most 2 if:

e Forie{0,...,n—3}, b%-_+11%‘+2 = b7;~_127i+1 for all b € C;(d).
o Fori=n—2 by =by_1 b= b2, for all b € C;(d).

Such a characterization may be equivalently performed in terms of the dual

map é = (D>ﬁn7 v 751):
Vi€ {0,...,n—2}Vb e Cid), BB, Bia =850

Proof: Let us first show the equivalence between both characterizations:
e Ifie{0,....,n—3}
Ayt Vive = dBi3\ By BuBive = dB Biye
AV i = dBia By Babir = dB 50
So that d’y;_ll’yi_;_g = d’}/;_IQ’}/i_i_l if and OIlly if dﬁ;}lﬁi_‘_g = dﬁ;}Qﬁi—H-
o [fi=n—2:
V-1 = BB, and dy, Yy = dB, L B,

Since 3, is an involution we obtain:

d'y'n,—l = dﬂ;lﬁn_l and d’y;_ll = dﬁ;_llﬁn
So that dv; !, = dy,_1 if and only if d8; ", 6, = dB; ' Bu_1.

Let us now show that the above equations characterize i-cells with local degree
2.

o If i € {0,...,n — 3} let us consider a dart d such that:
Ay vive = Ay
Since 1 < n — 3, 7,41 is an involution and we have:

Ay Vive = dyisviee = dviyyin
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Since the above equation is valid for any dart d € €;(d), we may apply it to
(dit2) and we obtain:

(dVir2) Vi Vi1 = dYiz2Yir1Vive = dYia

We have thus:
dYir2Yirr = DYir2Yir1Vir2 Vi = AVit17Vits

Let us now consider one dart b € C;(d) =<70,...,%i,- -+, Yn—1>(d). The

dart b is equal to dp with ¢ €<~y,...,%,...,n_1>. Let us consider ¢ as a

word built on the alphabet {70,...,7},...,%_I}U{yal,...,%:l,..., L)

Within the general case, the symbol 7,1 commutes with all the symbols of
this alphabet except ;1o and %-112. But as we have shown, the relationship
d’y;rllfyHg = d’y;rlﬂiﬂ induces for all d € C:

divovis = dyis1Yits
AV Yisr = dVit1Yite
We may thus consider the natural p and the function

¢ €<707 s 7/%77@';-17 s 77’n—1>(d)

such that b = dv?, 9.
Since 1 < n — 3, 7,41 is an involution and:
~ If piseven dy/,, = d and:

b= d¢ €<, -- a’Y’i:rla s 77n—1>(d) = ez+1(d)
~ If pis odd dv;,, = dviy1 and:

b=dvip1¥ €<V, Yit1s - Yne1>(d) = Cipa(dyigr)

Therefore any dart of C;(d) belongs either to C;y1(d) or to C;rq(dyir1),
Ci(d) is thus incident to at most two i 4+ 1 cells and its degree is at most

2.
e Ifi =n—2 C,2(d) =<90,---,Y—3, Va1 > (d). The permutation ~,_;
commutes with all 7;, ¢ < n — 3 and we have thus as previously, for each
b € Cy(d) a function ¢ €< g, ..., Vo3> such that b = dy’_,p. We have
thus b € C,_1(d) if p is even and b € C,_1(dyn—1) if p is odd. The n — 2 cell
C,_2(d) is thus incident to at most two n — 1 cells: Its degree is at most 2.

O

Property 4 An (n — 1)-cell in an n-map is of degree either 1 or 2. If the
n-map is closed, then all (n — 1)-cells are of degree 2.
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3 Cells removal and contraction in G-maps and maps

3.1 Cells removal

Notation 3 If S = {E;}o<i<n is a set of sets for N € N, we denote by S*
the union of sets in S, i.e.

0<i<N

Definition 18 (Removal set) Let G = (D, ay,...,a,) be ann-G-map (resp.
M = (D,70,...,Vn-1) be ann-map) and S, = {R; }o<i<n be sets of i-cells with
R, = 0. The family of sets S, is called a removal set in G (resp. in M).
Furthermore, for such a familly we will denote R = U} (R;, the set of all cells
of Sy, so that R* is the set of all darts in S,.

Definition 19 (Removal kernel) Let Let G be an n-G-map. A removal ker-
nel K, = {R;}o<i<n in G is a removal set such that all cells of R are disjoint
(i.e. VC,€" € R, CNC =0) and all of them are regular cells with local degree
2 (Definitions 14 and 12). A removal kernel is defined the same way for an
n-map M wusing Definitions 16 and 15 for the notions of regularity and local
degree, respectively.

Lemma 13 Let G = (D, «,...,ay) be an n-G-map and K, = {R;}o<i<n be
a removal kernel in G. We have R;joa; N R* C R} for alli, 0 <i < n.

Corollary 3 Let G = (D, ay,...,ay) be an n-G-map and K, = {R;}o<i<n be
a removal kernel in G. With D' = D\ R* we have for all all i € {0,...,n}:

Ria;\ R* C D' and R'a; N D' = Ria; \ R* (5)

Proof of Lemma 13: Let d' = doy; for d € R} (i.e., d € Rf«a;) and such that
d" € R*. We prove that d' € R}.

Since d’ € R*, it is sufficient to prove that d’ ¢ R} for all j # 4. Let us suppose
that d’ € R with i # j, which means that d’ belongs to a j-cell C; € R;:

d e<ag,...,dj,...,0,>(d"),d" € R}
Since ¢ # j, d'«; also belongs to the above j-cell. However, d'a; = do;a; =
d € R}. We have exhibited a dart which belongs to both a removed j-cell and

a removed i-cell. This is a contradiction with the fact that cells of R do not
intersect (Definition 19). O
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Proof of Corollary 3: From Lemma 13 Rfo; N R* C R. Since R C R* we
deduce that Rfa; \ R* = Rfo; \ Rf. Now, because Rfa; \ R* is a subset of
D' =D\ R* we obtain that Rfa; \ Rf C D'.

On the other hand, let us write:

As shown above, we have Rja; \ R* = Rfa; \ R. Finally, we obtain that
R;"OziﬂD’ = R:OZZ\R:‘ (|

The following definition for cells removal is adapted from [5] where a definition
combining removals and contractions is given. The definition below is obtained
by considering that no cell is to be contracted.

In her definition, Grasset required that cells of the removal kernel should have
a local degree two according to her definition (Definition 13). We have seen
that this definition is both too restrictive to be a valid definition for the local
degree 2, but also that it does not exclude cells with local degree 1.

We know that excluding cells with local degree 1 from Grasset’s definition
yields the notion of regular cells with local degree 2 (Definition 14). Both
notions being equivalent, as shown by Theorem 1. Therefore, the definition
we present below, although not exactly the one given by Grasset, is just more
restrictive in the sense that no cell with a local degree one should be in the
removal kernel.

Definition 20 (Cells removal in n-G-maps [5]) Let G = (D, aq,...,q,)
be an n-G-map and K, = {R;}o<i<n-1 a removal kernel in G. Let BV; =
Rfa;\ Rf, Vi, 0 <i <mn. The set BV is called the set of surviving darts which
are neighbors of an i-cell to be removed. The n-G-map resulting of the removal

of the cells of R is G' = (D', oy, . .., ) defined by:

(1) D'=D\ R*;

(2) Vi, 0 <i<mn,Vbe D\ BV, ba, = ba;

(3) Vi, 0 <i <n, Vb€ BV, ba, = = b(aay 1)k where k is the smallest
integer such that b’ € BV;.

The following definition provides us with an equivalent definition of the re-
moval of cells.

Definition 21 (Cells removal in n-G-maps) Let G = (D, «g,...,q,) be
an n-G-map and K, = {R;}o<i<n—1 be a removal kernel in G. The n-G-map
resulting of the removal of the cells of R is G' = (D', oy, ..., al) where:

(1) D' =D\ R*;
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(2) Vd € D', dol, = da,;
(3) Vi, 0 <i<mn,VdeD,da,=d = dlaa;1)*a; where k is the smallest
integer such that d' € D'.

Notation 4 The n-G-map obtained after removal of a kernel K, = {R; }o<i<n
from an n-G-map G will be denoted either by G\ K,., or by G'\ R*.

As stated by the next proposition, the involution «,, remains unchanged after
the removal operation.

Proposition 11 Let G, G' be n-G-maps and K, = {R;}o<i<n be a removal
kernel as in Definition 21. Since R,, = 0, then do,, € D’ for all d € D'.

Proof: 1t is readily seen that da, € D’ for all d € D'. Indeed, suppose that
day, € C; € R; for some i € {0,...,n— 1}. In other words, da,, belongs to an
i-cell which is to be removed for ¢ < n:

Gi :<a0,...,di,...,an>(dan) ERi, 0<i1<n

Since ¢ < n, we deduce that do,«,, = d also belongs to the above orbit, thus
d belongs to the same i-cell of R;. This is a contradiction with the fact that
deD'.O

Remark 5 Let G, G’ be n-G-maps and K, = {R;}o<i<n be a removal kernel
as in Definition 21. If a dart d belongs to an i-cell € of R;, then do, € C.
Indeed, since there are no n-cell in K., i <n so that do; €<é;>(d) = C.

The equivalence between the definitions 20 and 21 is stated by Proposition 12.
The next two lemmas will be used in the proof of the proposition.

Lemma 14 Let G = (D, ay,...,ay) be an n-G-map and K, = {R;}o<i<n-1
be a removal kernel in G. Let i € {0,...,n—1} and d € Rfoy; \ R}. If k is the
smallest integer such that d' = d(c;a 1) a; € D\ R*, then k > 0 and for all
0 < h < k we have d(c;ai41) "o € RY.

Proof: Let D' = D\ R*. We first show that £ > 0. Indeed, d € Rfa; \ R}
means that d = bo; for some dart b € R; so that do; = boya; = b € R.
Therefore, da; ¢ D' so k cannot be equal to 0.

Then, we prove by recurrence on h, 0 < h < k that d(aiai+1>hai € R;,
assuming that it does not belong to D’ since h < k. The property has already
been shown to be true for A = 0.

Let us suppose that d” = d(o;a;41)"@; belongs to R;. Therefore, d” belongs

to a removed i-cell, say C; =< ag,..., 4, ..., > (d"). Because i + 1 # i
we deduce that d’a;y 1 = d(oir) oz = d(aoq)™ € € € R;. Now,
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consider d' = d(a;a;41)" oy and suppose it does not belong to D’ (h+1 < k).
There are two cases: either it belongs to R or it belongs to R}, j # i. In the
latter case we observe that d(c;o;i1)"™a; and d(o;aiy1)" belong to the
same j-cell. Therefore, d(a;a;11)" 'y € € € R; implies that d(a;a; )" €
€ which contradicts the fact that d(a;a1)"™! € €; € R; since cells to be
removed are disjoint (Definition 19). Hence, d(c;a;y1)" oy € R; and the
property is true for h+ 1. O

Lemma 15 Let G = (D, ), ..., ay) be ann-G-map and K, = {R; }o<i<n—1 be
a removal kernel in G. Let D' = D\R*, i € {0,...,n—1} and BV; = Rfa;\R}.
If d € D'\ BV; then doy; € D'.

Proof: We need to prove that do; ¢ R* when d ¢ R* and d ¢ BV;.

We first show that da; ¢ R;. Indeed, if we suppose that do; € Rf, then
dojo; = d € Ria;. Since d ¢ R*, in particular d ¢ R} and it follows that
d € BV; which is a contradiction, thus do; ¢ RY.

We also prove that da; ¢ Rj for all j, j # 4. Indeed, if doy € C; =<
QQ, -+ Oy - .., 0> (D) for b € R then since i # j, doya; = d also belongs to
C;. This is a contradiction with the fact that d € D’. Finally, we have do; ¢ R*
sodo; € D'. O

Proposition 12 Definitions 20 and 21 are equivalent.

Proof: We need to check that the involutions « coincide in both definitions
forallz, 0 <i<n.

For i = n, only case (2) in Definition 20 applies and D'\ BV,, = D’ since
BV, = (). This point thus defines ba/, = ba, for all b € D’ which is precisely
point (2) of Definition 21.

It remains the case when 0 < i < n. Let d € D', we distinguish two cases:

1) If d ¢ BV, then from Lemma 15 we have doy; € D’. Thus, k = 0 is the
smallest integer such that d’ € D' in point (3) of Definition 21 so that do) =
d' = do; is defined as in point (2) of Definition 20.

2) Next, we consider the case when d € BV;. We define

ki = min{h e N*
- mm{h € N*

d(OéiOéi_H)hO./i € BV;,}
d(OéiOéiJrl)hCYi € D,}

Since BV; C D’ (Corollary 3) we have ky < k.
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From Lemma 14, we know that for all 0 < h < ky we have d(o;a;,1) "o € Ry
In particular, d(a;c;1)* ta; € RY. Because applying a;;; cannot send a
dart from an i-cell to another i-cell we deduce that d(c;oii1)® ‘oz =
d(caiq)® € R:. Therefore, we have d(c;aiy1)®a; € Ria;. Now, because
d(oaiq)*2; € D' we thus have d(a;o;11)*a; € Ria; N D' and from Corol-
lary 3 we obtain that d(a;a;1)*a; € BV;. Tt follows that ky > k.

Eventually, k1 = ko so that point (3) of Definition 21 is equivalent to point
(3) of Definition 20 when d € BV;. O

Definition 22 (Cells removal in n-maps) Let M = (D,vo,...,Vn-1) be
an n-map and S, = {R; }o<i<n—1 a removal set in M. We define the (n — 1)-
tuple M\ S, = (D',7g,---,7,_1) obtained after removal of the cells of S, by:

e D'=D\ R%;

o Vi€ {0,....,n—2}, Vd € D, dy, = d(v7i31)*vi, where k is the smallest
integer such that d(vivii1)*v: € D

e Fori=n—1,Yd €D, dy, |, =dy""] where k is the smallest integer such
that dy"*1 € D',

We will prove in the sequel (Proposition 18) that the such defined (n—1)-tuple
M\ S, is actually an n-map if S, is a removal kernel (Definition 19), this by
establishing the link between removal in n-maps and removal in n-G-maps.
Note that until this result has been proved, in the notation M’ = M \ K, the
prime indicates that M’ is linked to a map but is not necessarily itself a map.

Proposition 13 Let M = (D, B, ..., 1) be an n-map and K, = {R; }o<i<n—1
a removal set in M. The (n — 1)-tuple obtained after removal of the cells of R
is M'= (D', 3,,...,0) defined by:

e D'=D\ R%;

o Vic{l,....n— 1}, Vd € D', dB = dBF(B:B34)" Bi, where k is the small-
est integer such that dBt ¢ R* and k' is the smallest integer such that
dpy (B8 B e D

e Fori=n,Vd €D, d3, =d33, where k is the smallest integer such that
dg, = dokB, € .

Proof:

e For ¢ = n, from Proposition 2 we have 3/, = ;. By Definition 22 we know
that for all d € D', dB, = d(y07;')*y0 where k is the smallest integer
such that d(yv; ') € D'. We may rewrite df, = dyo(7; '70)*. From
Proposition 2, 9 = B, and vy ' = B, therefore d3!, = df,3;". Since /3, is
an involution, d@, = dB/~t = dBF3 1. Again, 8, = 3, so that dB, = dB7(3,.

n
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e For i =n — 1, we have

dgl_, = dvyivh (Proposition 2)

= d(yom1) vy 1 (Definition 22)

= dBtBa(Bnfa-1)""!  (Proposition 2)

= dB{(Bu-150)" 81 ((BuBa—1)"! = Ba(Bu=15n)" B
(

= dBY (Bu-16,")"Bn-1 (Bn = 5, 1)

e Forie {l,...,n—2} and for all d € D" we have

dpl = dvi (Proposition 2)

"o (ViYir1) i (Definition 22)

= d(vom)

= d(v0m)"v0(ViYi+17070) i

= d(0m)" (Y0YiYi+170) V0

= dBF(B:8540)" B (7071 = frand for all ¢ € {1,...,n — 2},
Yovi = B and Yip170 = Bigh)

O

Definition 23 Let G be an n-G-map, S, = {R;}o<i<n be a removal set in G
and M = HV(G). We define the set HV (S,) = {R.}o<i<n as follows:

e Vic{0,...,n—1}, R ={<ayaq,...,qp0;,...,anc,_1>(d)|d € R}
o R ={<way,...,qp,—1>(d)|3C € R, d € C}

Lemma 16 Let G be an n-G-map, S, = {R; }o<i<n be a removal set in G and
M = HV(G). If HV(S,) = {R.}o<i<n, we have R* = R"*.

Proof: The fact that R* C R is immediate. Indeed, since d €< a,ap, . .., apa;, ...

(d), any dart of a cell of R; (for 0 <1i <n — 1) belongs to R.*.
On the other hand, for all d € D and all i € {0,...,n — 1} we have

<pQg, . .. 7057;042'7 cee 705n04n71>(d) C<apy, ... 7022'7 sy O, an>(d) (6)
From the definition of R}, if £ =< a,aq, ..., ancy, ..., apo,—1>(d) € R, there
exists an i-cell € in R; such that d € C. The the i-cell of G that contains d

s < py..oy Qe @1, > (d). From (6) we deduce that £ C €. Finally,
R* C R*. O
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Lemma 17 If G is an n-G-map and S, is a removal set in G, then the set
HV(S,) is a removal set in HV (G).

Proof: Let G = (D, a, ..., q,), according to Definition 5 HV (G) = (D, 6y =

anQo, - . - 7671—1 = anan—l)-

From the definition of HV(S,), it is immediate that R/, = (. Now, for all i €
{0,...,n—1} and all E' € R}, we have E =< a,q, ..., 0n0, ..., 0p0,—1>(d),
for some dart d € D. Thus, F is an i-cell in HV(G), from the very definition
of i-cells in maps. It follows that HV'(S,) is a removal set in HV(G). O

The next proposition is a first step to show that our definition of cells removal
in n-maps is consistent with the one of removal in n-G-maps.

It remains to be proved that the removal operation, when applied to an n-
map, produces a valid n-map as soon as the cells to be removed constitute a
removal kernel according to Definition 19. (A sonsequence of Propostion 14 is
that this is true when the map is the map of the hypervolumes of an n-G-map,
not for any map.) This will be the purpose of Proposition 18.

Proposition 14 If G is an n-G-map and K, is a removal kernel in G, we
have the following commutative diagram:

G LmeddRe - G\ K,

| A

M removal of HV (K) M\ HV(K,)

In particular, M \ K, is an n-map.

Proof of Proposition 14: Let G, G' be the n-G-maps and K, be the removal
kernel as in Definition 21. By Lemma 17, HV(K,) is a proper removal set
in HV(G). If M = HV(G), we want to prove that the n-map M| obtained
after removal of HV (K,) from M is precisely M) = HV(G'), the map of
hypervolumes of G' = G \ K.

Let us write K, = {R; }o<i<n and S, = HV(K,) = {R}}o<i<n.
Let D' =D\ R*. (By Lemma 16, D' = D\ R™). We have:

G=(D,ap,...,an);

G' = (D, «q,...,a) where o for 0 < i < n follows Definition 21;

M = HV(G) = (D, = anp, - - -, Yn_1 = Qpy_1), from Definition 5;

M) =HV(G") = (D~ =,y = oo, _4), from Definition 5;
M{ = (D',~{,...,v,_,) is the n-map obtained after removal of cells of R
from M (following Definition 22).
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We need to prove that for all i € {0,...,n — 1} and for all d € D', by = by!
which will eventually show that M| = M.

Let d € D' and i € {0,...,n— 1}.

If i < n—2, following Definition 22, dy, = d(viv; ;4 )"y where k is the smallest
integer such that d(%%jrll)k% ¢ R*. Since v; = o, for 0 < i < n—1 we
obtain:

dv) = d(omoi (i) ™) ana; = d(anagoigion ) oo

Since a? = 1p the latter equality becomes:

dv) = do, (g ) oy

On the other hand 7/ = o} a}. According to Definition 21 we have for any dart
be D, bal, = ba, and bal, = b’ = b(a;a;41)"; where r is the smallest integer
such that 0/ € D'. Eventually, we have dv) = d~;.

If i = n — 1 then dy, |, = dy**] where k is the smallest integer such that

dy*1 € D', Since y,_1 = ayo,—1 we have

d%,m—1 = d(OCnOZn—ﬂkJrl = dan(an_lan)kan_l

On the other hand 7/ _, = o/, _, where o/, _, is defined for all b € D" by
bat, | = = b(ay_100,)" a1 wWhere 7 is the smallest integer such that b’ € D'.
Again, since da/, = da,, (Definition 21) we have dv/!_; = day,(ap—10,) 1.
Eventually, dv! | = day,(an_10) g = dry), 1. O

Definition 24 (Associated removal set) If M = (D,7,...,Vn-1) is an
n-map and K, = {R;}i=o..n 15 a removal kernel in M. Let G = AG(M) =

(D, ap, ..., ay) be an_ associated n-G-map of M. We define the removal set
K, ={Ri}i=o,..n in G as follows:

Vie{0,...,n—1}, éi:{é‘eeRi}

where €, for any cell @ of M, is the associated cell of C in AG(M) (Defini-
tion 17).

As stated by Proposition 15, the removal set introduced in the previous defi-
nition is in fact a removal kernel.

Lemma 18 If C; and Cy are disjoint cells in M, then él and ég are disjoint
cells of AG(M).

Proof: Following Definition 17 and the notations of Definition 7:
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e If G; and G, are both i-cells with 7 < n we have él = @G, UCio and ég =
CoUCyo. Since €;NECy = () and o is one-to-one, it follows that C;o0NCyo = 0.
Now, for any cell € C D and Co C D’ with DND" = (). It follows that
€1 N Cyo = €y N Cyo = (). Eventually, we obtain C; N €y = (.

e If C; is an i-cell with ¢+ < n and C, is an n-cell we have C; = C; U Cy0 and
Cy = @G5 U Cyyo, the same arguments apply since yyo is one-to-one and
Cvyoo C D’ for all cells € of M.

e Same considerations apply if €; and Cy are both n-cell.

O

Proposition 15 The removal set K, in Definition 24 is a removal kernel in

AG(M).

Proof: Since K, is a removal kernel, by Proposition 8 all cells of K, have a
local degree 2 and by Proposition 9 they are regular. By Lemma 18, if two
cells of K, are disjoint then their associated cells (in7.) are disjoint too. Thus,
K, is a removal kernel in AG(M) according to Definition 19. O

Definition 25 (Associated removal kernel) Let M be an n-map and AG(M)
be an associated G-map of M. If K, is a removal kernel in M, the set K, (Defi-
nition 24) is called the removal kernel associated with K, in AG(M) (following
Proposition 15).

Definition 26 (Removal set restriction) If S, = {R;}o<i<n is a removal
set in an n-map M and D' is a connected component of M, we denote by S, p
the remowal set that contains all the cells of S, included in D'.

Remark 6 In Definition 26, since D' is a connected component, a cell of S,
is included in D' as soon as one of its darts belongs to D’. Indeed, any cell of
<0y -+, Yn—1>(d) belongs to the same connected component of M as d.

Proposition 16 If M is an n-map, K, is a removal set in M, and D' is a
connected component of M, we have the following diagram:

M removal of Ky, M \ Kr

| |

removal of Kr|p/

P MO Ko

Proof: Following Remark 3 and Definition 8, M’ = My and the sub-map of
M \ K, induced by D’ are both n-maps.

We now have to prove that the diagram commutes. Let us denote:
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M — (D, ’}/0, e 7’77171)7 M/ — (D/,’YO‘D/, N 77n71|7_)/);
M\ K. = (D", 75, -, V-1); and
M'\ Ko = (D", 70", - -5 1)

We show that for all i € {0,...,n — 1}, 7/ = ’yg’m,.

7

Let KT = {Rj}()gjgn—l and Ker/ = {R}}nggn_l. Furthermore, leti € {0, e,
1} and d € D

1

i =mn — 1) belongs to D"\ R™ iff it belongs to D \ R*.

In the definition of dv/” (Definition 22), d(%m,%ﬂfpl,)k%m/ (d’yﬁﬂm, when

Indeed, let us denote d' = d(’yi‘pryiH'_Dl,)k%m, (resp. d’yﬁﬂm,).
(deD\R*=d eD\R)Ifd € D'\ R*, in particular d' € D so we have
to show that d' ¢ R*. Now, if b is a dart of a cell of R (i.e. d € R*) such that
d € D', the fact that D’ is a connected component implies that the cell that
contains b is itself included in R (Remark 6), thus it also belongs to R’ from
the very definition of K, p.. Therefore, we have R*ND" C R* ND'. It follows
that d’ ¢ R implies d' ¢ R*.

(deD\R" =d eD\R*)Sinced ¢ D',d e D\ R*iff d € D'\ R* and
the implication is straightforward since R™* C R*.

It follows that dv;” = dv;’ when d € D', thus 7/, = 7;". Eventually, we obtain

7

that (M \ Kr)‘pl =M’ \ KT|D,' |

Notation 5 Let M be an n-map and K, be a removal kernel in M. If G =
AG(M) is an associated n-G-map of M, we may define a set K, as follows:

[N(r = {Rz

R; € K,,}

where

Vi€ {0,....n—1}, R ={C|€ec K.}

and C, for any cell @ of M, is the associated cell of C in AG(M) (Defini-
tion 17).

Proposition 17 If K, is a removal kernel in M and G = AG(M) is an
associated G-map of M, then the set K, (Notation 5) is a removal kernel in
AG(M).

Proof: By Proposition 9 and Proposition 8, if € is a regular i-cell with local
degree 2 in M, then C is a regular i-cell with local degree 2 in AG (M). Futher-
more, since the map o of Definition 7 in onto, it is readily seen that if C; and
Gy are two disjoint cells of M, then €; and G5 are disjoint cells of AG(M). Tt
follows that K, is a proper removel kernel in AG(M). O
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Lemma 19 Let M = (D,7o,...,%-1) be an n-map and S, = {R;}o<i<n be
a removal set in M. If S, is the associated removal set of S, in AG(M), we
have

S, = HV(S,)p

Proof:  Let us denote C~¥~ = AG(M) = (D = DUTD,ay,...,aqa,) following
Definition 7, and S, = {R;}o<i<» the associated removal set of S, in AG(M).

(C) Let € be an i-cell in R and b € €. From the very definition of the g’—cell~é
associated to € in AG(M) and from the definition of S, we have b € C € R;.

From Definition 23 there is a cell ¢’ in H V(gr) that contains b, being a par-
ticular orbit of b. As a cell of HV(AG(M)), since b € D, the cell €’ belongs to
HV(S,)p. Since M = HV(AG(M))p (Proposition 5) the i-cell €' is an i-cell
of M. From b € €N C" we then deduce that C = €’ so that C is an i-cell of
HV(ST‘) |D

(D) Let d € € € HV(S,)p. From Definition 23 there exists an i-cell € € R

and a dart d € @ such that € is a particular orbit of d in AG(M); in particular
dec.

Following the definition of S,, the cell € is associated to an i-cell € € R. Note
that, from Definition 17, GND = €. As d € € C D and d € € we obtain that
deC.

Finally, we have d € €N €. Since M = HV(AG(M));p (Proposition 5) the
i-cell € of HV (S, )ip is an i-cell of M. It follows that C' is an i-cell of R. O

Proposition 18 If M is an n-map and K, is a removal kernel in M, the
(n+ 1)-tuple M \ K, as defined by Definition 22 is a valid n-map.

Proof: With G = AG(M), we have the following diagram:

M M removal of K, M \ Kr

D D

~. removal of HV(K,)

AG HV(G) HV(G)\ HV(K,)
HV HV
é é removal of K, é \ f(r

Indeed:

e We have HV(G);p = M by Proposition 5. Hence the left part of the dia-
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gram. .

o If K, is a removal~kernel in M, then K, as defined in Definition 25 is a
removal kernel in G by Proposition 15. Thus the bottom-right part of the
diagram holds by Proposition 14.

e We have K, = HV(K,);p by Lemma 19. Thus, the upper-right part of the
diagram is valid by Proposition 16.

Eventually, if we follow the path

M A% G G\ R, Y BV (G K,) 2 M\ K,

we deduce that M\ K, is a valid n-map since G = AG(M) is an n-G-map (by
Proposition 4), therefore G \ K, is an n-G-map [3,4], hence HV (G \ K,) is an

n-map [8], and finally HV (G \ K, )p, that is M \ K,, is an n-map following
Remark 3 and Definition 8. O

3.2  Cells contraction

Definition 27 (Contraction kernel) Let G = (D, ay,...,ay) be an n-G-
map and K. = {Ci}to<i<n be sets of i-cells with Cy = (). Let C = U ,C;.
Furthermore, we suppose that the cells of C' are disjoint (i.e. Ve, € C, eNd =
) and that all of them are regular cells with dual local degree 2. The family
of sets K. is then called a contraction kernel in G.

We also denote:

Cir=JcadC*= |J Cf

ceC; 1€4{0,...,n}

A contraction kernel is defined in a similar way for an n-map M.

Remark 7 If G is an n-G-map, then from the very definition of cells (Defi-
nition 9) an i-cell in G is an (n —i)-cell in G.

Proposition 19 If G is an n-G-map, a contraction kernel K. in G s a re-
moval kernel in G.

Proof: 1t G = (D, a,...,a,) we may write G = (D, qy,...,q,) with a; =
a,—; for all ¢ € {0,...,n}. Thus, for any dart d € D and any i € {0,...,n}
we have C;(d) =<aq,...,Qs,...,0,>(d) =<y, ..., 0n_i, ..., 0 >(d).

It follows that the set of n-cells of K. in GG, which is empty, is precisely a set
of 0-cells in G.
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From Definitions 9, 12, and 6 it is also readily seen that an i-cell of degree 2
in G is an (n — i)-cell of dual degree 2 in G. O

The following definition is adapted from [5] where a definition combining re-
movals and contractions was given. The definition below is obtained by con-
sidering that no cell is to be removed.

Definition 28 (Cells contraction in n-G-maps [5]) LetG = (D, ap, ..., an)
be an n-G-map and K. = {C;}1<i<n a contraction kernel in G. Let BV; =
Cra; \ Cf, Vi, 0 < i < n. The set BV; is called the set of surviving darts
which are neighbors of an i-cell to be contracted. The n-G-map resulting of the
contraction of the cells of C is G' = (D', ay, ..., al,) defined by:

(1) D'=D\ C*;

(2) Vi, 0 <i<mn,Vbe D\ BV, bal, = ba;

(3) Vi, 0 <i<n,Vbe BV, bal, =V = b(oa;_1)*; where k is the smallest
integer such that b’ € BV;.

In this paper, we choose to define the contraction operation in G-maps as
a removal operation in the dual map (Definition 29 below). The equivalence
between this definition and the one (Definition 28) given by Grasset in [5] or
by Damiand and Lienhardt in [3] will be stated by Proposition 22.

Definition 29 (Cells contraction in n-G-maps) Let G = (D, ao, ..., qy)
be an n-G-map and K. = {C;}1<i<n be a contraction kernel. The n-G-map
resulting of the contraction of the cells of K, is G' = G \ K,.

Notation 6 The n-G-map obtained after the contraction of a kernel K. =
{Ci}o<i<n from an n-G-map G will be denoted either by G/K., or by G/C*.

Proposition 20 Let G, G’ be n-G-maps and K. = {C;}o<i<n be a contraction
kernel as in Definition 29. Since Co = (), then dag € D' for all d € D',

Proof: 1t is readily seen that dag € D’ for all d € D’. Indeed, suppose that
dag € C; € C; for some ¢ € {1,...,n}. In other words, dag belongs to an
1-cell which is to be removed for ¢ > 0. Since i > 0, the orbit that defines C;
obviously contains bay for all b € €; (Definition 9). Therefore, dagag = d also
belongs to ©;. This is a contradiction with the fact that d € D’. O

Proposition 21 Let G = (D, ay, ..., o) be ann-G-map and K. = {C;}1<i<n
be a contraction kernel. The n-G-map resulting of the contraction of the cells
of C according to Definition 29 is G' = (D', ay, ..., al) defined by:

(1) D'=D\ C;
(2) ¥d € D', doyy = da;
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(3) Vi, 0 <i<mn,Vd €D, da,=d = d(oya;1)*c; where k is the smallest
integer such that d' € D'.

Proof: Let G = (D, ay, ...,a,) with @; = a,,_; for 0 < i < n. From Proposi-
tion 19, K, is a removal kernel in G and we denote G” = G \ K. Thus, from
Definition 21 G" = (D", @y, ..., all) where:

e D"=D\C,

e VdeD da, =ay;

e Vi,0<i<n VdeTD, da! =d = (@a;,) @ where k is the smallest
integer such that d' € D”.

Now, let us denote G/K. = G' = (D', q,...,a,) following Definition 29.
Since G' = G” we have o), = @_, for 0 < i < n. Therefore, we obtain:

o Vd e D, doy = dat] = @y
e Vi,0<i<n,VdeD do=dal_,=d = d(@n_ian,(i,l))k@n_i where k is

the smallest integer such that d’' € D”.
or again, since o; = @,,_; for 0 <1 < n,

o Vd e D dajy, = ayp;
o Vi,0<i<n,VdeTD,dd =da’ , =d = dloa;_1)*a; where k is the

n—i

smallest integer such that d' € D”.

Which is precisely the definition of o} for 0 <+i < n in Proposition 21. O

Proposition 22 Definition 28 and 29 are equivalent.

Proof: Let G = (D, ay,...,a,) be an n-G-map and K, = {C;}1<;<, a con-
traction kernel in G.

We first express G/K. = G \ K., following Definition 29. Thus, let us write
G = (D,ay,...,a,) where a; = a,_; for 0 < i < n. From Proposition 19,
K. is a removal kernel in G which contains no n-cell of G. Then, let G =
G\ K. = (D,aj,...,a,) be the map obtained after removal of K. from G.

From Definition 20, @ is defined by:

(1) D' =D\ C*;

(2) Vi, 0 <i<n,¥be D\ BV, b, = ba;

(3) Vi, 0 <i < n, Vbe BV, ba, =V = b(a;a;1)"@; where k is the smallest
integer such that v’ € BYVj.

Now, let G = G/K, = G\ K, = G'. We denote G" = (D', af,...,a") with

n
of =al _, for all i € {0,...,n}. From the above definition of @, 0 < i < n

we obtain:

47



S. Fourey and L. Brun GREYC Technical Report - TR-2009-01

(1) D'=D\C

(2) Vi, 0 <i<n,¥be D\ BV, ba] = ba,_;;

(3) Vi, 0 < i < n, Vbe BV, baff =b" = b(@—i0n—i)+1)"@n_; where k is the
smallest integer such that b’ € BV;.

Using the relation @,_; = a; for 0 < ¢ < n, we deduce:

(1) D' =D\ C*;

(2) Vi, 0<i<n,¥be D\ BV, b = bay;

(3) Vi, 0 < i <n, Vb€ BV, ba! =b = b(a;a;_1)*a; where k is the smallest
integer such that v’ € BYVj.

This definition of o for 0 < ¢ < n is precisely the one given by Definition 28
for the n-G-map obtained after contraction of K. from G. O

Definition 30 (Cells contraction in n-maps) Let M = (D,7o,...,Vn-1)
be an n-map and let K. = {Ci}i<i<n be a contraction kernel. The n-map
resulting of the contraction of the cells of K., which we denote M /K, is the

n-map M \ K..

The following proposition provides the justification for the definition of cells
contraction in n-maps.

Proposition 23 We have the following commutative diagram:

G contraction of K.
et e

G' = G/K,

a a

M contraction of HV (K.) M = M/Kc

Proof: The diagram is a consequence of the one below, which comes from
Proposition 1, Proposition 14 and Definition 29.

G dual é removal of K. é \ Kc dual @ \ Kc _ 5/Kc _ G/Kc

HV HV HVJ HVJ{

removal of HV (K.) M\KC dual M\KC :ﬁ/KC = M/KC
(1) (2) (3)

Indeed, parts (1) and (3) of the above diagram were stated by Proposition 1.
Part (2) is precisely the diagram of Proposition 14. Eventually, the equalities

G\ K,=G/K.and M\ K. = M/K, follow Definition 29. O
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Proposition 24 Let M = (D, 7o, ...,Yn-1) be an n-map. Let K. = {C;}1<i<n
be a contraction kernel. The n-map obtained after contraction of the cells of
K., M' = (D', ~f,...,7_1) is defined by:

e D'=D\C;
o Vd €D, dvy, = dv*_,v where k is the smallest integer such that dyt_,~y €
D';

eVic{l,....n—1},Yd €D, dvy, = dv*_,(vv )" vi, where k is the small-
est integer such that dy*_, € D' and k' is the smallest integer such that
dyy_(vivisy)F v € D

Proof: The n-map obtained after the contraction of the cells in K. in M is
M =M\ K..

Let Mi (D, =% 71 = % Vnets- > Tno1 = Yo ‘71) (Definition 6) and let
M" = M\ K., if we denote M" = (D', ~(,...,7/_,), according to Definition 22
and the above notations we have:

e D'=D\ R
o Vie{0,....,n—2}Vd € D, dv! = d(777;:1)"7;, where k is the smallest
integer such that d(77::,)"¥, € D'

e Fori=n—1,¥d €D, dy'_, = dy:"] where k is the smallest integer such
that dy"T} € D

Since M’ = M”, by Definition 6 we have

n_n

M = (D% =77 = %Y1 >Vn-1 = Y071)

Thus,

e Fori =0, dy, = dyg = d(¥e7: ) Y0 = d(v nti70) 0 ' = dyg 'yt Since
74 is an involution, we have

dvh = dyy ™t = d(v k) = dyk i (7)
e Fori=1,

"N

dvy = dyvi_y = dvk_ vt (from (7))
= dvF_17v0(70 )M
= dvE_ 1070 (e )

=dv'_ (m )
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e Forie{2,...,n—1},

"M —1

dv; = AV Vn—i = d%lf—ﬂoﬁn—ﬁ(n_i)ﬂ)hﬁn_i
= dvf_ 10 (vo i) e
= dyi_10%0 (i) v
= d’Yﬁ—l(%%'_—11)h%

O

Proposition 25 Let M = (D, f4,...,0,) be an n-map. Let K. = {C;}1<i<n
be a contraction kernel. The n-map obtained after contraction of the cells of
K., M'= (D', j3,...,0.) is equivalently defined by:

e D'=D\C;

o Fori=1,Yd €D, dB3, = dBi, where k is the smallest integer such that
dpytt e D'

o Vic{2,....,n},Vd €D, dB = d(B:B3) 3, where k is the smallest integer
such that d(3;5;)*p; € D'.

Proof: 'We use the definition of the contraction in M as a removal of K. in
the dual map M. Following Proposition 2, we will denote

M=M= (D, " 7o,/ "E Tur1) (8)
From Definition 30, M’ = M/K.= M \ K. Let M]{ = M\K. = (D, 7y, -, 7_1)-
From Definition 22, the involutions 7;" are defined by

o dy; = d(77;41)"; for i € {0,...,n — 2}, and
o dy, ,=dyTlifi=n—1.

With the notations of Proposition 2 we obtain:

° dﬂzn_i) = d(ﬁ(n,i)ﬁ@l_i)_l)kﬁ(n,i) fori € {0,...,n — 2}, and
o dB, =dB¥ttifi = 1.

where (n —i) € {2,...,n} when i € {0,...,n—2}. O
4 Conclusion and perspectives

We have defined cells removal and contraction in combinatorial maps, based
on the previous work by Damiand and Lienhardt for generalized maps.

20



S. Fourey and L. Brun GREYC Technical Report - TR-2009-01

A logical sequel of this paper will be the definition of n-dimensional combi-
natorial pyramids and the related notions, the way Brun and Kropatch [1]
did in the two-dimensional case and following the works of Grasset [5] about
pyramids of generalized maps.
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