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Abstract

Geometric Constraint and Cutting planes have been successfully used to solve the 0–1 multidimensional knapsack 
problem. Our algorithm combines Linear Programming with an efficient tabu search. It gives best results when com-

pared with other algorithms on benchmarks issued from the OR-LIBIBRARYRARY. Embedding this algorithm in a variables 
fixing heuristic still improves our previous results. Furthermore difficult sub problems with about 100 variables issued 
from the 500 original ones could be generated. These small sub problems are always very hard to solve.

Keywords: Variables fixing; Heuristics; Linear programming; Tabu search
1. Introduction

The 0–1 multidimensional knapsack problem

(01MDK) is a NP-hard problem which arises in
several practical problems such as the capital

budgeting problem, cargo loading [8,16], cutting

stock problem, and computing processors alloca-

tion in huge distributed systems. It can be stated as

follows:

01MDK
maximize c � x subject to

A � x6 b and x 2 f0; 1gn;

�

where c 2 N�n;A 2 Nm�n and b 2 Nm. The binary

components xj of x are decision variables: xj ¼ 1 if
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the item j is selected, 0 otherwise. cj is the profit

associated with selecting item j. Aij is the ‘‘cost’’ (in

terms of the ith resource) of selecting item j. bi is
the budget available for resource i.

A specific case of the 01MDK problem is the

classical knapsack problem (m ¼ 1), which has

been given much attention in the literature [14]

though it is not, in fact, as difficult as 01MDK:

more precisely, it can be solved in a pseudo-poly-

nomial time. Much research has been conducted

around the 01MDK problem. Exact solving of the

problem is usually considered in a branch and
bound framework, and some schemes were de-

signed to provide good lower and upper bounds to

solve the problem optimally. Shih [16] found an

upper bound by solving m single constrained

knapsack problems, and was able to solve to

optimality randomly generated instances with up
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to five knapsack constraints and ninety variables.
Gavish and Pirkul [9] improved significantly these

results in a branch and bound framework by using

different relaxation techniques and were able to

solve instances up to 5 constraints and 200 vari-

ables.

Due to the intrinsic difficulty (NP-hardness) of

the 01MDK problem, which leads to intractable

computation time for larger instances, several
heuristics have been used to solve it, including

simulated annealing [5], tabu search [11,12], and

genetic algorithms [2]. Large instances (n ¼ 500,

m ¼ 30 from OR-LIBRARYIBRARY) have thus been tack-

led successfully (i.e. very good lower bounds were

obtained). The best known results within these

benchmarks were detailed in [17–19]. They were

resulting from an hybrid algorithm which used
global information (the fractional solution to the

linear relaxation of the problem) to guide a tabu

search phase. The significance of the cut
Pn

1 xj ¼ k
with k integer was also emphasized. Starting from

this point, we try to intensify the local search

around best promising zones in order to produce

better lower bounds. To do so, we have combined

this previous algorithm with a problem reduction
technique. This requires to select and fix some

variables by using ‘‘good’’ points in the search

space. Our heuristic is efficient and is able to im-

prove again our previous results [18,19] on the

OR-LIBRARYIBRARY benchmarks.

In Section 2, we remind main principles on

which our heuristic is based. Section 3 gives a

thorough justification of the rule we used to
choose the order in which hyperplanes

Pn
1 xj ¼ k

are examined. In Section 4, we present the vari-

ables fixing heuristic technique called limited

branch and bound. In Section 5, we present exper-

imental results on large instances (n ¼ 500 and

m ¼ 30). Then, we conclude by highlighting one

weakness about our algorithm, and consider fur-

ther work to be conducted.
2. Previous works reminding

The main idea of our previous algorithm [17–

19] is to search around a fractional optimal solu-

tion with additional constraints. Starting from the
obviousness that each 01MDK solution veri-
fies the following property: 1 � x ¼

Pn
1 xj ¼ k 2 N

where k is an integer. Adding this constraint to the

fractional relaxed 01MDK, we obtain a series of

problems such as

01MDKðkÞ
maximize c � x s:t:
A � x6 b and x 2 ½0� 1�n and

1 � x ¼ k 2 N:

8<
:

Several authors used a key parameter called the

‘‘number of items’’, for solving the simple knap-

sack problem [14], and for bounding the number

of items at optima [6], but not directly for solving

the 01MDK as we intend to do it. The bounding

values of k: kmin and kmax, are computed by using

again two other linear problems: kmin is the nearest
integer greater or equal to the optimal value of the

linear program:

minimize
P

i xi s:t:
A � x6 b and c � xP ðz� þ 1Þ and x 2 ½0� 1�n

�

and kmax is the nearest integer lesser or equal to the

optimal value of the following linear program:

maximize
P

i xi s:t:
A � x6 b and c � xP ðz� þ 1Þ and x 2 ½0� 1�n:

�

The 1þ kmax � kmin fractional optima �x½k� are con-

sidered as promising points around which a tabu

search is carried out. Then, to take into account
the information provided by these optimal points,

but also to reduce the search space which is

explored by our tabu algorithm, we have to con-

sider an additional geometric constraint to the

neighborhood rule: local search is limited to a

sphere of fixed radius around the point �x½k� which is

the optimal solution of the fractional relaxed

01MDK(k). In summary, each x binary configu-
ration reached by our local search process verifies

the two following constraints:

1: 1 � x ¼ k;

2: jx;�x½k�j ¼
Xn

1

jxj � �x½k�jj6 dmax:

Hence a move consists in adding 1 item which

was not into the knapsack and, simultaneously,

dropping 1 item which was already into the



knapscak. Such a move concerns 2 different items
also called attributes.

An important detail of our tabu search algo-

rithm is the tabu list implementation. Widely in-

spired by the works of Glover [10] and Dammeyer

and Voß [4], we have implemented a dynamic tabu

list management system by using a reverse elimi-

nation method. It consists in storing the attributes

(pair of components) of all completed moves in a
running list. Stating if a move is forbidden or not

needs to trace back the running list. Doing so, one

builds another list, the so-called residual cancel-

lation sequence RCS in which attributes are either

added, if they are not yet in this RCS, or dropped

otherwise. The condition RCS ¼ ; corresponds to

a move leading to an already visited configuration.

For more details on this method see [4,10,17–19].
The important characteristics, that must be

underlined here for further understanding, is the

one related to the size of the running list, for our 2-

flips move; it is twice the maximum number of

iterations allowed to the search process, and, each

time the tabu search improves strictly the best

found configuration, the running list is cleared.
3. Ordering the exploration of the hyperplanes

There is a drawback to examine the hyperplanes

from kmin to kmax like it is pointed out in Section 2.

Let x� be the best local optimum found so far and

�z½k� be the value of the solution of 01MDK(k) (i.e.
�z½k� ¼ c � �x½k�). If it occurs that �z½k� 6 c � x� for x�

binary, 1 � x� ¼ k0 > k, then exploring the hyper-

planes 1 � x ¼ k for k < k0 is useless and a waste of

CPUCPU time (Fig. 1).

In this section we present a better ordering built

on the fact that the function �zðlÞ ¼ c � �xl (opti-
z̄[k]

k

Fig. 1. ‘‘Convex’’ shape of �z½k�.
mum of 01MDK ðlÞ where l 2 R) is convex. This
property is directly proved by applying the theo-

rem 10.2 of the book Linear Programming [3]

to this problem. Hence the curve drawn by the

optima values �z½k� of 01MDK(k) for successive

integer values k; k þ 1; k þ 2; . . . has the following

shape (Fig. 1).

A more realistic curve is given in Section 5.2

(Fig. 2).
From the convexity of the function �zðlÞ, we can

deduce that the rounding value ½1 � �x� ¼ k0 (where

c � �x ¼ max c � x s.t. A � x6 b, x 2 ½0� 1�n) is the

abscissa of one of the 2 highest bars. Starting from

k0 and scanning iteratively on the right and the left

of this value (k0 � 1; k0 þ 1; k0 � 2; k0 þ 2; . . .), our
algorithm explores the hyperplanes 1 � x ¼ k. Then,
the process stops as soon as it meets the condition
�z½k� 6 c � x� where x� is the best integer configuration
produced by the tabu search optimisation step.

This ensures that we only explore the hyperplanes

that are comprised between kmin and kmax (defined

in Section 2).
4. Variables fixing

When we studied families of ‘‘good’’ solutions

(obtained by any kind of means) to a given in-

stance of the 01MDK problem, we were stricken

to notice that many variables were fixed either to 0

or to 1 in all solutions. See also [7,15] for more

recent works. Variable fixing heuristic using the

notion of strongly determined variables is also
described in [10].

That led us to the following scheme: for a given

instance of the problem, generate several ‘‘good’’

solutions (i.e. near enough to the best known lower

bound). For each variable xj, fix it to zero if it is set

to zero in all ‘‘good’’ solutions, fix it to 1 if it is set

to 1 in all ‘‘good’’ solutions, let it free otherwise. It

yields a reduced (i.e. with less variables) problem,
which can then be tackled more efficiently by exact

or heuristic methods. In a first approach, it seemed

fairly natural to use a population based heuristic

[2] to generate the set of ‘‘good’’ solutions and we

chose the cooperative simulated annealing (COSA)

heuristic (see [20] for a detailed description of

the algorithm). Though our experimentation with



COSA was not exhaustive, preliminary results
were deceiving: the populations were expensive

(computationally speaking) to generate, and after

applying tabu search as in [17–19] to the reduced

problem, we didn’t get any improvement on the

lower bound obtained before.

When we stopped thinking of those results, it

seemed that, though the basic idea (fixing variables

using the characteristics of a set of ‘‘good’’ solu-
tions) was sound, we had lost sight of the guide-

lines of our previous work:

(1) Working on 01MDK(k) instances for kmin 6

k6 kmax;

(2) Using the information contained in the frac-

tional optimum of these problems.

Bearing that in mind, we devise the following

algorithm:

(1) let us start from the problem 01MDKðkÞ;
(2) let �x½k� and �z½k� ¼ c � �x½k� be the solution to this

problem. If �x½k� is integer (i.e. �x½k�j ¼ 0 or 1

for 16 j6 n), the problem is solved. Other-

wise, let

Fk ¼ fj; 16 j6 n and 0 < �x½k�j < 1g;
(3) let j0 be the most fractional element of Fk

(which minimizes j0:5� �x½k�jj);
(4) we then consider recursively the two prob-

lems:

maximize c � x
A � x6 b
1 � x ¼ k
xj0 ¼ 1

8>><
>>:

and

maximize c � x
A � x6 b;
1 � x ¼ k;
xj0 ¼ 0:

8>><
>>:

In other words, we begin seeing what a branch

and bound tree looks like, branching on the most
fractional variable, as it is often recommended. By

applying recursively the same process d times to

those two new problems, we are able to generate

2dþ1 problems, obtained by fixing conveniently

chosen variables of the original problem either to

zero or to one. We call this procedure limited

branch and bound.

We then fix the variables of the original
01MDK(k) problem according to the following

rule:
• let xj be fixed to zero (resp. one) if and only if it

is equal to zero (resp. one) in all the fractional

optima of the problems generated above;

• let xj be free otherwise.

In short we have used many fractional optima

as ‘‘good’’ points that share interesting informa-

tion for the variables fixing heuristic. We will show
in the following section that these points are more

promising than the local optima given by another

heuristic (like those evoked just above).

In our experimental study, we use a slight var-

iation of the above limited branch and bound

algorithm: at each level, instead of selecting the

most fractional variable, we can select the w6 jFkj
most fractional variables. With only one simplex

calculation, we are thus able to generate 2w dif-

ferent elements. This leads to great savings in

terms of simplex computations. Practically we

have used w ¼ 4 for the width parameter value of

our limited branch and bound and d ¼ 2 for the

depth parameter. Hence we obtained 256 frac-

tional points for each 01MDK(k).
We used 256 points to determine the variables

to be fixed. Obviously, using more points would

lessen the risk of fixing a variable at a wrong value

but the size of the induced sub problem (and thus

the computational cost) would be greater.
5. Computational results

The experimental phase of this study concerns

the 90 largest 01MDK benchmarks of the OR-

LIBRARYIBRARY. The choice of these problems was

driven more by the concern of comparing our

computational results to results already published,

than by their effective hardness. Indeed these in-

stances are available at http://mscmga.ms.ic.ac.uk

and results have been published by Chu and Be-
asley [2]. They were generated using the procedure

proposed by Fr�eville and Plateau [7]. This one was

intended to create more difficult instances. People

interested in such techniques may refer to [13]

about a study of the effects of coefficient correla-

tion structure. First part of this section details the

main results obtained when exploring 5 hyper-

planes for each problem. Then, in a second part,

http://mscmga.ms.ic.ac.uk


we give some information about what is happening
when exploring more hyperplanes. Eventually we

give a synthesis on the quality we can get and the

cost (in time) of this approach.

5.1. Main testing bench

The testing programme is the following:

(1) solve with the simplex the problem

max cx s � t � Ax6 b, 06 xi 6 1 fractional: that

gives us �x and then k0 ¼ ½
Pn

1 �xi� (the rounded

value of the fractional optimum components

sum);

(2) for each of the 5 integer values k0 � 26 k6
k0 þ 2 solve the problem max cx s.t. Ax6 b,Pn

1 xi ¼ k, 06 xi 6 1 fractional: that gives us
5 root node points �x½k� for the limited branch

and bound algorithm;

(3) from each of these 5 points compute 256 frac-

tional optima by separating on the w ¼ 4 most

fractional basis variables twice from the root

node �x½k�. That needs 1+16+256¼ 273 simplex

runs per point;

(4) fix the common 0 and 1 variables of each of the
5 · 256 leave points;

(5) use tabu search to find a good solution for each

of these 5 hyperplanes. In that purpose, 30 val-

ues of the radius dmax are tried (dmax ¼ mþi
2
,

i 2 ½0 � �29�). This radius represents the geomet-

ric constraint that controls the exploration of

the search space around �x½k�. For each of these

radius values we use 30 random seeds
(seed 2 ½0 � �29�) of the standard srand( ) C

function. At last, the running list size (used for

the dynamic tabu list management) is fixed to

100,000. This means that the maximum num-

ber of moves without improvement is 50,000.

In short each benchmark of the OR-LIBRARYIBRARY

needs 4500 runs of tabu search during an average
of 100,000 moves. Note that the fractional point

around which the search is completed corresponds

to the projection of �x½k� onto the sub space defined

by the remaining (not fixed) variables. Heuristic

solving (tabu search), linear programming (sim-

plex) and enumeration (limited branch and bound)

procedures have been coded in C programming
language. Our algorithm has been executed on a
P4 2 GHz computer. The three following tables

give the detailed results obtained by our approach.

The description of the data, per column is:

• Pb: row number r of the instance. The whole

name of the problem is cbm � n r where m is

the number of constraints and n the number

of items. Each set of 30 instances is divided into
3 series with tightness ratio a ¼ bi=

Pn
j¼1 Aij ¼

1=4 for 06 r6 9, a ¼ 1=2 for 106 r6 19 and

a ¼ 3=4 for 206 r6 29;

• �z: the optimum value of the integrity relaxed

version of the original 01MDK;

• GACB: results obtained by Chu and Beasley [2]

with their Genetic Algorithm;

• LP+TS: results obtained by the first version of
our algorithm [17,18];

• Fixþ LPþ TS: new results;

• z�: best integral objective value found by each of

the three methods;

• k�: number of items in the best solution found

by our algorithms;

• dist�: distance
Pn

1 jx�i � �x½k��ij between the best

solution x� and the fractional optimum �x½k�� of
01MDK in the hyperplane

Pn
1 xi ¼ k;

• t�: time in seconds to find the best solution for

Fixþ LPþ TS;

• rk: exploring order of the hyperplane 1 � x ¼ k�

(as defined in Section 3);

• #0: number of variables fixed at the value 0;

• #1: number of variables fixed at the value 1;

• j�: number of items to be chosen in the sub
problem divided by the total number of

remaining variables: j� ¼ ðk� � ð#1ÞÞ=ð500�
ð#0þ #1ÞÞ.

Bold face text highlights the first best values

found by one of these three compared methods.

We begin by the problems that have most

constraints. They have the heaviest cost for the
neighborhood evaluation of the tabu search. Fix-

ing variables is considered as a way to decrease the

computational complexity and so to have more

time to find better solutions. Moreover, for these

30 instances, given the upper bounds and the best

known lower bounds, it is not possible to fix

variables using the reduced costs (as shown in [1]



Table 1

New results on cb30.500 problems

Pb. GACB LP+TS Fixþ LPþ TS

�z z� z� k� dist� z� t� k� rk dist� #0 #1 j�

0 116,619.0 115,868 115,991 130 18.61 116,056 15,771 130 0 18.21 288 47 0.50

1 115,370.1 114,667 114,810 128 17.56 114,810 120,414 128 1 17.56 278 46 0.47

2 117,342.5 116,661 116,683 128 17.72 116,712 121,769 128 1 16.02 270 41 0.46

3 115,946.4 115,237 115,301 128 19.38 115329 85,670 127 1 19.02 274 50 0.44

4 117,079.3 116,353 116,435 127 22.04 116525 603 129 0 17.67 304 64 0.49

5 116,377.6 115,604 115,694 131 17.54 115,741 616 131 0 17.59 277 45 0.48

6 114,689.7 113,952 114,003 128 23.28 114,181 110,873 128 1 16.14 280 48 0.47

7 114,847.8 114,199 114,213 129 21.43 114,348 282,523 128 2 19.00 290 59 0.46

8 115,902.6 115,247 115,288 127 18.78 115,419 112,849 128 1 15.18 281 48 0.47

9 117,668.8 116,947 117,055 129 18.21 117,116 121,248 128 1 20.63 281 55 0.45

10 218,601.5 217,995 218,068 251 13.03 218,104 96,952 251 0 18.27 161 162 0.50

11 215,074.7 214,534 214,562 251 18.74 214,648 167,224 251 1 22.11 160 166 0.49

12 216,401.1 215,854 215,903 250 19.48 215,978 178,701 250 1 22.78 164 172 0.48

13 218,350.5 217,836 217,910 251 14.14 217,910 308,469 251 3 14.14 161 167 0.49

14 216,094.5 215,566 215,596 251 15.22 215,689 144,793 251 1 20.65 164 169 0.49

15 216,327.4 215,762 215,842 253 17.64 215,890 117,102 253 1 17.76 172 188 0.46

16 216,376.3 215,772 215,838 252 13.04 215,907 1637 253 0 18.78 141 159 0.47

17 217,014.1 216,336 216,419 253 13.90 216,542 4775 254 0 19.88 160 162 0.52

18 217,839.2 217,290 217,305 253 19.72 217340 4742 253 0 17.13 162 166 0.51

19 215,218.5 214,624 214,671 252 17.49 214739 109,785 252 1 17.86 163 167 0.50

20 302,038.8 301,627 301,643 375 11.77 301,675 143,430 375 1 16.21 45 301 0.48

21 300,455.0 299,985 300,055 374 17.36 300,055 218,994 374 2 17.36 53 289 0.54

22 305,501.2 304,995 305,028 375 14.25 305,087 118,929 375 1 16.70 44 292 0.51

23 302,456.2 301,935 302,004 375 16.38 302,032 156,377 375 1 21.43 48 293 0.52

24 304,901.4 304,404 304,411 376 13.69 304,462 238,811 375 2 18.66 44 279 0.54

25 297,409.4 296,894 296,961 374 12.48 297,012 12,191 374 0 15.91 48 288 0.52

26 303,765.9 303,233 303,328 373 15.35 303,364 213,316 373 2 15.78 55 290 0.54

27 307,402.5 306,944 306,999 376 17.07 307,007 45,781 377 0 17.08 38 289 0.51

28 303,605.9 303,057 303,080 374 12.94 303,199 235,005 375 2 21.05 52 290 0.54

29 301,020.6 300,460 300,532 376 14.49 300,572 82,949 376 0 23.35 50 284 0.55
for instance). Most of our previous results have
been improved. Including the whole optimization

process, it takes an average of 100 hours for 4500

runs per benchmark i.e. about 80 seconds by run.

Note that, as we will illustrate it in Section 5.2,

roughly the same results would be obtained with

only 10 random seeds rather than 30: that would

divide computing time by 3. The variable fixing

process spends an average of 20 seconds per
benchmark. The size of the remaining sub prob-

lems is n ’ 167 variables. Although we did not

investigate it exhaustively, we could not solve these

sub problems with CPLEX7.0 running on a

SUNUNBLADELADE1000 with 2 GBytes memory.

For these 30 problems with 10 constraints, the

results are a little less satisfactory. Indeed four
results are not improved (compared to three in the
previous table), and the result for CBCB10.500_14 is

worse. There is one wrongly fixed variable

regarding the previous solution x� obtained with-

out fixing variables. In that case tabu search is not

able to find this solution. Of course this is not a

sufficient explanation of this bad result since the

tabu search procedure is not a complete one.

Nevertheless the majority of results are improved.
The whole optimization process takes an average

of 70 hours per benchmark. The remaining sub

problems have a size of n ’ 95 variables. Again,

we have not been able to solve these small sub

problems to optimality.

For these last 5 constraint problems we have

still obtained less improvement. We have also four



Table 2

New results on cb10.500 problems

Pb. GACB LP+TS Fixþ LPþ TS

�z z� z� k� dist� z� t� k� rk dist� #0 #1 j�

0 118,019.5 117,726 117,779 134 12.96 117,811 21,845 135 0 12.77 317 98 0.44

1 119,437.3 119,139 119,190 134 11.04 119,232 7163 135 0 13.01 318 88 0.50

2 119,405.7 119,159 119,194 135 11.48 119,215 19205 136 0 13.32 317 97 0.45

3 119,066.1 118,802 118,813 137 8.49 118,813 288 137 0 8.49 305 90 0.45

4 116,698.0 116,434 116,462 134 4.59 116,509 58,353 136 1 11.70 322 94 0.50

5 119,710.0 119,454 119,504 137 11.19 119,504 18,720 137 0 11.19 316 90 0.50

6 120,033.3 119,749 119,782 139 11.89 119,827 82,719 138 1 14.42 299 94 0.41

7 118,545.7 118,288 118,307 135 10.26 118,329 98,291 135 1 13.93 316 83 0.51

8 118,001.6 117,779 117,781 136 12.42 117,815 12,558 136 0 10.67 314 84 0.51

9 119,440.6 119,125 119,186 138 8.40 119,231 30,501 138 0 14.59 319 88 0.54

10 217,552.9 217,318 217,343 256 9.01 217,377 64,165 256 1 13.41 193 216 0.44

11 219,255.2 219,022 219,036 259 8.08 219,077 750 259 0 12.06 197 216 0.49

12 217,987.8 217,772 217,797 256 12.07 217,806 99,480 256 1 15.67 197 217 0.45

13 217,040.7 216,802 216,836 258 8.34 216,868 476 259 0 10.34 200 215 0.52

14 214,010.3 213,809 213,859 256 7.83 213,850 9252 257 0 11.49 192 212 0.47

15 215,261.3 215,013 215,034 257 8.88 215,086 4953 257 0 10.76 193 203 0.52

16 218,109.2 217,896 217,903 261 9.89 217,940 41,803 260 0 14.53 190 213 0.48

17 220,175.6 219,949 219,965 256 9.79 219,984 646 257 0 11.11 200 208 0.53

18 214,561.0 214,332 214,341 258 8.75 214,375 6978 257 0 14.40 195 214 0.47

19 221,083.6 22,0833 22,0865 255 9.83 220,899 34,838 254 0 14.76 194 207 0.47

20 304,555.0 304,344 304,351 378 9.60 304,387 830 379 0 12.69 71 334 0.47

21 302,553.0 302,332 302,333 380 8.94 302,379 59,226 380 1 14.01 69 324 0.52

22 302,581.5 302,354 302,408 379 7.80 302,416 3235 380 0 12.29 78 333 0.53

23 300,956.7 300,743 300,757 378 10.79 300,757 569 379 0 10.49 67 331 0.47

24 304,584.7 304,344 304,344 381 7.50 304,374 17,251 380 0 12.33 75 332 0.52

25 301,952.5 301,730 301,754 375 7.73 301,836 67,073 375 1 13.27 81 333 0.49

26 305,139.7 304,949 304,949 378 10.83 304,952 27,970 378 0 15.24 72 326 0.51

27 296,636.6 296,437 296,441 379 10.01 296,478 22,862 380 0 13.38 61 334 0.44

28 301,547.6 301,313 301,331 379 12.39 301,359 11,508 379 0 12.36 74 332 0.50

29 307,250.0 307,014 307,078 378 13.90 307,089 1037 378 0 14.87 82 328 0.56
bad results on the instances CBCB5.500_5, 10, 14 and
15. Once again, we have checked with the solutions

coming from the LP+TS algorithm and have

found one mistakenly fixed variable for each of

these four problems. However, the average

improvement value is positive. Each problem re-

quired about 50 hours CPUCPU but the solutions were

found in an average time of 8.5 hours. Remaining

sub problems have an average size of n ¼ 65
variables. Using CPLEX7.0, we find optimal

integer solutions for most of them. That shows,

firstly, that our tabu search algorithm has also

produced the best possible results, and secondly,

that there are mistakenly fixed variables for the

problems 5, 10, 14 and 15. Tables 1–3 show that

the best solutions found by our algorithm are al-

most always (89 times out of 90) located in the first
three hyperplanes (see column rk). A more detailed
study on this topic is conducted in the next sub

section.

5.2. Exploring more hyperplanes

In this section, we give the distribution of the

best values z�½k� found when exploring nine hyper-

planes rather than five. Table 4 details also the z�½k�
obtained in each hyperplane 1 � x ¼ k, considering
separately the intervals ½0 � � � 9�, ½10 � � � 19� and

½20 � � � 29� of the random seed values, in order to

highlight the behavior of the algorithm regarding

randomness. This experimentation is carried out

over nine problems.

ub½k� represents the upper bound computed from

the 256 fractional optima of the hyperplane



Table 3

New results on cb5.500 problems

Pb. GACB LP+TS Fixþ LPþ TS

�z z� z� k� dist� z� t� k� rk dist� #0 #1 j�

0 120,234.9 120,130 120,134 146 9.10 120,148 89,256 147 2 7.90 322 119 0.47

1 117,955.2 117,837 117,864 148 8.21 117,879 7218 148 0 10.29 317 114 0.49

2 121,213.3 121,109 121,112 145 9.58 121,131 18,336 144 0 10.63 327 114 0.51

3 120,888.5 120,798 120,804 149 10.50 120,804 566 149 0 10.50 310 122 0.40

4 122,426.5 122,319 122,319 147 6.90 122,319 117 147 0 6.90 314 112 0.47

5 122,126.0 122,007 122,024 153 7.14 122,011 221,029 151 3 12.63 313 121 0.45

6 119,218.8 119,113 119,127 145 10.71 119,127 598 145 0 10.71 320 114 0.47

7 120,643.1 120,568 120,568 150 7.47 120,568 146 150 0 7.47 319 122 0.47

8 121,663.3 121,575 121,575 148 9.68 121,575 56,360 148 1 9.68 307 121 0.38

9 120,800.7 120,699 120,707 151 11.63 120,717 81,062 151 2 11.74 312 119 0.46

10 218,500.1 218,422 218,428 267 9.26 218,426 25 267 0 5.80 202 239 0.47

11 221,272.4 221,191 221,191 265 6.98 221,202 36,742 265 0 11.71 202 233 0.49

12 217,615.8 217,534 217,534 264 6.04 217,542 30,597 264 0 9.22 202 237 0.44

13 223,653.2 223,558 223,558 264 7.97 223,560 47,175 263 1 12.00 202 233 0.46

14 219,067.5 218,962 218,966 267 8.56 218,965 305 267 0 8.26 196 232 0.49

15 220,617.0 220,514 220,530 262 7.76 220,527 617 261 0 11.46 211 225 0.56

16 220,076.6 219,987 219,989 266 7.45 219,989 164 266 0 7.45 201 235 0.48

17 218,282.7 218,194 218,194 266 8.00 218,215 40,799 265 1 7.99 205 235 0.50

18 217,059.9 216,976 216,976 262 7.26 216,976 138 262 0 7.26 207 223 0.56

19 219,812.8 219,693 219,704 267 7.23 219,719 42,149 267 1 9.23 196 237 0.45

20 295,896.4 295,828 295,828 383 7.17 295,828 45,199 383 1 7.17 78 346 0.49

21 308,157.6 308,077 308,083 383 6.39 308,086 253 384 0 7.98 85 357 0.47

22 299,878.6 299,796 299,796 385 8.33 299,796 299 385 0 8.33 82 348 0.53

23 306,554.1 306,476 306,478 385 11.26 306,480 344 384 0 8.66 85 355 0.48

24 300,412.6 300,342 300,342 385 8.43 300,342 39,613 385 1 8.43 86 357 0.49

25 302,661.8 302,560 302,561 384 7.29 302,571 457 385 0 9.14 81 353 0.48

26 301,400.3 301,322 301,329 385 9.93 301,339 542 385 0 10.65 85 353 0.52

27 306,517.3 306,430 306,454 383 8.63 306,454 370 383 0 8.63 75 350 0.44

28 302,896.8 302,814 302,822 382 8.75 302,828 84,497 384 2 8.72 84 350 0.52

29 299,973.7 299,904 299,904 379 4.24 299,910 77,254 378 2 11.06 88 355 0.40

Fig. 2. Shapes of ub½k� and z�½k� for CBCB5.500_0.
1 � x ¼ k; note that this upper bound is tighter than
�z. This table shows that the best values are found

in the first three hyperplanes and also that, for

these nine instances, trying 30 random seed values

rather than 10 does not improve the solution sig-

nificantly.

The Fig. 2 illustrates the evolution of the ub½k�
and z�½k� values during the whole optimization al-

gorithm. We can see that the hyperplanes k ¼ 142,
k ¼ 143 and k ¼ 150 are not candidate for the local

search phase of our algorithm because ub½k� < z�½147�.
The points corresponding to z� are linked by a

dashed line. That permits to show in what order the

hyperplanes (from k ¼ 146 to k ¼ 149) are ex-

plored.



Table 4

Results distribution over 9 hyperplanes and 3· 10 random seeds

cb5.500_0 cb5.500_10 cb5.500_20

k ub½k� 0 � � � 9 10 � � � 19 20 � � � 29 k ub½k� 0 � � � 9 10 � � � 19 20 � � � 29 k ub½k� 0 � � � 9 10 � � � 19 20 � � � 29
146 120,223 120,138 120,138 120,143 267 218,493 218,426 218,426 218,426 384 295,890 295,815 295,815 295,815

145 120,197 120,117 120,117 120,128 266 218,482 218,422 218,422 218,422 383 295,885 295,828 295,828 295,828

147 120,224 120,148 120,148 120,148 268 218,490 218,421 218,421 218,421 385 295,878 295,801 295,801 295,801

144 120,164 120,084 120,084 120,084 265 218,461 218,383 218,383 218,383 382 295,869 295,799 295,799 295,799

148 120,199 120,099 120,099 120,099 269 218,474 218,416 218,416 218,416 386 295,859 295,804 295,804 295,804

143 120,106 ub½k� 6 z� 264 218,415 ub½k� 6 z� 381 295,838 295,766 295,766 295,766

149 120,152 120,063 120,063 120,063 270 218,447 218,383 218,383 218,383 387 295,832 295,748 295,748 295,748

142 120,034 ub½k� 6 z� 263 218,360 ub½k� 6 z� 380 295,784 ub½k� 6 z�

150 120,086 ub½k� 6 z� 271 218,408 ub½k� 6 z� 388 295,791 ub½k� 6 z�

cb10.500_0 cb10.500_10 cb10.500_20

135 118,008 117,809 117,811 117,809 257 217,540 217,367 217,353 217,346 379 304,544 304,387 304,387 304,387

134 117,996 117,790 117,790 117,790 256 217,526 217,377 217,357 217,377 378 304,535 304,363 304,363 304,363

136 117,987 117,809 117,809 117,809 258 217,516 217,335 217,347 217,350 380 304,526 304,350 304,350 304,350

133 117,944 117,776 117,776 117,776 255 217,481 217,335 217,335 217,335 377 304,502 304,333 304,333 304,333

137 117,932 117,743 117,736 117,743 259 217,471 217,299 217,286 217,299 381 304,491 304,284 304,284 304,284

132 117,844 117,641 117,641 117,641 254 217,420 217,259 217,280 217,280 376 304,415 304,279 304,279 304,279

138 117,855 117,666 117,666 117,666 260 217,406 217,233 217,225 217,230 382 304,413 304,249 304,249 304,249

131 117,708 ub½k� 6 z� 253 217,337 ub½k� 6 z� 375 304,309 ub½k� 6 z�

139 117,759 ub½k� 6 z� 261 217,321 ub½k� 6 z� 383 304,301 ub½k� 6 z�

cb30.500_0 cb30.500_10 cb30.500_20

130 116,572 116,056 116,056 116,056 251 218,563 218,075 218,104 218,104 376 302,021 301,605 301,615 301,611

129 116,466 115,981 115,968 115,968 250 218,499 218,078 218,081 218,072 375 301,989 301,675 301,675 301,675

131 116,565 115,927 115,952 115,927 252 218,545 218,088 218,088 218,088 377 301,953 301,502 301,502 301,524

128 116,230 115,830 115,868 115,825 249 218,288 217,950 217,950 217,950 374 301,871 301,623 301,623 301,623

132 116,451 115,736 115,736 115,746 253 218,439 217,846 217,874 217,873 378 301,786 301,273 301,249 301,249

127 115,863 ub½k� 6 z� 248 217,967 ub½k� 6 z� 373 301,688 301,454 301,454 301,454

133 116,211 115,495 115,648 115,648 254 218,258 217,688 217,688 217,688 379 301,546 ub½k� 6 z�

126 115,415 ub½k� 6 z� 247 217,577 ub½k� 6 z� 372 301,448 ub½k� 6 z�

134 115,833 ub½k� 6 z� 255 218,030 ub½k� 6 z� 380 301,220 ub½k� 6 z�



5.3. Results synthesis

Our approach is able to improve many lower

bounds on the OR-LIBRARYLIBRARY 500 variables

benchmarks. Some result performances can not be

guaranteed, however this is not the goal of a

heuristic approach. Objective of such a work is

two fold; first it provides better lower bounds,very
useful in the framework of an exact method; then,

it gives practical ‘‘good’’ solutions in a real world

problems.

For estimating the benefit provided by our

algorithm, Table 5 compares, for each subset of 10

instances, the averages given by different ap-

proaches; it combines best results obtained by Chu

and Beasley (column GACB) [2], those obtained by
Osorio, Glover and Hammer [15] (columns

Fixþ Cuts and CPLEX), those produced by our

first tabu search [17–19] (column LP+TS) and

those obtained by this last work (column

Fixþ LPþ TS).

Columns �t� give the average time (in hours)

required to reach the best solutions. This infor-
Table 5

Average performance over the 90 largest OR-LIBRARYIBRARY problems

m GACB Fix+Cuts C

a z� �t� z� �t� z

5 1/4 120,616 0.1 120,610 3 1

1/2 219,503 0.1 219,504 3 2

3/4 302,325 0.1 302,361 3 3

10 1/4 118,566 0.2 118,584 3 1

1/2 217,275 0.2 217,297 3 2

3/4 302,556 0.2 302,562 3 3

30 1/4 115,474 0.4 115,520 3 1

1/2 216,157 0.4 216,180 3 2

3/4 302,353 0.4 302,373 3 3

Table 6

Best average lower bounds for CB.500CB.500

a m ¼ 5 m ¼ 10P
z�

10

P
ub

10

P
�z

10

P
z�

10

P

1/4 120,629 120,709 120,717 118,629 1

1/2 219,513 219,589 219,596 217,327 2

3/4 302,363 302,429 302,435 302,603 3
mation is very approximative since the CPUCPU’s are
not the same for activating separately each

method. It is clear enough to point out that our

testing bench requires much more CPUCPU time re-

source than the others approaches. However on

the one hand, we have noticed that it was possible

to reduce the number of runs (i.e. seeds values)

without degrading the solutions quality in a too

significative way. On the other hand, we can try to
identify in a safer way the promising hyperplanes.

More precisely, the ranking order in exploring the

hyperplanes presented in Section 3 does not always

lead to decreasing values of the upper bounds.

This is typically true for benchmarks submitted to

5 constraints for which the best hyperplane can be

located at the third position: for example, the best

solution of CBCB5.500_0 can be found in the hyper-
plane for which the upper bound is the greatest,

whereas it is explored only at the third step (see

Table 4 or Fig. 2). The time required to get this

solution would have been reduced from 89256 (see

Tables 3) to 191 seconds if we had searched in this

hyperplane at first. Moreover, it may also explain
PLEX LP+TS Fix+LP+TS

� �t� z� �t� z� �t�

20,619 3 120,623 5 120,628 8.5

19,506 3 219,507 5 219,512 8.5

02,358 3 302,360 5 302,363 8.5

18,597 3 118,600 9 118,629 7.6

17,290 3 217,298 9 217,326 7.6

02,573 3 302,575 9 302,603 7.6

15,497 3 115,547 12 115,624 33

16,151 3 216,211 12 216,275 33

02,366 3 302,404 12 302,447 33

m ¼ 30

ub

10

P
�z

10

P
z�

10

P
ub

10

P
�z

10

18,822 118,836 115,624 116,151 116,184

17,493 217,504 216,275 216,703 216,730

02,762 302,776 302,447 302,828 302,856



the reason why average times are worse for
benchmarks with 5 constraints than for those with

10 constraints.

At last, we can complete this presentation by

gathering results and data in the following Table 6

intended to motivate researchers/challengers to

improve these best average results (obtained by

taking into account the best value in both LP+TS

and Fixþ LPþ TS columns).
For each problem, the ub parameter represents

the maximum value among the 5 · 256 fractional

optima computed during the variables fixing pro-

cess (it is also equal to the maximum of the five

best values of ub½k� defined in Section 5.2). It is a

slightly tighter value compared to the classical

upper bound �z of the relaxed linear program

01MDK. This table shows that it is left an average
of 74 points to improve our values for the CBCB5.500

benchmarks, 173 points for the CBCB10.500 ones,

and 445 for the CBCB30.500 ones.

All the problems and their associated best

solutions presented in this paper are available in

the following web site: www.01mdk.ema.fr.
6. Conclusion

In terms of qualitative results, the two afore-

mentioned tables, clearly show the positive con-

tribution of our heuristic approach that combines

cutting planes (1 � x ¼ k), geometric constraints

(jx� �x½k�j6 dmax) and limited branch and bound for

fixing variables using fractional optima as high
quality reference points.

The generated sub problems discussed in this

paper are very difficult to solve even though they

are small enough (about 100 variables). One of

their significant characteristic is related to the ratio

j ¼ ðk � ð#1ÞÞ=ðn� ð#0þ #1ÞÞ which is always

close to 0.5. This value (j ’ 0:5) corresponds to

the maximum number of sub sets of k � ð#1Þ ele-
ments in a set of n� ð#0þ #1Þ elements. This

means that the combinatory aspect of those sub

problems is the greatest possible considering the

n� ð#0þ #1Þ remaining variables.

Though very attractive, in terms of results, the

above proposed limited branch and bound vari-

able fixing heuristic is not fully satisfactory: it may
happen (and it probably sometimes does !) that
some variables are set-up at their wrong values,

which prevents the search phase, that follows, to

reach a good solution; we would be ready to accept

a lower problem reduction (i.e. a bigger reduced

problem) giving the certainty (mathematically

proved) that no variable is fixed at its wrong value.

That is the aim of further work we are planning to

conduct.
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