Yannick Vimont 
email: yannick.vimont@ema.fr
  
Sylvain Boussier 
email: sylvain.boussier@ema.fr
  
Michel Vasquez 
email: michel.vasquez@ema.fr
  
Reduced costs propagation in an efficient implicit enumeration for the 01 multidimensional knapsack problem

Keywords: Multidimensional knapsack problem, Implicit enumeration, Variable fixing, Reduced costs, Constraint propagation 1 Introduction

In a previous work we proposed a variable fixing heuristics for the 0-1 Multidimensional knapsack problem (01MDK). This approach uses fractional optima calculated in hyperplanes which contain the binary optimum. This algorithm obtained best lower bounds on the OR-LIBRARY benchmarks. Although it is very attractive in terms of results, this method does not prove the optimality of the solutions found and may fix variables to a non-optimal value. In this paper, we propose an implicit enumeration based on a reduced costs analysis which tends to fix nonbasic variables to their exact values. The combination of two specific constraint propaga-tions based on reduced costs and an efficient enumeration framework enable us to fix variables on the one hand and to prune significantly the search tree on the other hand. Experimentally, our work provides two main contributions: (1) we obtain sev-eral new optimal solutions on hard instances of the OR-LIBRARY and (2) we reduce the bounds of the number of items at the optimum on several harder instances.

follow:

01MDK

Maximize c • x subject to,

A • x ≤ b and x ∈ {0, 1} n ,
where c ∈ N n , A ∈ N m×n and b ∈ N m . The binary components x j of x are decision variables: x j = 1 if the item j is selected, 0 otherwise. c j is the profit associated to the item j and A ij is the cost (in terms of resource i) of the selecting item j . b i is the amount of the resource i.

The designation comes from the original formulation which describes the problem of a hiker who has to select a subset of items from a list to take in his knapsack, so that the selected items are the most useful possible and the total weight does not exceed a given limit. It can be useful in several practical problems such as budgeting problems (investments problems), manufacturing problems (paper cutting patterns, cargo or plane loading) or telecommunication problems. The reader is referred to [START_REF] Fréville | The multidimensional 0-1 knapsack problem: an overview[END_REF] for more details about the different existing methods for solving this problem.

In a previous work, [START_REF] Vasquez | Improved results on the 0-1 multidimensional knapsack problem[END_REF] proposed a variable fixing heuristics for the 01MDK. This algorithm obtained best results on Chu and Beasley instances available on the OR-LIBRARY. 1 Although it is very attractive in terms of results, this method does not prove the optimality of the found solutions and may fix variables to a non optimal value. [START_REF] Oliva | Constraint and linear programming: using reduced costs for solving the zero/one multiple knapsack problem[END_REF] propose an interesting branch & bound method for solving the 01MDK. They use a reduced costs constraint based on the reduced costs of the non basic variables and the slack variables at the optimum of the relaxed 01MDK. Being inspired by this approach, we propose in this paper an implicit enumeration for the 01MDK which tends to fix variables to their optimal value.

At first, we will explain the main principle of our algorithm in Sect. 2 and we will detail the reduced costs based constraint we use in Sect. 3. Then we will describe the implicit enumeration framework in Sect. 4 and the reduced costs propagation embedded in Sect. 5. The computational results made on benchmarks from the OR-LIBRARY are detailed in Sect. 6.

General principle

In this paper, we propose an implicit enumeration which uses a reduced costs constraint to fix non-basic variables and prune nodes of the search tree. The reduced costs constraint expresses the objective function of the LP-relaxation with reduced cost coefficients and bounds this expression with any available lower bound and the optimal objective value.

Several algorithms which use the reduced costs for solving knapsack problems have been published before, the reader is referred to [START_REF] Saunders | A shrinking boundary algorithm for discrete system models[END_REF], [START_REF] Fayard | An algorithm for the solution of the 0-1 knapsack problem[END_REF] and [START_REF] Oliva | Constraint and linear programming: using reduced costs for solving the zero/one multiple knapsack problem[END_REF] for articles on this subject. The originality of the proposed algorithm lies on the fact that the unpromising parts of the search tree are tackled at first. Indeed, rather than keeping the branching variable to its non-basic value, we explore first the tree that corresponds to fixing it to its opposite value. Let us note that the aim of this approach is to prune the search tree as soon as possible. Hence this algorithm should be more appropriated for solving difficult instances of 01MDK than easy ones.

The method exposed here is divided in three main phases and uses several previously published results: (1) the calculation of a starting lower bound, which is carried out by the local search algorithm published in [START_REF] Vasquez | Improved results on the 0-1 multidimensional knapsack problem[END_REF], (2) the decomposition of the problem in several sub-problems based on the observation of [START_REF] Vasquez | An hybrid approach for the 0-1 multidimensional knapsack problem[END_REF] and (3) the enumeration of each sub-problem embedding the specific reduced cost propagation.

The reduced costs constraint

Let us consider the LP-relaxation of the 01MDK stated as follows:

(01MDK) Max z t = UB + j ∈N - cj x j - j ∈N + cj (1 -x j ) + j ∈M ūi s i subject to Āx + Ss = b, x ∈ [0, 1] n , s ≥ 0.
Where s is the vector of the m slack variables, ( x, s) an optimal solution of the linear program 01MDK and UB its value, ( c, ū) the vector of the reduced costs corresponding to the variables (x, s) for the basic solution ( x, s). Ā, S, b are values corresponding to the base associated to ( x, s), so that S is the identity matrix. N -represents the indexes of the non-basic variables, which are equal to their lower bound and N + the indexes of the non-basic variables which are equal to their upper bound. Let us suppose that we know a lower bound LB ∈ N of the original integer linear program 01MDK, then each current solution better than LB has to satisfy the following relation:

UB + j ∈N - cj x j - j ∈N + cj (1 -x j ) + i∈M ūi s i ≥ LB, - j ∈N - cj x j + j ∈N + cj (1 -x j ) - j ∈M ūi s i ≤ UB -LB.
In our case, we do not take into account the slack variables. Indeed, at the optimum, the slack variables are positive and their associated reduced costs negative, thus the sum j ∈M ūi s i is always negative. Hence, we can withdraw the slack variables from the inequality mentioned above without losing sense. Moreover, we also know that at the optimum of the linear program, the non-basic variables with a positive reduced cost are equal to their upper bound ( cj > 0 ⇒ x j ∈ N + ) and the non-basic variables with a negative reduced cost are equal to their lower bound ( cj < 0 ⇒ x j ∈ N -). Hence, if we consider the absolute values of the reduced costs, we obtain the so called "reduced costs constraint":

j ∈N - | cj |x j + j ∈N + | cj |(1 -x j ) ≤ UB -LB.
(1)

Implicit enumeration framework

In this section, we only describe the implicit enumeration framework. The reduced costs propagation will be detailed in Sect. 5. The first phase, which consists in calculating a starting lower bound, is detailed in Sect. 6. Once we obtain the lower bound, the second phase consists in partitioning the problem according to the observation of [START_REF] Vasquez | An hybrid approach for the 0-1 multidimensional knapsack problem[END_REF]: they highlighted the fact that the number of items k can be easily bounded with two values k min and k max . Calculating the (k maxk min + 1) different values of k using this method, we partition the problem in 01MDK(k) problems for k ∈ {k min , . . . , k max } so that:

01MDK(k) ⎧ ⎪ ⎨ ⎪ ⎩ Maximize c • x subject to, A • x ≤ b and x ∈ {0, 1} n , 1 • x = k ∈ N.
The objective of the proposed algorithm is to solve each 01MDK(k) independently and to return the best value found.

For each sub-problem, the enumeration is tackled as classical branch & bound algorithms, with the main difference that the branching is done on the non-basic (i.e. integer) variables and not on the most fractional one as we usually do.

Let us consider S t a partial solution (or node of the search tree) so that t is the depth parameter. A partial solution S t is represented by a vector (x 1 , . . . , x n ) where x i ∈ {0, 1, * } n and x i = * if x i is a free variable. S t is composed of a subset F (S t ) of variables fixed to zero or one and a subset L(S t ) of free variables. F (S t ) is partitioned in two subsets F 0 (S t ) and F 1 (S t ), containing respectively variables fixed to zero and variables fixed to one. Let 01MDK S t be the linear relaxation of the sub-problem at node S t , where decision variables are free variables and let zS t be its optimal value: the evaluation of S t is defined as follows:

UB(S t ) = j ∈F 1 (S t ) c j + zS t .
(2)

At each node S t of the search tree, the upper bound UB(S t ) is computed. If S t is unfeasible or if UB(S t ) is lower or equal to the original lower bound LB, the enumeration backtracks. In the other case, the branching is done on the non-basic and free variable x i at the optimum of the 01MDK S t with the bigger absolute reduced cost value by fixing it to the opposite of its optimal value (the reason why we branch on the variable with the bigger absolute reduced cost value will be explained in Sect. 5.2).

Once we explore the corresponding partial solution, we are able now to fix x i to its optimal value xS t i and to fix the next non-basic and free variable with the bigger absolute reduced cost value x j to the opposite of its optimal value (1 -xS t j ). Indeed, it is useless to explore the partial solution S t+1 in which x i is fixed to its optimal value since, in that case, 01MDK S t+1 provides the same optimal solution as 01MDK S t . The partial solution where all the non-basic variables are fixed to their optimal values and all the basic variables are free, is explored only once at each node. For example, let us suppose that xS t = (0, 1, 0, 0, 0.5, 0.4) is the optimal solution of 01MDK S t and that the variables are sorted by decreasing order of absolute reduced cost value. Then the nodes generated will be the followings:

(1, * , * , * , * , * ) (0, 0, * , * , * , * ) (0, 1, 1, * , * , * ) (0, 1, 0, 1, * , * ) (0, 1, 0, 0, * , * ).

In the case where all non-basic variables are fixed, and all basic variables are free: a Depth First Search algorithm enumerates the remaining basic variables and if a feasible solution is met, the best known solution is updated. If the sum of the variables fixed to one is equal to k (the number of items corresponding to the explored hyperplane 1 • x = k) and the solution is feasible, the best known solution is updated else the enumeration backtracks.

Reduced costs propagation

In the following, we expose two reduced cost propagations embedded to the implicit enumeration framework. Both of them are based on the same reduced costs analysis but diverge in the way they are carried out. The first one takes the local reduced costs constraint into account at each node of the search tree, and the second one is a more global propagation which deals with the reduced costs constraint of all parents of each node.

Local propagation

Let gap(S t ) = UB(S t ) -LB be the gap value at node S t . The reduced costs constraint (1) allows us to fix several non-basic variables either to zero or to one. Indeed, if we insulate a variable x j which is non-basic at the optimum of the 01MDK S t and consider all others non-basic variables at their bounds, i.e. zero for the variables with a negative reduced cost and one for the variables with a positive reduced cost, the constraint (1) gives the two following relations:

( xS t j = 1) ⇒ x j ≥ 1 - gap(S t ) | ct j | , ( 3 
)
( xS t j = 0) ⇒ x j ≤ gap(S t ) | ct j | (4)
where xS t j is the value of the non-basic and free variable x j at the optimality of the 01MDK S t and cS t j its corresponding reduced cost. Using relations (3) and (4), we state the following local reduced costs propagation:

• For each variable x j which is non-basic at the optimum of the 01MDK S t , if | cS t j | > gap(S t ): Fix x j to zero (resp. one) if and only if xS t j is equal to zero (resp. one).

Thus, if a non-basic variable x j has a reduced cost cS t j > gap(S t ) at node S t , x j is fixed to the value xS t j . Moreover, changing the value of a variable x j implies that the left-hand side of constraint (1) at node S t is augmented by the value cS t j . Then the value gap(S t ) can be interpreted as the amount of reduced cost available to swap the value of the nonbasic variables at node S t . The current partial solution S t is consistent with constraint (1) if and only if j ∈ S t cS t j ≤ gap(S t ), so that S t = {j / x j is fixed to 1 -xS t j }. Supposing we branch on x j at node S t , then all the other variables x i ∈ L(S t ) so that cS t j + cS t i > gap(S t ) cannot be fixed to the opposite of their optimal value. So, at each node of the search tree, we are able to proceed to this second reduced costs propagation:

• Supposing we branch on x j ∈ L(S t ). For each non-basic and free variable x i ∈ L(S t ) i = j , if cS t j + cS t i > gap(S t ): fix x i to zero (resp. one) if xS t i is equal to zero (resp. one) and let it free otherwise.

For example, let us suppose that xS t = (0, 1, 0, 0, 1, 0.5, 0.4) at the optimality of the 01MDK S t and that cS t 1 , cS t 2 > gap(S t ), then we fix x 1 to 0 and x 2 to 1 according to the local reduced costs propagation and we generate the following children:

(0, 1, 1, * , * , * , * , * ) (0, 1, 0, 1, * , * , * ) (0, 1, 0, 0, 0, * , * ) (0, 1, 0, 0, 1, * , * ).
Let us suppose now that c 3 + c 5 > gap(S t ), then according to the second reduced costs propagation exposed above, x 5 will be directly fixed to its optimal value 1 after the branching on x 3 and the first children generated will be (0, 1, 1, * , 1, * , * ) instead of (0, 1, 1, * , * , * , * , * ). This second propagation enables us to reduce the number of simplex phases in the enumeration.

Global propagation

This propagation comes from the observation that each 01MDK S t provides a reduced costs constraint and that each child of S t has to satisfy this constraint. In their approach, [START_REF] Oliva | Constraint and linear programming: using reduced costs for solving the zero/one multiple knapsack problem[END_REF] use the information brought by those constraints: at each node S t , the corresponding reduced costs constraint is added to a constraint programming model and propagated on the variables domains. This process appears to be high c.p.u. time consuming and to penalize the whole computing time. In the proposed approach, the propagation only deals with reduced costs propagation in terms of available gap quantity as in the local propagation.

Indeed, let P (S t ) be the set of parent nodes of S t . Let us suppose that x j is fixed to 1 -xS t j at node S t and that xS p j = xS t j , p ∈ P (S t ), then we can update gap(S p ) by withdrawing | cS p j |. If it appears that gap(S p ) < 0, S t becomes unfeasible. Supposing x j is fixed to the value v at node S t , then for each parent node S p p ∈ P (S t ) so that xS p j = 1v, the value gap(S p ) is reduced by the corresponding reduced cost | cS p j | and if gap(S p ) < 0, the current partial solution S t is unfeasible.

Regarding the reduced cost propagation scheme, it appears clearly that the more the variable we branch on has a high absolute reduced cost value, the more the gap value is thin and the propagation is effective. Hence, at each node, we first branch on the free variables which have the higher reduced cost value in order to make the algorithm converge faster.

Algorithms 1 and 2 respectively detail the recursive enumeration procedure. Algorithm 1 is devoted to the variable fixing and the branching phase, Algorithm 2 to the creation of sub-problems and to the reduced costs propagation.

Algorithm 1 Enumeration

This method enables us to propagate the reduced costs without adding explicitly new constraints to the model at each node. We only consider one reduced cost constraint and the consistency of each sub-problem solution with it. The propagation is carried out by ascending the search tree from the current node to the root. At each node, we check that the reduced costs constraint is consistent with the fixed variables otherwise the current node is pruned.

Let us note that contrary to the classical Branch & Bound method, this propagation proscribes us to update the lower bound when a better feasible solution is met except at the root of the tree. Indeed, if the lower bound of a node of the branch and bound tree is different from the lower bound of its parents, the global propagation will have no meaning since the gap value will change. However, since the root node does not have any parents, it is possible to update the lower bound at this stage.

Algorithm 2 Auxiliary program 6 Computational experiments

Our enumeration procedure has been tested on benchmarks produced by [START_REF] Chu | A genetic algorithm for the multidimensional knapsack problem[END_REF] issued from the OR-LIBRARY.2 These benchmarks were generated using the procedure proposed by [START_REF] Fréville | An efficient preprocessing procedure for the multidimensional 0-1 knapsack problem[END_REF]. This collection contains problems with n = 100, 250 and 500 variables and m = 5, 10 and 30 constraints. Thirty problems were generated for each n-m combination, giving a total of 270 problems. The a ij integer values were generated by using a uniform random generator U(0, 1000) and the right-hand side values were generated in correlation with the a ij so that b i = α n j =1 a ij where α = 1/4, 1/2 and 3/4 is the tightness ratio. The costs of the objective function (c j ) were generated in correlation with the a ij so that c j = m i=1 a ij /m + 500d j where d j is a random generated number between 0 and 1. The whole name of each problem is cbm.n_r, where m is the number of constraints, n the number of variables and r the number of the instance. Each set of 30 instances with the given numbers m and n is divided into 3 series with a different tightness ratio: problems 1 to 9 correspond to the ratio α = 1/4, problems 10 to 19 to the ratio α = 1/2 and problems 20 to 29 to the ratio α = 3/4. Our algorithm has been tested on a P4 3.2 GHz with 1 GB RAM and the results are compared to those produced by the commercial solver CPLEX 9.2.

Lower bound calculation

The lower bounds were calculated separately with two previously published algorithms: (1) RL tabu proposed by [START_REF] Vasquez | An hybrid approach for the 0-1 multidimensional knapsack problem[END_REF], which is a hybrid approach combining linear programming and an efficient tabu search and (2) Fix + RL tabu proposed by [START_REF] Vasquez | Improved results on the 0-1 multidimensional knapsack problem[END_REF], which is the same algorithm embedding a variable fixing heuristics. We computed the lower bounds with RL tabu for the 100 variable instances and with Fix + RL tabu for the 250 and 500 variable instances. The reason why we use both algorithms is that the variable fixing heuristics embedded in Fix + RL tabu makes the algorithm consume more c.p.u. time and that RL tabu performs quite the same results for the smaller instances. It is important to note that we limited the number of iterations for both algorithms in order to have an appropriate ratio time consumption/quality of the solutions. This explains why the lower bounds exposed in this paper are lower than the ones published in [START_REF] Vasquez | Improved results on the 0-1 multidimensional knapsack problem[END_REF]. For the 100 variable instances, RL tabu is limited to 50 000 iterations and Fix + RL tabu is limited to 100 000 iterations for the 250 variable instances and 200 000 iterations for the 500 variable instances.

Computational results

Our enumeration algorithm found the optimum of all the 10 constraint, 250 variable instances (Table 2) even if the c.p.u. time consumption exceed 4 hours. These instances are hard to solve and we expose here new results never obtained before. CPLEX solves 46% of them in less than 4 hours of computational time and run out of memory for the others 54%. Our enumeration algorithm solves 94% of them in the same time limit. Our algorithm proves all the 500 variable, 5 constraint instances in less than 4 hours of computational time. However the optimal solutions were already published by [START_REF] James | Enumeration methods for repeatedly solving multidimensional knapsack sub-problems[END_REF].

Our algorithm consumes little RAM memory when solving hard instances and this enables us to solve instances to the optimum even if the required computational time is greater than 4 hours (the maximum time is around 24 hours for the cb10.250_7 instance). Indeed, for the majority of the 10 constraint, 250 variable instances, CPLEX exceeds the capacity of RAM memory after 4 hours of computational time when our enumeration solves all the instances. Another positive point of our algorithm is that its structure enables to use parallel processors to reduce the overall run time required to solve a given instance. Indeed, we can assign the resolution of each 01MDK(k) with k ∈ [k min , k max ] to each processor. The parallel approach can widely decrease the run time required to solve hard instances. Tables 1, 2 and 3 detail the results obtained on problems with 250 and 500 variables. Bold face highlights the best c.p.u. time required between our algorithm and CPLEX. The description of the columns is:

• instance: the name of the instance; • z * : the value of the lower bound; • t * : the c.p.u. time in seconds required to calculate the lower bound; • z opt : the optimal solution found by the enumeration; • gap(×10 2 ): the gap between the lower bound and the optimal value; • k opt : the number of items in the optimal solution; best order to explore hyperplanes in a limited time, is to start from the possible extreme integer values of [k min , k max ] to the center integer values: k min , k max , k min + 1, k max -1, etc. The objective is to prove that no solution z > z * with k items exists, so we first tackle the "easier" hyperplanes with the smaller value z(k).

We expose on Table 4 the new bounds for the number of items at the optimum so that k min ≤ k opt ≤ k max , boldface highlights the new bounds provided comparatively to those previously known with the method exposed in Sect. 4. The description of the data per column is:

• Pb: the number of the instance.

• LB: the lower bound used. LB is in boldface if the lower bound has been improved and the star (*) indicates that LB is the optimal value. • k min : the lower bound of the number of items at the optimum.

• k max : the upper bound of the number of items at the optimum.

We reduced the bounds of 88% of the instances within a limit of 10 hours of computational time. A hyperplane is cut if our algorithm explores the whole sub-tree of the corresponding value k and does not find any better solution than the best known solution, in the other case, if it finds a better solution than the best known solution, or if it reaches the time limit, it stops the exploration of the current hyperplane.

Conclusion

In this paper we have demonstrated how an implicit enumeration combining constraint and linear programming can be efficient to solve large-scale 01 multidimensional knapsack problems. Our enumeration method includes two specific reduced costs propagations which enable on the one hand to fix variables and on the other hand, to prune nodes of the search tree. Experimentally, our algorithm leads us to good results in terms of computational times. The new optimal solutions never published before and the new bounding of the number of items at the optimum for hard instances constitutes the two main contributions of our approach. Moreover the provided solutions can help researchers in the field of heuristics to evaluate their solutions. For the harder instances which are not solvable in a reasonable c.p.u time, we plan to experiment a distributed version of our algorithm.

  

  

Table 1

 1 Results obtained on cb5.250 problems

	Instance	lb		opt					Cplex
		z *	t *	z opt	gap(×10 2 )	k opt	t opt	t total	t Cpx
	cb5.250_0	59312	80	59312	0	73	0	80	33
	cb5.250_1	61472	79	61472	0	74	3	82	156
	cb5.250_2	62130	61	62130	0	76	1	62	11
	cb5.250_3	59453	106	59463	0.016	71	93	199	861
	cb5.250_4	58951	95	58951	0	74	6	101	261
	cb5.250_5	60062	78	60077	0.024	74	28	106	384
	cb5.250_6	60396	98	60414	0.029	76	6	104	171
	cb5.250_7	61449	101	61472	0.037	73	36	137	239
	cb5.250_8	61885	73	61885	0	76	3	76	69
	cb5.250_9	58959	87	58959	0	72	0	87	16
	cb5.250_10	109086	96	109109	0.021	132	15	111	124
	cb5.250_11	109841	97	109841	0	135	2	99	40
	cb5.250_12	108508	72	108508	0	130	3	75	129
	cb5.250_13	109378	98	109383	0.004	134	12	110	157
	cb5.250_14	110718	95	110720	0.001	130	21	116	671
	cb5.250_15	110256	91	110256	0	132	5	96	227
	cb5.250_16	109040	79	109040	0	133	3	82	195
	cb5.250_17	109042	95	109042	0	132	14	109	314
	cb5.250_18	109971	100	109971	0	130	5	105	165
	cb5.250_19	107058	90	107058	0	131	6	96	18
	cb5.250_20	149659	91	149665	0.004	191	5	96	101
	cb5.250_21	155940	92	155944	0.002	190	3	95	62
	cb5.250_22	149334	95	149334	0	191	24	119	141
	cb5.250_23	152130	103	152130	0	193	2	105	94
	cb5.250_24	150353	98	150353	0	191	4	102	90
	cb5.250_25	150045	73	150045	0	191	0	73	9
	cb5.250_26	148607	75	148607	0	192	0	75	6
	cb5.250_27	149772	95	149782	0.006	193	8	103	127
	cb5.250_28	155061	91	155075	0.009	190	1	92	17
	cb5.250_29	154662	95	154668	0.003	191	4	99	121

Actually, the instances have been generated by using the procedure proposed by[START_REF] Fréville | An efficient preprocessing procedure for the multidimensional 0-1 knapsack problem[END_REF].

Available at http://people.brunel.ac.uk/~mastjjb/jeb/info.html.

This property is directly proved by applying the theorem 10.2 of the book Linear Programming by[START_REF] Chvátal | Linear programming[END_REF].

• t opt : the c.p.u. time in seconds required to find the optimal solution;

• t total : the total time required (t * + t opt );

• t Cpx : the c.p.u. time in seconds required to CPLEX 9.2 to find the optimal solution or X if it exceeds 4 hours of computational time;

6.3 Bounds reduction of the number of items at the optimum For the hard instances (cb30.250, cb10.500 and cb30.500), we attempted to reduce the bounds of the number of items at the optimum by experimenting our algorithm within a limit of 10 hours of computational time. Indeed, even if we stop it prema- turely, the enumeration can provide interesting results: (1) It can fix variables to their optimal value in each explored hyperplane and (2) it can explore all the sub-tree corresponding to 1 • x = k and prove that no solution with k number of items better than the lower bound exists. The main interest here is to reduce the bounds of the number of items at the optimum (i.e. to cut some hyperplanes). Hence, we thought about the best way to explore hyperplanes within a given time limit. Considering the fact that the function z(μ) = c • xμ (optimum of 01MDK(μ) where μ ∈ R) is convex, 3 the