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Reduced costs propagation in an efficient implicit
enumeration for the 01 multidimensional knapsack
problem

Yannick Vimont · Sylvain Boussier ·
Michel Vasquez
LGI2P, Parc Scientifique Georges Besse, 30035 Nimes Cedex 1, France

Abstract In a previous work we proposed a variable fixing heuristics for the 0-1 
Multidimensional knapsack problem (01MDK). This approach uses fractional op-
tima calculated in hyperplanes which contain the binary optimum. This algorithm 
obtained best lower bounds on the OR-LIBRARY benchmarks. Although it is very 
attractive in terms of results, this method does not prove the optimality of the solu-
tions found and may fix variables to a non-optimal value. In this paper, we propose 
an implicit enumeration based on a reduced costs analysis which tends to fix non-
basic variables to their exact values. The combination of two specific constraint 
propaga-tions based on reduced costs and an efficient enumeration framework 
enable us to fix variables on the one hand and to prune significantly the search tree 
on the other hand. Experimentally, our work provides two main contributions: (1) 
we obtain sev-eral new optimal solutions on hard instances of the OR-LIBRARY and 
(2) we reduce the bounds of the number of items at the optimum on several harder
instances.

Keywords Multidimensional knapsack problem · Implicit enumeration ·
Variable fixing · Reduced costs · Constraint propagation

1 Introduction

The 0-1 multidimensional knapsack problem (01MDK) is a well-known optimization 
problem which belongs to the family of the NP-hard problems. It can be stated as
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follow:

01MDK

{
Maximize c · x subject to,

A · x ≤ b and x ∈ {0,1}n,
where c ∈ N

n, A ∈ N
m×n and b ∈ N

m. The binary components xj of x are decision
variables: xj = 1 if the item j is selected, 0 otherwise. cj is the profit associated to
the item j and Aij is the cost (in terms of resource i) of the selecting item j . bi is the
amount of the resource i.

The designation comes from the original formulation which describes the problem
of a hiker who has to select a subset of items from a list to take in his knapsack, so
that the selected items are the most useful possible and the total weight does not
exceed a given limit. It can be useful in several practical problems such as budgeting
problems (investments problems), manufacturing problems (paper cutting patterns,
cargo or plane loading) or telecommunication problems. The reader is referred to
Fréville (2004) for more details about the different existing methods for solving this
problem.

In a previous work, Vasquez and Vimont (2005) proposed a variable fixing heuris-
tics for the 01MDK. This algorithm obtained best results on Chu and Beasley in-
stances available on the OR-LIBRARY.1 Although it is very attractive in terms of
results, this method does not prove the optimality of the found solutions and may fix
variables to a non optimal value.

Oliva et al. (2001) propose an interesting branch & bound method for solving the
01MDK. They use a reduced costs constraint based on the reduced costs of the non
basic variables and the slack variables at the optimum of the relaxed 01MDK. Being
inspired by this approach, we propose in this paper an implicit enumeration for the
01MDK which tends to fix variables to their optimal value.

At first, we will explain the main principle of our algorithm in Sect. 2 and we will
detail the reduced costs based constraint we use in Sect. 3. Then we will describe
the implicit enumeration framework in Sect. 4 and the reduced costs propagation
embedded in Sect. 5. The computational results made on benchmarks from the OR-
LIBRARY are detailed in Sect. 6.

2 General principle

In this paper, we propose an implicit enumeration which uses a reduced costs con-
straint to fix non-basic variables and prune nodes of the search tree. The reduced
costs constraint expresses the objective function of the LP-relaxation with reduced
cost coefficients and bounds this expression with any available lower bound and the
optimal objective value.

Several algorithms which use the reduced costs for solving knapsack problems
have been published before, the reader is referred to Saunders and Schinzinger
(1970), Fayard and Plateau (1982) and Oliva et al. (2001) for articles on this sub-
ject. The originality of the proposed algorithm lies on the fact that the unpromising

1Actually, the instances have been generated by using the procedure proposed by Fréville and Plateau
(1994).



parts of the search tree are tackled at first. Indeed, rather than keeping the branching
variable to its non-basic value, we explore first the tree that corresponds to fixing it to
its opposite value. Let us note that the aim of this approach is to prune the search tree
as soon as possible. Hence this algorithm should be more appropriated for solving
difficult instances of 01MDK than easy ones.

The method exposed here is divided in three main phases and uses several previ-
ously published results: (1) the calculation of a starting lower bound, which is carried
out by the local search algorithm published in Vasquez and Vimont (2005), (2) the
decomposition of the problem in several sub-problems based on the observation of
Vasquez and Hao (2001) and (3) the enumeration of each sub-problem embedding
the specific reduced cost propagation.

3 The reduced costs constraint

Let us consider the LP-relaxation of the 01MDK stated as follows:

(01MDK) Max zt = UB +
∑

j∈N−
c̄j xj −

∑
j∈N+

c̄j (1 − xj ) +
∑
j∈M

ūisi

subject to Āx + S̄s = b̄,

x ∈ [0,1]n, s ≥ 0.

Where s is the vector of the m slack variables, (x̄, s̄) an optimal solution of the
linear program 01MDK and UB its value, (c̄, ū) the vector of the reduced costs cor-
responding to the variables (x, s) for the basic solution (x̄, s̄). Ā, S̄, b̄ are values
corresponding to the base associated to (x̄, s̄), so that S̄ is the identity matrix. N− rep-
resents the indexes of the non-basic variables, which are equal to their lower bound
and N+ the indexes of the non-basic variables which are equal to their upper bound.
Let us suppose that we know a lower bound LB ∈ N of the original integer linear pro-
gram 01MDK, then each current solution better than LB has to satisfy the following
relation:

UB +
∑

j∈N−
c̄j xj −

∑
j∈N+

c̄j (1 − xj ) +
∑
i∈M

ūisi ≥ LB,

−
∑

j∈N−
c̄j xj +

∑
j∈N+

c̄j (1 − xj ) −
∑
j∈M

ūisi ≤ UB − LB.

In our case, we do not take into account the slack variables. Indeed, at the op-
timum, the slack variables are positive and their associated reduced costs negative,
thus the sum

∑
j∈M ūisi is always negative. Hence, we can withdraw the slack

variables from the inequality mentioned above without losing sense. Moreover, we
also know that at the optimum of the linear program, the non-basic variables with
a positive reduced cost are equal to their upper bound (c̄j > 0 ⇒ xj ∈ N+) and
the non-basic variables with a negative reduced cost are equal to their lower bound
(c̄j < 0 ⇒ xj ∈ N−). Hence, if we consider the absolute values of the reduced costs,



we obtain the so called “reduced costs constraint”:∑
j∈N−

|c̄j |xj +
∑

j∈N+
|c̄j |(1 − xj ) ≤ UB − LB. (1)

4 Implicit enumeration framework

In this section, we only describe the implicit enumeration framework. The reduced
costs propagation will be detailed in Sect. 5.

The first phase, which consists in calculating a starting lower bound, is detailed
in Sect. 6. Once we obtain the lower bound, the second phase consists in partition-
ing the problem according to the observation of Vasquez and Hao (2001): they high-
lighted the fact that the number of items k can be easily bounded with two values kmin
and kmax. Calculating the (kmax − kmin + 1) different values of k using this method,
we partition the problem in 01MDK(k) problems for k ∈ {kmin, . . . , kmax} so that:

01MDK(k)

⎧⎪⎨
⎪⎩

Maximize c · x subject to,

A · x ≤ b and x ∈ {0,1}n,
1 · x = k ∈ N.

The objective of the proposed algorithm is to solve each 01MDK(k) independently
and to return the best value found.

For each sub-problem, the enumeration is tackled as classical branch & bound
algorithms, with the main difference that the branching is done on the non-basic (i.e.
integer) variables and not on the most fractional one as we usually do.

Let us consider St a partial solution (or node of the search tree) so that t is the
depth parameter. A partial solution St is represented by a vector (x1, . . . , xn) where
xi ∈ {0,1,∗}n and xi = ∗ if xi is a free variable. St is composed of a subset F(St ) of
variables fixed to zero or one and a subset L(St ) of free variables. F(St ) is partitioned
in two subsets F0(St ) and F1(St ), containing respectively variables fixed to zero and
variables fixed to one. Let 01MDKSt be the linear relaxation of the sub-problem at
node St , where decision variables are free variables and let z̄St be its optimal value:
the evaluation of St is defined as follows:

UB(St ) =
∑

j∈F1(St )

cj + z̄St . (2)

At each node St of the search tree, the upper bound UB(St ) is computed. If St is
unfeasible or if UB(St ) is lower or equal to the original lower bound LB , the enu-
meration backtracks. In the other case, the branching is done on the non-basic and
free variable xi at the optimum of the 01MDKSt with the bigger absolute reduced cost
value by fixing it to the opposite of its optimal value (the reason why we branch on the
variable with the bigger absolute reduced cost value will be explained in Sect. 5.2).
Once we explore the corresponding partial solution, we are able now to fix xi to its
optimal value x̄

St

i and to fix the next non-basic and free variable with the bigger ab-

solute reduced cost value xj to the opposite of its optimal value (1 − x̄
St

j ). Indeed, it



is useless to explore the partial solution St+1 in which xi is fixed to its optimal value
since, in that case, 01MDKSt+1 provides the same optimal solution as 01MDKSt . The
partial solution where all the non-basic variables are fixed to their optimal values and
all the basic variables are free, is explored only once at each node.

For example, let us suppose that x̄St = (0,1,0,0,0.5,0.4) is the optimal solution
of 01MDKSt and that the variables are sorted by decreasing order of absolute reduced
cost value. Then the nodes generated will be the followings:

(1,∗,∗,∗,∗,∗) (0,0,∗,∗,∗,∗) (0,1,1,∗,∗,∗) (0,1,0,1,∗,∗) (0,1,0,0,∗,∗).

In the case where all non-basic variables are fixed, and all basic variables are free:
a Depth First Search algorithm enumerates the remaining basic variables and if a fea-
sible solution is met, the best known solution is updated. If the sum of the variables
fixed to one is equal to k (the number of items corresponding to the explored hyper-
plane 1 · x = k) and the solution is feasible, the best known solution is updated else
the enumeration backtracks.

5 Reduced costs propagation

In the following, we expose two reduced cost propagations embedded to the implicit
enumeration framework. Both of them are based on the same reduced costs analysis
but diverge in the way they are carried out. The first one takes the local reduced costs
constraint into account at each node of the search tree, and the second one is a more
global propagation which deals with the reduced costs constraint of all parents of
each node.

5.1 Local propagation

Let gap(St ) = UB(St )−LB be the gap value at node St . The reduced costs constraint
(1) allows us to fix several non-basic variables either to zero or to one. Indeed, if
we insulate a variable xj which is non-basic at the optimum of the 01MDKSt and
consider all others non-basic variables at their bounds, i.e. zero for the variables with
a negative reduced cost and one for the variables with a positive reduced cost, the
constraint (1) gives the two following relations:

(x̄
St

j = 1) ⇒ xj ≥
[

1 − gap(St )

|c̄t
j |

]
, (3)

(x̄
St

j = 0) ⇒ xj ≤
[

gap(St )

|c̄t
j |

]
(4)

where x̄
St

j is the value of the non-basic and free variable xj at the optimality of the

01MDKSt and c̄
St

j its corresponding reduced cost. Using relations (3) and (4), we
state the following local reduced costs propagation:



• For each variable xj which is non-basic at the optimum of the 01MDKSt , if |c̄St

j | >
gap(St ): Fix xj to zero (resp. one) if and only if x̄

St

j is equal to zero (resp. one).

Thus, if a non-basic variable xj has a reduced cost c̄
St

j > gap(St ) at node St , xj is

fixed to the value x̄
St

j .
Moreover, changing the value of a variable xj implies that the left-hand side of

constraint (1) at node St is augmented by the value c̄
St

j . Then the value gap(St ) can
be interpreted as the amount of reduced cost available to swap the value of the non-
basic variables at node St . The current partial solution St is consistent with constraint
(1) if and only if

∑
j∈�St

c̄
St

j ≤ gap(St ), so that �St = {j / xj is fixed to 1 − x̄
St

j }.
Supposing we branch on xj at node St , then all the other variables xi ∈ L(St ) so

that c̄
St

j + c̄
St

i > gap(St ) cannot be fixed to the opposite of their optimal value. So,
at each node of the search tree, we are able to proceed to this second reduced costs
propagation:

• Supposing we branch on xj ∈ L(St ). For each non-basic and free variable xi ∈
L(St ) i �= j , if c̄

St

j + c̄
St

i > gap(St ): fix xi to zero (resp. one) if x̄
St

i is equal to zero
(resp. one) and let it free otherwise.

For example, let us suppose that x̄St = (0,1,0,0,1,0.5,0.4) at the optimality of
the 01MDKSt and that c̄

St

1 , c̄
St

2 > gap(St ), then we fix x1 to 0 and x2 to 1 according
to the local reduced costs propagation and we generate the following children:

(0,1,1,∗,∗,∗,∗,∗) (0,1,0,1,∗,∗,∗) (0,1,0,0,0,∗,∗) (0,1,0,0,1,∗,∗).

Let us suppose now that c3 + c5 > gap(St ), then according to the second reduced
costs propagation exposed above, x5 will be directly fixed to its optimal value 1 after
the branching on x3 and the first children generated will be (0,1,1,∗,1,∗,∗) instead
of (0,1,1,∗,∗,∗,∗,∗). This second propagation enables us to reduce the number of
simplex phases in the enumeration.

5.2 Global propagation

This propagation comes from the observation that each 01MDKSt provides a reduced
costs constraint and that each child of St has to satisfy this constraint. In their ap-
proach, Oliva et al. (2001) use the information brought by those constraints: at each
node St , the corresponding reduced costs constraint is added to a constraint program-
ming model and propagated on the variables domains. This process appears to be
high c.p.u. time consuming and to penalize the whole computing time. In the pro-
posed approach, the propagation only deals with reduced costs propagation in terms
of available gap quantity as in the local propagation.

Indeed, let P(St ) be the set of parent nodes of St . Let us suppose that xj is fixed

to 1 − x̄
St

j at node St and that x̄
Sp

j = x̄
St

j , p ∈ P(St ), then we can update gap(Sp) by

withdrawing |c̄Sp

j |. If it appears that gap(Sp) < 0, St becomes unfeasible. Supposing
xj is fixed to the value v at node St , then for each parent node Sp p ∈ P(St ) so that

x̄
Sp

j = 1 − v, the value gap(Sp) is reduced by the corresponding reduced cost |c̄Sp

j |
and if gap(Sp) < 0, the current partial solution St is unfeasible.



Regarding the reduced cost propagation scheme, it appears clearly that the more
the variable we branch on has a high absolute reduced cost value, the more the gap
value is thin and the propagation is effective. Hence, at each node, we first branch
on the free variables which have the higher reduced cost value in order to make the
algorithm converge faster.

Algorithms 1 and 2 respectively detail the recursive enumeration procedure. Al-
gorithm 1 is devoted to the variable fixing and the branching phase, Algorithm 2 to
the creation of sub-problems and to the reduced costs propagation.

Algorithm 1 Enumeration

This method enables us to propagate the reduced costs without adding explicitly
new constraints to the model at each node. We only consider one reduced cost con-
straint and the consistency of each sub-problem solution with it. The propagation is
carried out by ascending the search tree from the current node to the root. At each
node, we check that the reduced costs constraint is consistent with the fixed variables
otherwise the current node is pruned.

Let us note that contrary to the classical Branch & Bound method, this propagation
proscribes us to update the lower bound when a better feasible solution is met except
at the root of the tree. Indeed, if the lower bound of a node of the branch and bound



tree is different from the lower bound of its parents, the global propagation will have
no meaning since the gap value will change. However, since the root node does not
have any parents, it is possible to update the lower bound at this stage.

Algorithm 2 Auxiliary program

6 Computational experiments

Our enumeration procedure has been tested on benchmarks produced by Chu and
Beasley (1998) issued from the OR-LIBRARY.2 These benchmarks were generated
using the procedure proposed by Fréville and Plateau (1994). This collection contains
problems with n = 100, 250 and 500 variables and m = 5, 10 and 30 constraints.
Thirty problems were generated for each n–m combination, giving a total of 270
problems. The aij integer values were generated by using a uniform random generator
U(0,1000) and the right-hand side values were generated in correlation with the
aij so that bi = α

∑n
j=1 aij where α = 1/4,1/2 and 3/4 is the tightness ratio. The

costs of the objective function (cj ) were generated in correlation with the aij so that

2Available at http://people.brunel.ac.uk/~mastjjb/jeb/info.html.



cj = ∑m
i=1 aij /m + 500dj where dj is a random generated number between 0 and 1.

The whole name of each problem is cbm.n_r, where m is the number of constraints,
n the number of variables and r the number of the instance. Each set of 30 instances
with the given numbers m and n is divided into 3 series with a different tightness
ratio: problems 1 to 9 correspond to the ratio α = 1/4, problems 10 to 19 to the ratio
α = 1/2 and problems 20 to 29 to the ratio α = 3/4. Our algorithm has been tested
on a P4 3.2 GHz with 1 GB RAM and the results are compared to those produced by
the commercial solver CPLEX 9.2.

6.1 Lower bound calculation

The lower bounds were calculated separately with two previously published algo-
rithms: (1) RLtabu proposed by Vasquez and Hao (2001), which is a hybrid approach
combining linear programming and an efficient tabu search and (2) Fix + RLtabu pro-
posed by Vasquez and Vimont (2005), which is the same algorithm embedding a
variable fixing heuristics. We computed the lower bounds with RLtabu for the 100
variable instances and with Fix + RLtabu for the 250 and 500 variable instances. The
reason why we use both algorithms is that the variable fixing heuristics embedded in
Fix + RLtabu makes the algorithm consume more c.p.u. time and that RLtabu performs
quite the same results for the smaller instances. It is important to note that we limited
the number of iterations for both algorithms in order to have an appropriate ratio time
consumption/quality of the solutions. This explains why the lower bounds exposed
in this paper are lower than the ones published in Vasquez and Vimont (2005). For
the 100 variable instances, RLtabu is limited to 50 000 iterations and Fix + RLtabu is
limited to 100 000 iterations for the 250 variable instances and 200 000 iterations for
the 500 variable instances.

6.2 Computational results

Our enumeration algorithm found the optimum of all the 10 constraint, 250 vari-
able instances (Table 2) even if the c.p.u. time consumption exceed 4 hours. These
instances are hard to solve and we expose here new results never obtained before.
CPLEX solves 46% of them in less than 4 hours of computational time and run out
of memory for the others 54%. Our enumeration algorithm solves 94% of them in the
same time limit. Our algorithm proves all the 500 variable, 5 constraint instances in
less than 4 hours of computational time. However the optimal solutions were already
published by James and Nakagawa (2005).

Our algorithm consumes little RAM memory when solving hard instances and this
enables us to solve instances to the optimum even if the required computational time
is greater than 4 hours (the maximum time is around 24 hours for the cb10.250_7 in-
stance). Indeed, for the majority of the 10 constraint, 250 variable instances, CPLEX
exceeds the capacity of RAM memory after 4 hours of computational time when our
enumeration solves all the instances. Another positive point of our algorithm is that
its structure enables to use parallel processors to reduce the overall run time required
to solve a given instance. Indeed, we can assign the resolution of each 01MDK(k)
with k ∈ [kmin, kmax] to each processor. The parallel approach can widely decrease
the run time required to solve hard instances.



Table 1 Results obtained on cb5.250 problems

Instance lb opt Cplex

z∗ t∗ zopt gap(×102) kopt topt t total tCpx

cb5.250_0 59312 80 59312 0 73 0 80 33

cb5.250_1 61472 79 61472 0 74 3 82 156

cb5.250_2 62130 61 62130 0 76 1 62 11

cb5.250_3 59453 106 59463 0.016 71 93 199 861

cb5.250_4 58951 95 58951 0 74 6 101 261

cb5.250_5 60062 78 60077 0.024 74 28 106 384

cb5.250_6 60396 98 60414 0.029 76 6 104 171

cb5.250_7 61449 101 61472 0.037 73 36 137 239

cb5.250_8 61885 73 61885 0 76 3 76 69

cb5.250_9 58959 87 58959 0 72 0 87 16

cb5.250_10 109086 96 109109 0.021 132 15 111 124

cb5.250_11 109841 97 109841 0 135 2 99 40

cb5.250_12 108508 72 108508 0 130 3 75 129

cb5.250_13 109378 98 109383 0.004 134 12 110 157

cb5.250_14 110718 95 110720 0.001 130 21 116 671

cb5.250_15 110256 91 110256 0 132 5 96 227

cb5.250_16 109040 79 109040 0 133 3 82 195

cb5.250_17 109042 95 109042 0 132 14 109 314

cb5.250_18 109971 100 109971 0 130 5 105 165

cb5.250_19 107058 90 107058 0 131 6 96 18

cb5.250_20 149659 91 149665 0.004 191 5 96 101

cb5.250_21 155940 92 155944 0.002 190 3 95 62

cb5.250_22 149334 95 149334 0 191 24 119 141

cb5.250_23 152130 103 152130 0 193 2 105 94

cb5.250_24 150353 98 150353 0 191 4 102 90

cb5.250_25 150045 73 150045 0 191 0 73 9

cb5.250_26 148607 75 148607 0 192 0 75 6

cb5.250_27 149772 95 149782 0.006 193 8 103 127

cb5.250_28 155061 91 155075 0.009 190 1 92 17

cb5.250_29 154662 95 154668 0.003 191 4 99 121

Tables 1, 2 and 3 detail the results obtained on problems with 250 and 500 vari-
ables. Bold face highlights the best c.p.u. time required between our algorithm and
CPLEX. The description of the columns is:

• instance: the name of the instance;
• z∗: the value of the lower bound;
• t∗: the c.p.u. time in seconds required to calculate the lower bound;
• zopt: the optimal solution found by the enumeration;
• gap(×102): the gap between the lower bound and the optimal value;
• kopt: the number of items in the optimal solution;



Table 2 Results obtained on cb10.250 problems

Instance lb opt Cplex

z∗ t∗ zopt gap(×102) kopt topt t total tCpx

cb10.250_0 59187 205 59187 0 68 4921 5126 X

cb10.250_1 58710 292 58781 0.001 69 43618 43910 4369

cb10.250_2 58094 174 58097 0.005 69 1335 1509 6746

cb10.250_3 60989 206 61000 0.018 70 8874 9080 X

cb10.250_4 58068 276 58092 0.041 67 14487 14763 X

cb10.250_5 58824 135 58824 0 68 964 1099 7394

cb10.250_6 58704 154 58704 0 67 898 1052 8255

cb10.250_7 58930 200 58936 0.01 69 87129 87329 X

cb10.250_8 59382 188 59387 0.008 68 4240 4428 X

cb10.250_9 59208 173 59208 0 69 6729 6902 X

cb10.250_10 110913 180 110913 0 129 4772 4952 X

cb10.250_11 108702 249 108717 0.013 127 7216 7465 X

cb10.250_12 108932 190 108932 0 128 3192 3382 X

cb10.250_13 110086 220 110086 0 131 14871 15091 X

cb10.250_14 108485 184 108485 0 128 2122 2306 9869

cb10.250_15 110845 184 110845 0 130 5770 5954 X

cb10.250_16 106077 263 106077 0 129 7604 7867 X

cb10.250_17 106685 216 106686 0 128 5322 5538 X

cb10.250_18 109822 251 109829 0.006 127 4566 4817 X

cb10.250_19 106723 263 106723 0 131 1121 1384 5716

cb10.250_20 151801 203 151809 0.005 187 770 973 4695

cb10.250_21 148772 146 148772 0 188 2138 2284 X

cb10.250_22 151900 175 151909 0.005 189 653 828 5048

cb10.250_23 151274 173 151324 0.033 189 5316 5489 2234

cb10.250_24 151966 179 151966 0 191 753 932 5727

cb10.250_25 152096 179 152109 0.008 189 639 818 2826

cb10.250_26 153131 154 153131 0 189 85 239 374

cb10.250_27 153563 210 153578 0.009 187 8259 8469 X

cb10.250_28 149130 302 149160 0.02 187 974 1276 1638

cb10.250_29 149704 230 149704 0 190 596 826 2487

• topt: the c.p.u. time in seconds required to find the optimal solution;
• t total: the total time required (t∗ + topt);
• tCpx: the c.p.u. time in seconds required to CPLEX 9.2 to find the optimal solution

or X if it exceeds 4 hours of computational time;

6.3 Bounds reduction of the number of items at the optimum

For the hard instances (cb30.250, cb10.500 and cb30.500), we attempted to reduce
the bounds of the number of items at the optimum by experimenting our algorithm
within a limit of 10 hours of computational time. Indeed, even if we stop it prema-



Table 3 Results obtained on cb5.500 problems

Instance lb opt Cplex

z∗ t∗ zopt gap(×102) kopt topt t total tCpx

cb5.500_0 120114 480 120148 0.028 147 851 1331 8001

cb5.500_1 117844 597 117879 0.029 148 437 1034 855

cb5.500_2 121105 927 121131 0.021 144 185 1112 4687

cb5.500_3 120785 474 120804 0.015 149 156 630 6050

cb5.500_4 122291 406 122319 0.022 147 152 558 1578

cb5.500_5 121984 603 122024 0.032 153 329 932 3678

cb5.500_6 119117 680 119127 0.008 145 171 851 6937

cb5.500_7 120551 595 120568 0.014 150 209 804 2672

cb5.500_8 121566 513 121586 0.016 149 659 1172 X

cb5.500_9 120663 776 120717 0.044 151 2007 2783 5756

cb5.500_10 218411 612 218428 0.007 267 226 838 1457

cb5.500_11 221118 584 221202 0.037 265 1562 2146 905

cb5.500_12 217523 842 217542 0.008 264 792 1634 3728

cb5.500_13 223534 837 223560 0.011 263 374 1211 5009

cb5.500_14 218966 474 218966 0 267 11 485 485

cb5.500_15 220520 679 220530 0.004 262 135 814 3122

cb5.500_16 219973 525 219989 0.007 266 68 593 1211

cb5.500_17 218194 670 218215 0.009 265 141 811 1096

cb5.500_18 216976 603 216976 0 262 94 697 2373

cb5.500_19 219689 612 219719 0.013 267 357 969 2522

cb5.500_20 295828 760 295828 0 383 7 767 47

cb5.500_21 308078 570 308086 0.002 384 104 674 475

cb5.500_22 299788 742 299796 0.002 385 41 783 187

cb5.500_23 306476 574 306480 0.001 384 46 620 1182

cb5.500_24 300340 543 300342 0 385 67 610 204

cb5.500_25 302565 607 302571 0.001 385 27 634 988

cb5.500_26 301327 439 301339 0.003 385 27 466 366

cb5.500_27 306430 496 306454 0.007 383 62 558 148

cb5.500_28 302809 640 302828 0.006 384 84 724 367

cb5.500_29 299904 425 299910 0.002 378 135 560 478

turely, the enumeration can provide interesting results: (1) It can fix variables to their
optimal value in each explored hyperplane and (2) it can explore all the sub-tree cor-
responding to 1 · x = k and prove that no solution with k number of items better than
the lower bound exists. The main interest here is to reduce the bounds of the number
of items at the optimum (i.e. to cut some hyperplanes). Hence, we thought about the
best way to explore hyperplanes within a given time limit. Considering the fact that
the function z̄(μ) = c · x̄μ (optimum of 01MDK(μ) where μ ∈ R) is convex,3 the

3This property is directly proved by applying the theorem 10.2 of the book Linear Programming by Chvátal
(1983).



Table 4 New bounds for the number of items at the optimum

cb30.250 cb10.500 cb30.500

Pb LB kmin kmax Pb LB kmin kmax Pb LB kmin kmax

0 56824 62 64 0 117811 134 136 0 116056 128 133

1 58520 65 66 1 119232 134 137 1 114810 126 131

2 56553 62 65 2 119215 135 137 2 116712 126 131

3 56930 63 65 3 118813 136 138 3 115329 126 131

4 56629 63 65 4 116509 133 138 4 116525 126 132

5 57189 62 65 5 119504 136 139 5 115741 129 133

6 56328 62 65 6 119827 138 139 6 114181 127 131

7 56457 63 65 7 118329 134 137 7 114348 126 131

8 57442 62 66 8 117815 136 137 8 115419 126 132

9 56447 63 65 9 119231 136 139 9 117116 126 132

10 107770 124 127 10 217377 256 259 10 218104 250 254

11 108392 124 126 11 219077 258 260 11 214648 250 254

12 106399 123 126 12 217806 255 258 12 215978 248 252

13 106876 124 126 13 216868 258 260 13 217910 250 255

14 107414 124 127 14 213850 255 260 14 215689 250 254

15 107271 125 127 15 215086 256 258 15 215890 251 257

16 106365 125 128 16 217940 259 261 16 215907 251 255

17 104013 124 127 17 219984 256 259 17 216542 251 256

18 106835 123 126 18 214375 256 258 18 217340 251 256

19 105780 125 127 19 220899 254 255 19 214739 251 255

20 150163 187 189 20 304387∗ 379 379 20 301675 374 377

21 149958 187 188 21 302379 380 380 21 300055 373 379

22 153007 187 188 22 302416 379 381 22 305087 374 379

23 153234 187 188 23 300757 379 380 23 302032 374 378

24 150287 187 188 24 304374 380 381 24 304462 375 378

25 148574 186 188 25 301836∗ 375 375 25 297012 372 377

26 147477 187 188 26 304952 377 379 26 303364 372 377

27 152912 186 188 27 296478 379 379 27 307007 375 379

28 149570 186 188 28 301359 379 380 28 303199 374 379

29 149587 186 188 29 307089∗ 378 378 29 300572 374 378

best order to explore hyperplanes in a limited time, is to start from the possible ex-
treme integer values of [kmin, kmax] to the center integer values: kmin, kmax, kmin + 1,
kmax − 1, etc. The objective is to prove that no solution z > z∗ with k items exists, so
we first tackle the “easier” hyperplanes with the smaller value z̄(k).

We expose on Table 4 the new bounds for the number of items at the optimum so
that kmin ≤ kopt ≤ kmax, boldface highlights the new bounds provided comparatively
to those previously known with the method exposed in Sect. 4. The description of the
data per column is:

• Pb: the number of the instance.



• LB: the lower bound used. LB is in boldface if the lower bound has been improved
and the star (*) indicates that LB is the optimal value.

• kmin: the lower bound of the number of items at the optimum.
• kmax: the upper bound of the number of items at the optimum.

We reduced the bounds of 88% of the instances within a limit of 10 hours of com-
putational time. A hyperplane is cut if our algorithm explores the whole sub-tree of
the corresponding value k and does not find any better solution than the best known
solution, in the other case, if it finds a better solution than the best known solution, or
if it reaches the time limit, it stops the exploration of the current hyperplane.

7 Conclusion

In this paper we have demonstrated how an implicit enumeration combining con-
straint and linear programming can be efficient to solve large-scale 01 multidimen-
sional knapsack problems. Our enumeration method includes two specific reduced
costs propagations which enable on the one hand to fix variables and on the other
hand, to prune nodes of the search tree. Experimentally, our algorithm leads us to
good results in terms of computational times. The new optimal solutions never pub-
lished before and the new bounding of the number of items at the optimum for hard
instances constitutes the two main contributions of our approach. Moreover the pro-
vided solutions can help researchers in the field of heuristics to evaluate their solu-
tions. For the harder instances which are not solvable in a reasonable c.p.u time, we
plan to experiment a distributed version of our algorithm.
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