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Complete and Incomplete Algorithms for the Queen Graph Coloring Problem

The queen graph coloring problem consists in cover ing a n x n chessboard with n 2 queens, so that two queens of the same color cannot attack each other. When the size, n, of the chessboard is a multiple of 2 or 3, it is bard to color the queen graph with only n colors. We have developed an exact algorithm which is able to salve exhaustively this problem for dimensions up to n = 12 and find one solution for n = 14 in one week of computing time. The 454 solutions of Queens_l2 2 show horizontal and vertical symmetries in the color repartition on the chessboard. From this observation, we design a new exact, but incomplete, a!M gorithm which leads us to color Queens_ n 2 problems with n colors for n = 15, 16, 18, 20, 21, 22, 24, 28 and 32 in less than 24 hours of computing time by the exploitation ofsymmetries and other geometM rie properties.

INTRODUCTION

Given an x n chessboard, a queen graph is a graph with n 2 vertices, each of them corresponding to a square of the board. Two vertices are connected by an edge if the corresponding squares are in the same row, column, or diagonals. This corresponds to the rules for moving the queen in a chess game.

In this paper, we consider the following problem: are n colors sufficient to place n 2 queens on the chessboard so that there is no clash between two queens of same color? If so, n is the chromatic number of Queens_ n 2 -noted x n -sin ce the maximum clique num M ber is n. Indeed, the rows, the columns and the 2 main diagonals constitute the 2n + 2 maximum cliques ofthis graph.

A fi rst exact algorithm, working on independent sets, salves the queen graph problems for n up to 14. We have obtained completeness for n = 10 (no solution) and n = 12 (454 solutions), but only one solution for Queens_l4 2 in 168 hours of computing tune. When examining Queens_l2 2 solutions, we find symmetries, both vertical and horizontal, between vertices belonging to different independent sets. That means that we could generate vertices by pairs rather than one by one. This observation leads us to consider these symmetries, and some other geometric operations, in order to reduce the size of the search space. This approach is no more complete but we expect to solve larger instances under the hypothesis that such geometric properties exist.

The paper is structured as follows. After a brief overview of the literature, we describe the main characteristics of our search tree alM gorithm based on independent sets. Theo we present the four kinds of geometric operations implemented to improve our results. Finally, 

BRlEF OVERVIEW

Although the graph coloring problem bas been the subject of intense research, applications on the QueensMn 2 problem have received a limited attention: Mehrotra and Trick [START_REF] Mehrotra | A Column Generation Approach for Graph Coloring[END_REF] use a column generation ap� proach to the independent set formulation of the graph coloring prob lem, devising an efficient algorithm to solve the maximum weighted independent set problem arising in the column generation process, and are able to salve problems up ton= 9. Caramia and Dell'Olmo [ 1] suggest a sophisticated algorithm based on the iterative coloring extension of a maximum clique. Extensive computational results are gîven where QueensM n 2 problems are solved up ton= 9.

On the other band, heuristic methods are also used to treat the Queens_n 2 problem. For instance, Kochenberger, Glover et al. [START_REF] Kochenberger | An Unconstrained Quadratic Binary Programming Approach to the Vertex Coloring Ptob lem[END_REF] transfonn this problem into an unconstrained quadratic binary probM lem, and solve it by the tabu search method. Other recent works using local search and solution combining are designed to tackle Queens_ n 2 problems up ton= 16 [START_REF] Chiarandini | An Application of lterated Local Search to Graph Coloring Problem[END_REF][START_REF] Hamiez | Coloration de graphes el planification de rencontres sp ortives: heuristiques, algorithmes et analyses[END_REF]. However, non-exact methM ods fail to prove that X n = n and only give an upper bound for the chromatic number.

NESTED ENUMERATIONS

Our algorithm to solve the Queens_n 2 problem is based on the enu meration of the independent sets (J S) of the que en graph. An I S is defined as a subset of vertices which are not linked by an edge.

Hence, all the vertices of the same J S can have the same color.

The n squares belonging to the first row of the chessboard are definitively colored with n different colors and do not take part in the combinatoric. lndeed, these squares correspond to a maximum clique of the graph. This classical technique bas already been exploited in [START_REF] Marino | Breaking the symmetry of the graph colour ing problem with genetic algorithms[END_REF] and avoids to explore many symmetric confi gurations.

Then, the algorithm iteratively constructs independent sets while checking that there are no two queens on the same square. lt is based on the following statements.

3,1 IS Enumeration and Assignment

No JS can contain more than n vertices because there are n disjoint cliques of size equal ton (for instance, the n rows of the chessboar � ). Accordingly, coloring n 2 vertices with n col ors leads to find n dis joint independent sets I1 .. • In with exactly n vertices each, among a set J Sn of the I S candidates with n vertices. J Sn is generated by a standard depth-first search.

This enumeration pro�edure is embedded in a branching algorithm which tries to assign up to n I S subject to the non overlapping con straint: Vi # j ) Ii n I 3 = 0 (only one queen by square). Since choosing one J S corresponds to coloring n vertices ( or squares), the depth of the search tree is lower than n.

At each stage of the search we identify the subsets IS j i of J S that cover each free square (j, i) of the chessboard. The uncolored square which can be covered by the smallest number of remaining I S corresponds to the branching node. The process backtracks as soon as there is no more J S to cover an uncolored square.

The J S are not constructed once and for ail because of the huge amount of memory required to store them as soon as n is growing up: for n = 15, we have 1475300 IS and for n = 16, we have 9609410 I S (taking into account the filtering technique described below).

Filtering

Reducing the search space while exploring it is a classical technique for solving Constraint Satisfaction Problem, CSP (see, for instance, the study of Sabin and Freuder {9}). Caramia and Dell'Olmo [START_REF] Caramia | Constraint Propagation in Graph Color ing[END_REF] have also applied constraint propagation to the Graph Coloring Problem.

In our approach, the implementation of a filtering process aims at decreasing the huge nurpber of J S to be selected by using the non overlapping constraint that constitutes a• dense constraint network. Moreover, we have found another implicit constraint, based on the cliques of the subMgraph of the uncolored vertices. Hence, our fi lterM ing procedure is two fold. At first, every time an I S Ii is selected, propagation on the non overlapping constraint is carried out. Secondly, after the i th JS asM signment, n -i other I S have to be chosen to form a solution. If, at this stage of the search, there is a clique of size n -i C • in the subgraph of the uncolored squares, then ail the remai�in;JS to be chosen must cover one vertex in this clique. This means that if the condition I3nC n -i = 0 holds for an i i E !Sn, then we can remove I 3 from the search space under the current node of the search tree. By construction, the I 3 cannot produce such a condition with squares belonging to the same row or column (there are no more than n rows and n columns in the chessboard, and each I 3 counts n vertices). This is not the case for the diagonals. For example, at the root of the search tree, we can delete the independent sets which do not cover one square of each of the 2 main diagonals. At the next node, we can consider these 2 main diagonals plus the 4 with n -1 squares, and so on.
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, 1 h ' ,, " ' " 1 shows the number of J S generated when considering -or not -the filtering on cliques. It also shows the number of nodes proM duced at lev el 3 of the search tree and the elapsed CPU time, in sec onds: half of the search space is pruned when fi ltering on the cliques of the sub-graph constituted by the uncolored vertices.

FIRST RESULTS

Up to QueensMl l 2 the answer is instantaneous : there is no solution for Queens_l0 2 • Thus Xto � 11 since xu = 11 we deduce that Xw = 11. Indeed, the first 10 rows and the fi rst 10 columns of the Queens_l 1 2 solution constitute a 11 colors correct assignment for the 10 x 10 chessboard . Exploring the search tree for Queens_l2 Those geometric properties and other ones, reflecting the repartiM tion of the colors on the chessboard, are defined and exploited in the next section in order to go ahead with Queens_n 2 problems.

USING SYMMETRIES

Before describing each geometric property, let us define the grid maintaining the chessboard of dimension n. The left higher corner square bas the coordinates (0, 0) and the central square has the coorM dinates ( n ;-

, n

;-1 ). Note that, if n is even, the value of n;-1 remains fractional.

The general idea is to use some geometric operators to generate more than one independent set per branching node. A first application of this idea when n = 2p consists in generating J S by pairs and consequently in reducing the depth of the search tree by 2. Secondly, depending on the n value, other geometric operations are combined and implemented.

We go on the assumption that there are solutions presenting such properties. Theo the resulting enumeration algorithm does not guarM antee to find solutions for a given Queens_n 2 instance, Hence, the elaborated algorithm is exact but incomplete. 

Horizontal symmetry for n = 2p

The vertex corresponding to the square (j, i) of the chessboard is fixed at the same time with the vertex corresponding to the square (j 1 , i') obtained by the linear transformation:

( j' _ n:_;-1 ) = ( -1 O ) X ( j _ n;-1 ) i ' -n ; l Ü 1 i -":_;-1
Accordingly, the pseudo code expressing the horizontal symmetry (j ', i') = H(j, i) is: The independent sets { a, b} , • • • , { u, v} of Queens_22 2 are enu merated simultaneously: the depth of the search tree is divided by 2. This geometric operator works also for n = 12, 14, 16 and n = 18. However, the computing time becomes very important (see section 6) when n is growing up and no solution is found for n = 20 after 168 hours (i.e. one week) of computing time.
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Composition of symmetries for n = 4p

In this case, the transformation is a composition of the vertical and horizontal symmetries. Hence, we consider -at the same time the vertices (j, i), (j ', i'), 0", i 11

) and (j 111 , i' 11 ), such as (j', i') = H(j, i) (horizontal symmetry) and {j 11 , i 11 ) = V{j, i) where the op erator V corresponds to the vertical symmetry transformation defined by the linear operation: ( j'n;-1 ) ( 1 i ' -n ; l Q and the corresponding pseudo code is:

{ j' =j ., ' z =n-i-1 J --2 - • n-1 ) , n-1 i --2-
Then we deduce the coordinates of the vertex corresponding to the square (j '11, i'") by combining those two operators: The independent sets {a,v, k, +}, •--,{b, &, f,*} of Queens_32 2 are enumerated simultaneously: the depth of the search tree is divided by 4. This geometric operator improves the computing times for n = 12, 16 and 20. lt also enables to solve Queens_n 2 for n = 24 and 28.

(j 11' 1 i'") = 1-{, 0 V (j, i),
These first geometric operators are not appl icable to Queenss, 2 when n is odd. We consider this case in the sections below.

Centrnl symmetry for n = 3p

The vertices corresponding to the squares (j, i) and (j', i') are as signed simultaneously, by a symmetry to the central square of the chessboard expressed by the linear operation:

( j' -";-; ) = ( -1 0 ) X ( i ' -n :_;-1 Ü -1 J -- 2 - • n-1 )
. n-1 i--2and the pseudo code generating (i' , j') from (i, j) is:

{ ., ' 1 J =n -J - i' =n-i-1
This operation is wrong for I S that cover the central square of the chessboard, because this square is an invariant for this symmetry. In fact, it is not necessary to assign this last J S. Indeed, when the n -l first I S are assigned, n squares (inc/uding the central one) still have to be colored. Each uncolored square belongs to exactly one row, column and diagonal. Let us prove this statement by contradiction: if there are two uncolored squares in a row (column) then only n -2 squares are colored on this row (column), which is in contradiction with the hypothesis that n -1 I S of size n are fixed. If there are two uncolored squares on a diagonal, then the process backtracks because of the filtering on the cliques constituted by the diagonals.

The independent sets { a, b}, • • • , { m, n} of Queens.15 2 are gen erated simultaneously: the depth of the search tree is divided by 2. The I S { o} covering the central square of the chessboard is built implîcitly. Even if this transformation allowed us to solve the Queens_n 2 for n = 15, no solution was found for n = 21 after 68 hours of comput ing tirne. In the next section, we will deal with this last case.

Composition of rotations for

n = 4p + 1
Here the geornetric operator is 'If /2 rotation around the central square of the chessboard and defined by the linear transfom1ation:

and the eorresponding pseudo code of the operation (j ', i 1

) = n(j, i. ) is: { •/ . 1 J =n-i- i' = j
Iwo other vertices, (j", i") and (j "' , i "' ), are also generated simul taneously so that (j",i") = R,(j',i') = 'R 2 (j, i) and (j 111 ,i'11) 'R(j The independent sets { a, b, c, d}, • , •, {q, r, s, t} of Queens_2 1 2 are constructed sirnultaneously: the depth of the search tree is di vided by 4. As for the Queens_l 5 2 problem, the independent set { u}, covering the central square, is built implicitly.
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RESULT SYNTHESIS

The experiments are carried out on a Xeon 3 Ghz machine. The mem ory required to solve the considered instances is smaller than 1 MB, even ifa large number of IS is generated. However, the Queens_22 2 problcm was distributed on 20 P4 2.4 Ghz machines. Indeed, a ma chine is affected to each possible position of the second vertex of the first independent set_ , which covers the square of left higher corner of the ch essboard. 
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In Table 2, for each dimension n, we express the elapsed time in seconds to reach afirst solution by using (or not: No Op. column) the geometric properties described in the previous sections. The colurnn R, 2 corresponds to the central symmetry (R is the rr/2 rotation de scribed in section 5.4 ). The line "-" means that either no solution is found after 168 hours of CPU time, or the geornetric operator does not match with the dimension n of the chessboard.

Regarding the results, using the horizontal symmetries (7-l column) reduces the time needed to reach a solution frorn 107 sec. to 1 sec. for n = 12, and from 240952 sec. to 5 sec. for n = 14. The combination of both horizontal and vertical symrnetries {7-l& V column) reduces again the required time, from 243 to 1 sec. for the Queens_16 2 prob lern and pennits to solve Queens.n 2 for n = 20, 24, 28 and 32. How ever, in considering the three first columns, the required time to find a solution grows exponentially with the dimension of the Queens_n 2 problem. The resolution of larger problems (dimensions greater than 32) appears to be very difficult.

Finally, readers who are interested in other certificates are in vited to consult the web page www. lgi2p . ema . fr/~vasquez/ queen .htm

CONCLUSION

In this paper, we proposed a branching algorithm to solve the Queens.n 2 coloring problems. It embeds an independent sets enu meration by a depth search procedure, and it is also reinforced by an efficient filtering based on the cliques belonging to the uncolored vertices of the queen graph . This first algorithm achieved the com pleteness for Queens_lQ 2 and Queens.12 2 problems and proved that x14 = 14. The 454 Queens.12 2 solutions show horizontal and vertical sym metries between vertices belonging to pairs of independent sets. This observation gives us the intuition of designing an exact, but incom plete, algorithm around these geometric properties. This idea was primordial to improve the previous results. Indeed, the exploitation of the structural properties of the colors repartition on the chessboard ( symmetries and rotations) allowed us to deal with larger Q ueens_n 2 problems. Thus, we improved significantly our first results: we suc• ceeded to color up to 1024 vertices of the Q ueens.32 2 graph with 32 colors ( against 196 vertices of the Q ueens.14 2 graph).

This work gives eleven counterexamples to the Gardner conjecture ( 4 ) stating that "it is possible to color Queens.n 2 with II colors if and only if n is not divisible by either 2 or 3".

Our future work consists in investigating two directions in order to deal with large instances: firstly we will attempt to find other geomet rîc operators to generate simultaneously more vertices, and secondly we will try to find other important properties that should lead us to implement a more efficient fi ltering procedure.
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 1 Figure 1. Chessboard configuration at node 4 for Queens_l2 2

  2 requires less than 1 hour CPU. The enumeration finds 454 solutions proving that x12 = 12, Hence, the algorithm achieved complete ness for Queens_l0 2 and Queens_l 2 2 • However, only one solution is found for Queens_14 2 after a week of computing time. This result is sufficient enough to prove that x14 = 14. But we are not able to solve instances larger than QueensM14 2 • When examining the 454 solutions obtained on Queens_l2 2 , we observe that 98 of them present only horizontal symmetry, 98 present only vertical symmetry (the vertices of different J S corne by pair), and 258 present both vertical and horizontal ones (the vertices of different J S corne four at a time ).
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 4 Figure 4. Certifi cate for xis = 15

Figure 5 .

 5 Figure 5. Certificate for x:21 = 21

Table 1 .

 1 Comparative statistics

	n	IS	Without filtering nodes	soc.	IS	With filtering nodes	sec.
	10	724	2883	0	544	991	0
	11 2680	45232	0 1744	15262	0
	12 14200	7559966	163 9440	3834450	75
	13 73712 1273054614 115 146 52008 571824811 45389
	Table						

Table 2 ,

 2 Computational time needed to obtain the first solutions.

	n	No Op.	1-l	Geometric Operations 1-l&V 'R_2	'R..&'R 2 &R.3
	12 14 15 16 18 20	107 240952	5 243 2171	4897
	21 22• 24 28		233404'	10 1316	30844
	32