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Complete and Incomplete Algorithms for the Queen
Graph Coloring Problem

Michel Vasquez and Djamal Habet!

Abstract. The queen graph coloring problem consists in cover-
ing a n X n chessboard with n® queens, so that two queens of
the same color cannot attack each other. When the size, n, of the
chessboard is a multiple of 2 or 3, it is hard to color the queen
graph with only n colors. We have developed an exact algorithm
which is able to solve exhaustively this problem for dimensions up
to n = 12 and find one solution for n = 14 in one week of
computing time, The 454 solutions of Queens_12* show horizontal
and vertical symmetries in the color repartition on the chessboard.
From this observation, we design a new exact, but incomplete, al-
gorithm which leads us to color Queens_n? problems with n colors
forn = 15, 16, 18, 20, 21, 22, 24, 28 and 32 in less than 24 hours of
computing time by the exploitation of symmetries and other geomet-
ric properties.

1 INTRODUCTION

Given a n X n chessboard, a queen graph is a graph with n? vertices,
each of them corresponding to a square of the board. Two vertices are
connected by an edge if the corresponding squares are in the same
row, column, or diagonals. This corresponds to the rules for moving
the queen in a chess game.

In this paper, we consider the following problem: are n colors
sufficient to place n? queens on the chessboard so that there is no
clash between two queens of same color? If so, n is the chromatic
number of Queens_n® —noted xn~ since the maximum clique num-
ber is n. Indeed, the rows, the columns and the 2 main diagonals
constitute the 2n + 2 maximum cliques of this graph.

A first exact algorithm, working on independent sets, solves the
queen graph problems for n up to 14. We have obtained completeness
for n = 10 (no solution) and n = 12 (454 solutions), but only
one solution for Queens_14 in 168 hours of computing time. When
examining Queens_12 solutions, we find symmetries, both vertical
and horizontal, between vertices belonging to different independent
sets. That means that we could generate vertices by pairs rather than
one by one. This observation leads us to consider these symmetries,
and some other geometric operations, in order to reduce the size of
the search space. This approach is no more complete but we expect
to solve larger instances under the hypothesis that such geometric
properties exist.

The paper is structured as follows. After a brief overview of the
literature, we describe the main characteristics of our search tree al-
gorithm based on independent sets. Then we present the four kinds
of geometric operations implemented to improve our results. Finally,
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we summarize the computing time needed to color Queens .n® up to
n = 32, before concluding the paper.

2 BRIEF OVERVIEW

Although the graph coloring problem has been the subject of intense
research, applications on the Queens_n® problem have received a
limited attention: Mehrotra and Trick 8] use a column generation ap-
proach to the independent set formulation of the graph coloring prob-
lem, devising an efficient algorithm to solve the maximum weighted
independent set problem arising in the column generation process,
and are able to solve problems up to n = 9. Caramia and Dell’Olmo
[1] suggest a sophisticated algorithm based on the iterative coloring
extension of a maximum clique. Extensive computational results are
given where Queens_n? problems are solvedup ton = 9.

On the other hand, heuristic methods are aiso used to treat the
Queens.n? problem. For instance, Kochenberger, Glover et al. [6]
transform this problem into an unconstrained quadratic binary prob-
lem, and solve it by the tabu search method. Other recent works
using local search and solution combining are designed to tackle
Queens_n? problems up to n = 16 [3, 5]. However, non-exact meth-
ods fail to prove that x,, = n and only give an upper bound for the
chromatic number.

3 NESTED ENUMERATIONS

Our algorithm to solve the Queens_n? problem is based on the enu-
meration of the independent sets (1S) of the queen graph. An IS
is defined as a subset of vertices which are not linked by an edge.
Hence, all the vertices of the same /.S can have the same color.

The n squares belonging to the first row of the chessboard are
definitively colored with n different colors and do not take part in the
combinatoric. Indeed, these squares correspond to a maximum clique
of the graph. This classical technique has already been exploited in
[7] and avoids to explore many symmetric configurations.

Then, the algorithm iteratively constructs independent sets while
checking that there are no two queens on the same square. It is based
on the following statements.

3.1 IS Enumeration and Assignment

No /S can contain more than n vertices because there are n disjoint
cliques of size equal to n (for instance, the n rows of the chessboard).
Accordingly, coloring n? vertices with n colors leads to find n dis-
joint independent sets I - - - Z,, with exactly n vertices each, among
a set IS, of the IS candidates with n vertices. 1.5, is generated by
a standard depth-first search.




This enumeration procedure is embedded in a branching algorithm
which tries to assign up to n IS subject to the non overlapping con-
straint: Vi # j,Z; N Z; = O (only one queen by square). Since
choosing one .S corresponds to coloring n vertices (or squares), the
depth of the search tree is lower than n.

At each stage of the search we identify the subsets IS;; of IS
that cover each free square (3, ¢) of the chessboard. The uncolored
square which can be covered by the smallest number of remaining
IS corresponds to the branching node. The process backtracks as
soon as there is no more /.S to cover an uncolored square.

The IS are not constructed once and for all because of the huge
amount of memory required to store them as soon as n is growing
up: for n = 15, we have 1475300 IS and for n = 16, we have
9609410 I S (taking into account the filtering technique described
below).

3.2 Filtering

Reducing the search space white exploring it is a classical technique
for solving Constraint Satisfaction Problem, CSP (see, for instance,
the study of Sabin and Freuder (9]). Caramia and Dell’Olmo [2] have
also applied constraint propagation to the Graph Coloring Problem.

In our approach, the implementation of a filtering process aims at
decreasing the huge number of IS to be selected by using the non
overlapping constraint that constitutes a'dense constraint network.
Moreover, we have found another implicit constraint, based on the
cliques of the sub-graph of the uncolored vertices. Hence, our filter-
ing procedure is two fold.

At first, every time an IS Z; is selected, propagation on the non
overlapping constraint is carried out. Secondly, after the i** IS as-
signment, n — ¢ other /.S have to be chosen to form a solution. If,
at this stage of the search, there is a clique of size n — i, Cn—, in
the subgraph of the uncolored squares, then all the remaining I.S to
be chosen must cover one vertex in this clique. This means that if the
condition Z;NC,—; = @ holds for anZ; € I.5,, then we can remove
Z; from the search space under the current node of the search tree.
By construction, the Z; cannot produce such a condition with squares
belonging to the same row or column (there are no more than n rows
and n columns in the chessboard, and each I; counts n vertices).
This is not the case for the diagonals. For example, at the root of the
search tree, we can delete the independent sets which do not cover
one square of each of the 2 main diagonals. At the next node, we can
consider these 2 main diagonals plus the 4 with n — 1 squares, and
S0 on.
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Figure 1. Chessboard configuration at node 4 for Queens.122

Figure 1 illustrates how this filtering works on the Queens.12?

problem. At node 4, 4 colors are assigned and 14 diagonals must be
checked before going on. Since the ascendant diagonal (bold arrow
on Figure 1) defined by the formula j 4+ i = 8 has no colored vertex,
the process backtracks. Indeed, this clique contains 9 vertices and
there are only 8 IS left to select in order to cover compietely the
chessboard.

Table 1. Comparative statistics

Without filtering With filtering
n s nedes sec. 1S nodes  sec,
10 724 2883 0 544 991 (4]
11 2680 45232 0 1744 15262 4]
12 14200 7559966 163 9440 3834450 75

13 73712 1273054614 115146 52008 571824811 45389

Table 1 shows the number of .S generated when considering - or
not — the filtering on cliques. It also shows the number of nodes pro-
duced at level 3 of the search tree and the elapsed CPU time, in sec-
onds: half of the search space is pruned when filtering on the cliques
of the sub-graph constituted by the uncolored vertices.

4 FIRST RESULTS

Up to Queens_112 the answer is instantaneous: there is no solution
for Queens-lOz. Thus x10 > 11 since x11 = 11 we deduce that
x10 = 11. Indeed, the first 10 rows and the first 10 columnns of the
Queens_112 solution constitute a 11 colors correct assignment for
the 10 x 10 chessboard. Exploring the search tree for Queens.122
requires less than 1 hour CpU. The enumeration finds 454 solutions
proving that x12 = 12. Hence, the algorithm achieved complete-
ness for Queens_10 and Queens_122. However, only one solution is
found for Queens_142 after a week of computing time. This result
is sufficient enough to prove that x14 = 14. But we are not able to
solve instances larger than Queens_142.

When examining the 454 solutions obtained on Queens_122, we
observe that 98 of them present only horizontal symmetry, 98 present
only vertical symmetry (the vertices of diffierent 7.S come by pair),
and 258 present both vertical and horizontal ones (the vertices of
different IS come four at a time).

Those geometric properties and other ones, reflecting the reparti-
tion of the colors on the chessboard, are defined and exploited in the
next section in order to go ahead with Queens.n” problems.

5 USING SYMMETRIES

Before describing each geometric property, let us define the grid
maintaining the chessboard of dimension n. The left higher corner
square has the coordinates (0, 0) and the central square has the coor-
dinates (“5*, ™51 ). Note that, if n is even, the value of ®5* remains
fractional.

The general idea is to use some geometric operators to generate
more than one independent set per branching node. A first application
of this idea when n = 2p consists in generating IS by pairs and
consequently in reducing the depth of the search tree by 2. Secondly,
depending on the n value, other geometric operations are combined
and implemented.

We go on the assumption that there are solutions presenting such
properties. Then the resulting enumeration algorithm does not guar-
antee to find solutions for a given Queens_n? instance. Hence, the
elaborated algorithm is exact but incomplete.



5.1 Horizontal symmetry for n = 2p

The vertex corresponding to the square (j,¢) of the chessboard is
fixed at the same time with the vertex corresponding to the square
(5',4) obtained by the linear wansformation:

7] n—1 : n=1
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Accordingly, the pseudo code expressing the horizontal symmetry

(7', #) = H(jyi) is:
f=n-j-1
i'=1
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Figure 2. Certificate for xo2 = 22

The independent sets {a, b}, -, {t, v} of Queens_22* are enu-
merated simultaneousty: the depth of the search tree is divided by 2.
This geometric operator works also for n = 12, 14, 16 and n = 18.
However, the computing time becomes very important (see section
6) when n is growing up and no solution is found for n = 20 after
168 hours (i.e. one week) of computing time.

52 Composition of symmetries for n = 4p

In this case, the transformation is a composition of the vertical
and horizontal symmetries. Hence, we consider —at the same time—
the vertices (j,1), (4',1), G",i") and (,1"), such as (§',4') =
H(4, 1) (horizontal symmetry) and (5", ") = V{4, i) where the op-
erator V corresponds to the vertical symmetry transformation defined
by the linear operation:

it — nzl 1 0 .
p) = 3
(iux§l> (0 -1 )i p
and the corresponding pseudo code is:
=7
=n—1-1
Then we deduce the coordinates of the vertex corresponding to the

square (5", i""") by combining those two operaiors:

(8" = HoV (5,4).
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Figure 3. Certificate for x32 = 32

The independent sets {a,v,k,+},---,{b, &, f,*} of
Queens_32% are enumerated simultaneously: the depth of the
search tree is divided by 4. This geometric operator improves the
computing times for n = 12,16 and 20. It also enables to solve
Queens_n? for n = 24 and 28.

These first geometric operators are not applicable to Queens_n
when n is odd. We consider this case in the sections below.

2

53 Central symmetry for n = 3p

The vertices corresponding to the squares (4,1) and (5, ¢) are as-
signed simultaneously, by a symmetry to the central square of the
chessboard expressed by the linear operation:

: n=1 = X ; n—1
(f—ﬁr 0 ~1 it

and the pseudo code generating (', j) from (3, j) is:

fl=n-—j—1
i =n—i=-1

This operation is wrong for 1.5 that cover the central square of the
chessboard, because this square is an invariant for this symmetry. In
fact, it is not necessary to assign this last 7S. Indeed, when the n — 1
first IS are assigned, n squares (including the central one) still have
to be colored. Each uncolored square belongs to exactly one row,
column and diagonal. Let us prove this statement by contradiction: if
there are two uncolored squares in a row (column) thenonly n — 2
squares are cofored on this row (cofumn), which is in contradiction
with the hypothesis that n — 1 IS of size n are fixed. If there are two
uncolored squares on a diagonal, then the process backtracks because
of the filtering on the cliques constituted by the diagonals.

The independent sets {a, b},- -+, {m,n} of Queens_15 are gen-
erated simultaneously: the depth of the search tree is divided by 2.
The IS {0} covering the central square ofthe chessboard is built
implicitly.
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Figured, Certificate for x15 = 15

Even if this transformation allowed us to solve the Queens_n> for
n = 15, no solution was found for n = 21 after 68 hours of comput-
ing time. In the next section, we will deal with this last case.

5.4 Composition of rotations forn =4p+1

Here the geometric operator is 7 /2 rotation around the central square
of the chessboard and defined by the linear transformation:

-t n—l . n-—1
et 0 =1 =l
34 nE; = X J n—gl
v 10 Lol
and the corresponding pseudo code of the operation (j',i') =

R(F,1) is:
i=n—-i-1
i'=3

Two other vertices, (5,4} and (§"',1""), are also generated simul-
taneously so that (5,4") = R(5',i') = R*{j,4) and (,i") =
R(j",i") = R*(4,4).
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Figure 5. Certificate for 21 = 21

The independent sets {a, b, ¢,d}, -, {q,7, 5 t} of Queens-212
are constructed simultaneously: the depth of the search tree is di-
vided by 4. As for the Queens_15% problem, the independent set {u},
covering the central square, is built implicitly.

6 RESULT SYNTHESIS

The experiments are carried out on a Xeon 3 Ghz machine. The mem-
ory required to solve the considered instances is smaller than 1 MB,
even if alarge number of IS is generated. However, the Queens_22?
problem was distributed on 20 P4 2.4 Ghz machines. ndeed, 2 ma-
chine is affected to each possibie position of the second vertex of the
first independent set, which covers the square of left higher corner of
the chessboard.

Table2. Computational time needed to obtain the first solutions.

Geometric Operations
n  NoOp. H H&Y R? R&RARS
12 107 1 1 - -
14 240952 5 - - -
15 - - - 4897 -
16 - 243 1 - -
18 - 2171 - - -
20 - - 1 - -
21 - - - - 30844
22~ ~  233404* - - -
24 - - 10 - -
28 - - 1316 - -
32 - - 73790 - -

In Table 2, for each dimension 7, we express the elapsed time in
seconds to reach afirst solution by using (or not: No Op. column) the
geometric properties described in the previous sections. The column
R? corresponds to the central symmetry (R is the /2 rotation de-
scribed in section 5.4 ). The line “~” means that either no solution
is found after 168 hours of CPU time, or the geometric operator does
not match with the dimension n of the chessboard.

Regarding the results, using the horizontal symmetries (H column)
reduces the time needed to reach a solution firom 107 sec. to 1 sec. for
n = 12, and from 240952 sec. to 5 sec. for n = 14. The combination
of both horizontal and vertical symmetries (H&V column) reduces
again the required time, from 243 to 1 sec. for the Queens.16* prob-
lem and permits to solve Queens.n? for n = 20, 24, 28 and 32. How-
ever, in considering the three first columns, the required time to find
a solution grows exponentially with the dimension of the Queens.n?
problem. The resolution of larger problems (dimensions greater than
32) appears to be very difficult.

Finally, readers who are interested in other certificates are in-
vited to consult the web page www . 1gi2p.ema.fr/ “vasquez/
queen. htm.

7 CONCLUSION

In this paper, we proposed a branching algorithm to solve the
Queens.n? coloring problems. It embeds an independent sets enu-
meration by a depth search procedure, and it is also reinforced by
an efficient filtering based on the cliques belonging to the uncolored
vertices of the queen graph. This first algorithm achieved the com-
pleteness for Queens.10? and Queens_12? problems and proved that
x1a = 14,

The 454 Queens_122 solutions show horizontal and vertical sym-
metries between vertices belonging to pairs of independent sets. This
observation gives us the intuition of designing an exact, but incom-
plete, algorithm around these geometric properties. This idea was



primordial to improve the previous results. Indeed, the exploitation
of the structural properties of the colors repartition on the chessboard
(symmetries and rotations) allowed us to deal with larger Queens_n?
problems. Thus, we improved significantly our first results: we suc-
ceeded to color up to 1024 vertices of the Queens_32° graph with 32
colors (against 196 vertices of the Queens.14? graph).

This work gives eleven counterexamples to the Gardner conjecture
[4] stating that “it is possible to color Queens_n® with n colors ifand
only if n is not divisible by either 2 or 3”.

Our future work consists in investigating two directions in order to
deal with large instances: firstly we will attempt to find other geomet-
ric operators to generate simultaneously more vertices, and secondly
we will try to find other important properties that should lead us to
implement a more efficient filtering procedure.
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