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Combining FDI and AI Approaches Within
Causal-Model-Based Diagnosis

Sylviane Gentil, Jacky Montmain, and Christophe Combastel

Abstract—This paper presents a model-based diagnostic method
designed in the context of process supervision. It has been inspired
by both artificial intelligence and control theory. Al contributes
tools for qualitative modeling, including causal modeling, whose
aim is to split a complex process into elementary submodels. Con-
trol theory, within the framework of fault detection and isolation
(FDI), provides numerical models for generating and testing resid-
uals, and for taking into account inaccuracies in the model, un-
known disturbances and noise. Consistency-based reasoning pro-
vides a logical foundation for diagnostic reasoning and clarifies
fundamental assumptions, such as single fault and exoneration.
The diagnostic method presented in the paper benefits from the
advantages of all these approaches. Causal modeling enables the
method to focus on sufficient relations for fault isolation, which
avoids combinatorial explosion. Moreover, it allows the model to
be modified easily without changing any aspect of the diagnostic
algorithm. The numerical submodels that are used to detect incon-
sistency benefit from the precise quantitative analysis of the FDI
approach. The FDI models are studied in order to link this method
with DX component-oriented reasoning. The recursive on-line use
of this algorithm is explained and the concept of local exoneration
is introduced.

Index Terms—Causal graph, causal reasoning, diagnosis, fault
detection, fault filtering, fault isolation, supervision.

1. INTRODUCTION

AULT analysis is an important activity in almost all in-

dustries. The need for dependability in industrial plants or
availability of complex devices is becoming a major issue in
the fulfillment of increasingly stringent requirements with re-
spect to productivity or safety. Fault analysis is a prerequisite
for safety studies, process supervision or establishing a main-
tenance policy. It can be carried out a priori, generally fol-
lowing on from failure mode effect analysis. In this case, all pos-
sible failures that could occur are hypothesized, their effects are
predicted and the counteractions for eliminating or minimizing
these effects are designed. Fault diagnosis generally addresses
the study of faults during the routine use of the installation. Di-
agnostic results can be used to decide about on-line recovery
actions or plant shut-down, and the maintenance schedule. The
work presented in this paper is intended for on-line diagnosis
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of industrial processes such as nuclear plants, power plants or
petrochemical plants.

The diagnosis of complex systems is complicated. It has been
an area of very active investigation for many years. Two research
communities have been particularly involved in studying fault
diagnosis: the artificial intelligence community, known as the
diagnostic (DX) community, and the control theory community,
known as the fault detection and isolation (FDI) community. It is
nevertheless worth noting that very few industrial applications
have been reported [30], [37]. The general objective of Al is to
reproduce human reasoning and more generally any human cog-
nitive mode of comprehension, perception, representation, and
decision making, as faithfully as possible. This is a major diver-
gence with control theory, which processes numerical data and
algorithms in order to stabilize systems or optimize production.

Within the DX community, diagnosis is considered as a
reasoning process. Poole [45] distinguishes two kinds of rea-
soning for solving diagnostic tasks: normal-operation-oriented
reasoning and abnormal-operation-oriented or abductive rea-
soning. Normal-operation-oriented diagnosis uses knowledge
about how normal components work to detect deviations from
normality in observed behavior, from which a minimal set of
faults is hypothesized. Abnormal-operation-oriented diagnosis
uses knowledge about how the components are affected by
some specific faults in order to trace those faults. Al diagnostic
techniques are varied. Empirical information and experience
may be encoded as associative knowledge in rule bases.
When many experimental data describing faults are available,
case-based reasoning is a powerful approach. Model-based
diagnosis uses deep knowledge of the device for diagnosis.
Reiter [48] proposed a logical theory of model-based diagnosis,
also referred to as consistency-based diagnosis. The analysis
is aimed at obtaining consistency between the observations
and the model by removing assumptions about the behavior of
some components. This theory was extended and formalized
in [18]. Many refinements have since been proposed. Struss
[51] emphasizes many advantages of Al model-based diag-
nosis, such as the possibilities of explicit conceptual modeling,
automated model composition, and structural model revision.
The AI community has also proposed an important concept:
qualitative modeling, an aspect of which is causal modeling,
as used in this paper. Causal modeling enables a complicated
process to be decomposed into elementary submodels and is
thus very suitable for complex system analysis. Causal models
provide explanations of the behavior of the modeled system that
are close to human reasoning, which is completely excluded by
the purely numerical calculus that constitutes the control basis
supporting the FDI methods.



FDI focuses on engineering systems, such as production fa-
cilities, machines, vehicles, electrical drives, etc., whether faults
occur in the plant (the technical equipment itself) or in its mea-
surement and control instruments (sensor and actuator faults)
[23]. This approach makes a distinction between fault detection
(deciding that faults are present) and fault isolation (deciding
which particular fault is present) [19], [29]. As with most con-
trol theory, diagnosis is based on a dynamic quantitative model
of the system under study, generally represented as a set of dif-
ferential algebraic equations. In contrast to the Al approach,
the model is numerical and as precise as required by the di-
agnostic objective. Generally, the model represents the normal
behavior of the system, in the absence of any fault and charac-
terizes deterministic phenomena, taken into consideration using
basic “laws” of physics, biology, etc. But it can also include de-
tailed knowledge about how faults or unknown disturbances af-
fect the variables of the system. It can take into account noise,
which is a stochastic process affecting the measurements and/or
the system’s behavior. Until recently, the management of noise,
disturbances, and model errors was not seen as a major issue for
the Al DX community. With the FDI approach, computations
result in numerical quantities, the residuals, whose properties
enable diagnosis with very accurate quantitative information.
Nevertheless, several logical assumptions are implicit in the FDI
formulation, whereas they are clearly formulated within the DX
consistency-based diagnostic framework.

Reasoning and computing may thus be considered in opposi-
tion. The combined method presented in this paper brings them
together. It relies on both a qualitative causal representation of
the process and on quantitative local models. It has been in-
spired by artificial intelligence for the causal modeling of phys-
ical systems and for studying logical soundness. But it takes
advantage of control theory at the level of each elementary sub-
model to check local consistency. Process dynamics are taken
into account using relations between variables that manage
time explicitly. Section II presents the interest of causal mod-
eling for representing the normal behavior of complex systems
and the basic principle of diagnostic causal reasoning. Never-
theless, knowing a causal structure is insufficient for making
a successful diagnosis. In particular, variables and their rela-
tions may be represented in a numerical (FDI) or a symbolic
(DX) manner. Section III briefly recaps and compares the ad-
vantages and disadvantages of these two approaches, to justify
the choices that have been made. Section IV details the gener-
ation of causal model based residuals. Section V presents the
proposed recursive isolation algorithm, which avoids combina-
torial explosion, and places it in the contexts of both FDI and
DX. The conclusion discusses the advantages and limits of this
combined method.

II. CAUSAL MODELS OF COMPLEX SYSTEMS

The causal-model-based diagnostic method presented in this
paper concerns the design of a supervisory system. Nowadays,
supervision is no longer designed to eliminate the operators
from process control, but instead to support them in their de-
cision-making tasks. The diagnostic procedure to be integrated

into the supervisory system must therefore be provided with ex-
planatory features. Techniques based on causal graphs are a per-
tinent approach for this purpose [21].

In this section, the notion of causality and how it can be ap-
plied to diagnosis is discussed, in order to justify the choices
that have been made for the proposed method.

A. Causality

Causality occupies a central position in human cognition.
Informal descriptions of real-world phenomena in the form A
causes B, are exceedingly common. Causal descriptions are the
source of various reasoning modes. B can be predicted or ex-
plained using A. Causality plays an essential role in human deci-
sion-making by providing a basis for choosing that action which
is likely to lead to a desired result. [11] claims that diagnosis is
typically a causal process, because it consists in designating the
faulty components that have caused, and can explain, the ob-
served malfunctions.

It is difficult to give a sound definition of causality, which
should satisfy the following criteria. It is general rather than re-
stricted to a narrow class of phenomena. It is precise and unam-
biguous and can be used as a basis for logical reasoning and/or
computation. It can be employed to answer the questions. Did
or does or will A cause B or vice-versa? If there is a causal con-
nection between A and B, what is its strength? It does not lead
to counterintuitive conclusions.

The AI community has been working for a long time on
representations of causality. In particular, causal modeling,
whether applied in the context of economical systems [31]
or qualitative physics [16], has been the subject of a famous
debate. Iwasaki and Simon are interested in causality when the
system is modeled by a set of mathematical relations. Calcula-
bility imposes causal ordering. Causality is clear in differential
relations. For instance, § = f(u,y) imposes an orientation of
the resolution because u cannot be deduced from y; thus
must be computed from another equation. Difficulties appear
when relations model simultaneous evolutions. For instance,
Ohm’s law U = RI does not impose a direction, as it can be
used to compute either U from I or the opposite. De Kleer
and Brown define causality from an engineering point of view.
The experienced engineer analyzes the functioning of a system
only by propagating important conceptual entities through the
system topology. The behavior of the system arises out of in-
teractions between its constitutive components. Propagation of
constraints is nondeterministic, discovering multiple orderings
including, but not restricted to, Simon’s causal ordering [17].
The differences between the two previous approaches result
from one single fact. De Kleer and Brown link causality to
the structure of the system (local analysis), while Iwasaki and
Simon link causality to the form of the equations describing
the system (global analysis).

Bayesian networks are another example of causal modeling
in a situation where understanding of what is actually going on
is incomplete, so entities have to be defined probabilistically
[44]. Bayesian networks are directed acyclic graphs, where
the nodes are random variables, and dependence assumptions
that must hold between them are represented by the arcs.
These relations are different from logical relations since they



allow conditional rather than implicative reasoning. The name
“Bayesian networks” is completely neutral about the status of
the networks [3]. Bayesian approaches have been proposed
for learning Bayesian networks from a combination of prior
knowledge and statistical data [26].

In this paper, the basis for process representation is causal
representations of physical deterministic system behavior. A
causal structure is a qualitative description of the effect or influ-
ence that system entities (variables, faults, etc.) have on other
entities. It may be represented by a directed graph (digraph).
A causal graph, which represents a process at a high level of
abstraction, is appropriate for supervising the process.

In the following subsection, the use of causality and more
specifically of causal graphs is illustrated in the field of diag-
nosis. Its main objective, in this respect, is to deal with the com-
binatorial explosion that arises with model-based approaches.

B. Diagnosing With Causal Graphs

[7] states that one of the main limitations in logical model-
based diagnosis is its computational complexity, and proposes a
specific knowledge compilation approach to focus reasoning on
abductive diagnosis [10]. In the logical theory of abductive di-
agnosis [4]-[6], [35], [46] diagnosis is formalized as reasoning
from effects to causes. Causal knowledge is represented as log-
ical implications of the form causes — ef fects where causes
are usually abnormalities or faults, but may also include normal
situations. The pieces of causal knowledge can be organized in a
directed graph. This abductive type of reasoning contrasts with
deductive reasoning from causes to effects.

Emphasis on structure has been the central theme in proba-
bilistic reasoning and several attempts have imported this theme
into model-based diagnosis. [15], [24] and [14] propose a com-
prehensive approach for model-based diagnosis that includes
characterizing and computing preferred consequences—one
consequence is a Boolean expression that characterizes consis-
tency-based diagnoses—assuming that the system description
is augmented with a system structure represented as a directed
graph, explaining the interconnections between system com-
ponents. With a formulation based on logic, Darwiche shows
that there is a connection between the complexity of computing
consequences and the topology of the underlying system struc-
ture. Diagnosis becomes easier because the causal structure of a
system explains independences that can be used to decompose
the global consequences into local ones that can be evaluated
locally. Minimal diagnoses are those which are considered to
be most plausible. An algorithm that enumerates the minimal
diagnoses, characterized by a consequence, is proposed. What
is most important about Darwiche’s approach is that it ties
the computational complexity of diagnostic reasoning to the
topology of a system structure [13].

Causality, assimilated to calculability, has also been used in
FDI approaches. The structural model of a system represents its
normal behavior and is made up of a set of formal equations. A
Boolean matrix, known as the incidence matrix, represents the
system structure [50]. The columns represent variables, the rows
represent equations, and 1 in the matrix element ¢, j indicates
that the variable j is used in equation 7. A matching operation
directs the links between relations and variables. This matching

provides a breakdown that can be considered as a bipartite graph
in which the nodes are alternately a variable, a relation, etc. The
objective is to find relations that contain only known variables,
which can be used for the purposes of diagnosis to check the co-
herence of the observations with the model. This can be shown
to be equivalent to finding over-determined subsystems in the
incidence matrix. Based on this bipartite graph, [25] proposes
a causal-graph approach for studying system reconfigur-ability,
which appears as a consequence of multiple controllability paths
in the system’s causal graph.

Influence graphs are another type of causal approach to diag-
nosis, which is used in this paper and detailed in the following
subsection. They avoid fault modeling, which could be unfea-
sible in the case of a complex system. It provides a tool for
reasoning about the way in which normal or abnormal changes
propagate. It is suitable for physical explanations of the dynam-
ical evolution of variables, whether normal or abnormal.

C. Diagnosis and Influence Graphs

When the graph nodes represent the system variables, the
directed arcs symbolize the normal relations among them and
these relations are deterministic, the graph is frequently referred
to as an influence graph. No a priori assumption is made about
the type of relations labeling each arc. They could be qualita-
tive or quantitative. The digraph is above all a reasoning struc-
ture that can be enriched as knowledge becomes available. It
can include loops. The simplest influence graph structure is the
signed digraph (SDG). The branches are labeled by signs: “+”
(or “="") when the variables at each end of the arc have the same
(or opposite) trends. In this paper, arcs are labeled with dynamic
quantitative relations, justified from the diagnostic needs of in-
dustrial plants.

All influence-graph-based diagnostic methods implement the
same basic principle. The objective is to account for deviations
detected in the evolution of the variables with respect to the
normal behavior, using a minimum of malfunctions at the
source. Malfunctions can be related to physical components,
so as to obtain a minimal diagnosis. If significant deviations
are detected, primary faults, directly attributable to a failure or
an unmeasured disturbance, are hypothesized. The propagation
paths in the directed graph are analyzed to determine whether
this fault hypothesis is sufficient to account for secondary
faults, resulting from its propagation in the process over time.
The algorithm is a backward/forward procedure starting from
an inconsistent variable. The backward search bounds the
fault space by eliminating the normal measurements causally
upstream. Then each possible primary deviation generates a
hypothesis, which is forward tested using the states of the
variables and the functions of the arcs.

A diagnostic method using an SDG as the basic data struc-
ture was initially presented in [28]. The state of a variable
is expressed in the quantity-space {+,0,—}, according to
whether the value is normal (0), higher than normal (+), or
lower than normal (—). The graph resulting from diagnosis is
exclusively made up of signed nodes (+ or —) and consistent
branches—branches for which the product of the signs of the
initial and final nodes is the same as the sign of the branch. It is
a representation of the propagation of the fault in the system.



The consistency test of the initial and final nodes is carried out
recursively and constitutes the basic isolation procedure. The
roots of such a subgraph are candidates for the origins of the
failure.

This approach has since been considerably enhanced, essen-
tially introducing more information on the variable states. This
is justified by the ambiguity arising from a rough qualitative
variable representation. A five-range pattern of the variable
states {—,—7,0,4+7,+} was proposed in [49] to avoid the
pitfalls of a wrong diagnosis. The association of ambiguity
symbols (—7 or +7) to the nodes avoids incorrect threshold
choice and thus provides robustness. [42] uses numerical infor-
mation to represent the deviations in variables. Representing
variables with fuzzy sets is used in [53] to achieve progressive
quantification.

None of these studies takes variables dynamics into account.
This point is nevertheless important because the signatures
of the observed faults can change over time. Temporal fault
filtering is a required diagnostic functionality. [36] introduces
quantitative temporal information within the arcs. The same
representation is used in this paper. Arcs support differential or
difference equations that are parameterized with quantitative
parameters such as gains, delays, and time constants. How can
such a digraph be obtained?

Following de Kleer and Brown’s approach to causality, fo-
cused on the engineer’s causal knowledge, a first method for
obtaining such a causal model for a complex system is based
on engineering knowledge. It relies on a functional top-down
analysis of the process [32]. Nodes are selected as variables that
are meaningful to the supervision operator, generally measured
variables. Arcs can focus on various physical phenomena (bal-
ance, transportation, storage...). Temporal parameters in the
dynamic relations supported by the arcs can be estimated using
standard identification procedures [34].

Following Iwasaki and Simon’s approach to causality, the
causal graph may represent calculability. It can be obtained from
anumerical simulator representing a system of differential equa-
tions. The causal relations between the variables are in this case
implicit, related to the sampling of differential equations by the
simulation algorithms. The digraph can also be deduced from
the set of formal equations S g describing the set of process vari-
ables Sy, arranged with a causal ordering mechanism [31]. The
causal ordering can be performed within the theoretical frame-
work of a bipartite graph [47]. The graph G = (Sv U Sg, A)
is defined, where A is the set of arcs such that an arc exists be-
tween V; € V and e; € F if and only if V; is involved in e;.
The causal ordering therefore arises from determining a perfect
matching in G [27], [52]. As in the engineer’s approach, several
causal orders can be found for the same system.

Bond graph formalism is another way to derive temporal in-
fluence graphs. Bond graphs have been proposed for a long time
for the modeling of dynamic physical systems because they pro-
vide a systematic framework for building consistent and well
constrained models suitable for multiple domains (electricity,
mechanics. . .) [43]. They are deduced from a deep knowledge
of the physical mechanisms occurring in the process and de-
scribe material and energy exchanges, accumulation or trans-
portation. A bond graph can include causality constraints, even

if, once again, directing some arcs in the graph may have several
solutions [1]. [40] proposes using a bond-graph for diagnosis,
labeling its arcs with the names of the components whose be-
havior is described by each particular arc. The description of the
evolution of the variable is qualitative. In [39] and [40], the idea
is to predict the future behavior of the system for each abnormal
deviation in terms of their qualitative time-derivative changes.
When a discrepancy between the measurement and the nominal
value is detected, a backward propagation algorithm operates
on the temporal causal graph to implicate component param-
eters. Next, a forward-propagation algorithm predicts dynamic
qualitative deviations in magnitude and derivatives of the obser-
vations under the fault conditions. This is called the signature.
Then, the monitoring module compares reported signatures and
actual observations as they change dynamically after faults have
occurred. Transients generated by failures are dynamic, so the
signatures of the observed variables change over time.

The causal fault filtering method presented in this paper deals
with the quantitative dynamic case in influence-graph-based
diagnosis and can be compared to the progressive monitoring
method. The problems mentioned in the progressive monitoring
approach are solved by means of a quantitative approach. A
measured variable is no longer described by its qualitative value
and other higher order derivatives but by numerical values ob-
tained by solving the dynamic equation associated to it. As
long as qualitative parameters subsist in the model, diagnostic
reasoning is subject to ambiguous decisions, whereas numer-
ical values allow normal dynamic effects to be distinguished
naturally from fault propagation.

The combined method presented in this paper takes advan-
tage of the precision of FDI fault indicators because it uses a
quantitative model. At the same time, it benefits from the re-
sults of the logical soundness of DX through the use of a causal
structure that supports the diagnostic reasoning. The digraph is
a reasoning structure and it enables explicit management of the
logical assumptions made in the diagnostic reasoning.

III. AXIOMS OF DIAGNOSIS

The basic tools of the DX and FDI diagnostic approaches are
briefly summarized in this section, to provide the definitions and
concepts useful for understanding the proposed algorithm.

A. DX Approach

The DX community has been concerned with the modeling
of the diagnostic reasoning itself: the foundations of logical
reasoning have always been considered as major research
points. In the consistency based approach [48], the description
of the behavior of the system is component-oriented and rests
on first-order logic. The {SD (system description), COMP
(components)} pair constitutes the model. The system descrip-
tion takes the form of logical operations [12]. The extension of
the predicate ab(.) represents the set of abnormal components.

Let OBS be the set of observations. Diagnostic reasoning has
been summarized in the following way [33]. A diagnosis is a
minimal set A C COMP of abnormal components such that
{ab(c) : ¢ € A} U {=ab(c) : ¢ € COMP \ A}U SD U OBS
is consistent. A is minimal if no subset A’ C A is a diagnosis.



The diagnosis relies on the conflict notion: a conflict is a set of
components C C COMP such that SD U OBS U {—ab(c) : ¢ €
C'} is inconsistent; the observations indicate that at least one
of its components must behave abnormally. A diagnosis is thus
a set A of components such that COMP \ A is not a conflict.
The diagnosis proceeds in two steps: the first step determines
the set of conflict sets C; the second step computes diagnoses
from the conflict sets, using hitting sets: H C Jcc C such
that H N C # O for any C in C. Reiter [48] has shown that
A C COMP is a minimal diagnosis for {SD, COMP, OBS} if
and only if A is a minimal hitting set for the collection of conflict
sets C.

Diagnosis in this framework is logically sound but a major
drawback is the issue of combinatorial explosion for systems in-
volving many components [14], as in the case of industrial pro-
cesses, with whose diagnosis this paper is concerned. Another
difficult point is checking consistency in a qualitative frame-
work, when numerical continuous valued OBS obtained, for
instance, from an industrial plant data acquisition system, are
used. An example can be found in [40].

B. FDI Approach

The FDI community is especially concerned with industrial
process modeling and control. Models are quantitative and
dynamic [22]. Two basic representations can be used: state
space models and input—output relations. (1) is an example of
an input—output relation, which takes into consideration the
way faults f and unknown disturbances d affect the measurable
output y of the system, excited by an input u

y = h(u, f,d,t). ey

y and wu represent observations (OBS). Disturbances are
uncontrolled input signals whose presence is undesired but
normal (such as the wind for a plane or a resistive torque
for a motor) and must be distinguished from faults. Noise is
a special kind of disturbance related to random uncertainty.
Faults are deviations from normal behavior in the plant or its
instrumentation. Additive process faults are unknown inputs
acting on the plant, which are normally zero. Multiplicative
process faults lead to changes in model parameters. Sensor
and actuator faults are other significant types of faults,
represented as additive signals. A model (1) can take into
account both additive faults (extra signals) and modifications
to the model parameters (change in h).

The model is used to compute numerical fault indicators,
known as residuals, ;, which are null when there is no fault
affecting the system. Residual generation refers to the elabora-
tion of relevant fault indicators and has received much attention
within the FDI community. It is worth noting that a residual, by
using appropriate filters, can represent a much more elaborate
quantity than a simple comparison of a process measurement
with its model prediction [23].

A residual 7; must have a computational form (2), known
as an analytical redundancy relation, deduced from the model,
depending only on OBS, possibly at different times

rj = hej(u,y,t) 2)

TABLE 1
EXAMPLE OF INCIDENCE TABLE TO DESIGNATE STRUCTURED RESIDUALS
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The residual evaluation form is expressed by (3)
T = hej(u,y, f.d,t) 3)

which shows how it is influenced by the faults and the unknown
disturbances. Ideally, a residual should be decoupled from the
unknown disturbances and dependent only on a single fault f;

rj = hej(u,y, fj, t). 4

In (4), when f; is null, r; should be zero. In the DX view, if r;
is not zero, this results from an inconsistency between the model
and the observations. When new data come from the acquisition
system, residuals are computed using (2) and are interpreted to
obtain Boolean symptoms. This step is known as fault detec-
tion. Using numerical models and numerical data considerably
facilitates this computation. The decision can be made simply
by comparing the residuals to a fixed threshold, obtained empir-
ically. Knowing the way the model is affected by disturbances,
noise, or parameter imprecision allows this decision to be given
a mathematical foundation, using fuzzy set theory [21], [38], or
statistical decision theory [2], well suited to detection in systems
with model uncertainty or disturbed by random perturbations.

In realistic situations, it is not easy to obtain structured resid-
uals such as (4): a residual is generally sensitive to a subset of
faults. Consequently, the Boolean symptoms are organized ac-
cording to an incidence table (also called signature table). An
incidence table is a binary matrix where each line is associated
to a residual 7; and each column is associated to a fault f;. In
this matrix, “1”” means that the residual is sensitive to the fault.
“0” means that the residual is perfectly decoupled from the fault
(Table I). In the FDI context, only single faults are hypothesized,
otherwise the incidence matrix would become much larger. A
multiple-fault signature is generally roughly associated to the
logic OR operation of the elementary signatures.

The diagnosis is obtained by means of on-line pattern
matching: the residual vector (showing observed inconsisten-
cies) is compared at each time to the columns of the incidence
matrix (fault signatures). Thus diagnosis is reduced to finding a
theoretical fault signature similar to the practical one. This step
is known as fault isolation.

Analyzing this procedure from a logical point of view shows
that it is not logically sound, which is its major drawback. In
fact, it relies implicitly on the exoneration assumption, as has
been fully highlighted in a collective work published in [8], [9]
and is briefly explained here.

The exoneration assumption means that a faulty component
necessarily shows its faulty behavior, i.e. causes any analytical
redundancy relation (ARR) in which its model is involved not to
be satisfied by any given set of observations. Equivalently, given
the set of observations, any set of components whose model is
involved in a satisfied ARR is exonerated, i.e. each component



of the ARR support is considered to behave correctly. In this
general exoneration assumption, there is a single-fault exoner-
ation assumption—each individual component shows its faulty
behavior—and a noncompensation assumption—the individual
effects of faulty components never compensate each other.

Let {ARR;} C {ARR} be the subset of potentially affected
by a set of faults F; C F, and let f, be the present fault. The
exoneration assumption can be expressed as follows:

{ARR1(OBS)} =0 « f, € Fy (5)

where F is the complement of the set £} in F'. (5) is equivalent
to (6)

{ARR;(OBS)} # 0 < f, € F. 6)
When the exoneration assumption is not made
{ARR;(OBS)} =0 « f, € F} (7)
whose contrapositive is

{ARR{(OBS)} # 0 — f, € F}. (8)

C. Discussion

In conclusion, the FDI community has paid attention to
numerical system modeling: taking into account model uncer-
tainty, nonmeasurable disturbances, variable dynamics, and
the possibility of noise. The generation and use of theoretical
fault signatures reduces the diagnostic reasoning to a simple
pattern-matching activity. Nevertheless, this procedure is not
logically sound. Moreover, it is worth noting that even a small
modification in the model structure leads to the necessity of
restarting the generation of residuals from scratch, together
with fault detection and fault isolation, which is a tremendous
drawback of this approach. The DX community has been more
concerned with modeling diagnostic reasoning. In particular, in
the consistency-based approach, logical foundations have been
considered as major research points. No particular assumption
about the fault manifestations is needed. However, checking
consistency can be a difficult point when using quantitative
signal description.

The diagnostic method presented in the following paragraphs
uses advantages from several approaches. Causal modeling,
presented in Section II, enables the method to focus on rela-
tions that will be shown to be sufficient to allow fault isolation.
This avoids the combinatorial explosion that could be feared
when dealing with industrial plants. Moreover, it allows the
model to be modified easily without changing anything in the
diagnostic algorithm. It also enables the logical assumptions
of the diagnosis reasoning to be managed clearly. The numer-
ical submodels that are used to detect inconsistency benefit
from the precise quantitative analysis of the FDI decision.
The FDI models are studied in order to link this method with
DX component-oriented reasoning. A weak restriction to the
no-exoneration diagnostic framework is proposed that does not
require the introduction of fault mode modeling as in [41]. For
this reason, the concept of local exoneration is introduced.

IV. CAUSAL-GRAPH-BASED RESIDUAL GENERATION
A. The Causal Graph

The basic knowledge for dynamic causal models is knowl-
edge of the causal dependence between some variables and of
the equations relating these variables and modeling the system
components. It is assumed below that only measured variables
are represented in the causal graph. The nodes of causal graphs
based on expert knowledge are often related to observations.
Such variables are also the most meaningful in the context of
human-centered process supervision. How to transform a causal
graph with many intermediary variables into a graph with only
measured variables is explained and illustrated on an industrial
example in [27]. Among the variables involved in the equations
modeling the components’ normal behavior, the following ones
can be distinguished:

OBS=FEUY )
OBS* =E*UY™. (10)

OBS refers to observations that are either sensor outputs Y or
known exogenous inputs, . E and Y are disjoint sets. OBS™
refers to variables symbolizing the genuine value of the corre-
sponding variable in OBS. There is a one-to-one relationship
between variables in OBS (respectively, £, Y') and variables in
OBS™ (respectively, E*, Y*).

Let COMP denote the set of system components. The be-
havior of each component C' € COMP is modeled by a set of
equations, EQ(C). Therefore, EQ = EQ(COMP) denotes the
set of equations modeling the whole system. For each equation
eq € EQ, the support Supp(eq) of equation eq is the compo-
nent C such thateq € EQ(C). Let Eq denote a set of equations.
Supp(Eq) is the support of the composition of equations in Eq.
It satisfies

Supp(Eq) € | J Supp(eq). (11)
eqeEq

The inclusion in (11) may not be strict when the composition
of equations in Eq leads to some algebraic simplifications. Sen-
sors S C COMP and actuators A C COMP are components
with specific properties: in accordance with the definition of an
equation support, the sensor S(i) is the support of the equa-
tion linking Y*(¢) € Y™ (whose value y*(¢) is unknown) and
Y (i) € Y (whose value y(4) is known because it is the sensor
S(4) output). By convention, lower case notation refers to vari-
able values whereas uppercase notation refers to variable sym-
bols. By analogy with sensors, the actuator A(4) is a component
whose model links the unknown value e*(i) of E*(7) € E* and
the known value e(7) of E(i) € E.

The causal directed graph that is used to extract relevant tests
is (N, M) where N = OBS" refers to the nodes and M C
(N, N) stands for the set of arcs. Each arc M = (N (i), N(j)) €
M is directed from N(i) to N(j). The existence of such an
arc M means that a value of the variable N (7) is necessary to
compute a value of the variable N(j) with the set of equations
denoted Eq(M). Eq(M) is extended to a set of arcs M C M as
the union of Eq(M ), for each arc M in the set M.
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Fig. 1. Three-tanks example.

B. An Example Application

The example in Fig. 1 illustrates the notation used in this sec-
tion. The process consists of three tanks, pipes, feeding valves,
and flow sensors. Tank T'a; (respectively, T'as) is fed with
the input flow g;,, , (respectively, qin,2) regulated by the valve
opening actuator V; (respectively, V2). The output flow goyt 1
(respectively, qout2) of tank T'a; (respectively, T'az), feeds
tank T'agz. The output flow of T'as is qoyt,3. Valve V, with a
fixed opening, regulates qoy¢ ;- The output flows of tanks T'ay,
Tas, Tas are measured by sensors S7, So, S3 respectively. The
set of components of the three tanks system is COMP

COMP :{Vi,Vg,KTal,Tag,Tag,Sl,Sg7S3}
A={Vi,Va}, S ={51, 852,53}

(12)
(13)

A C COMP and S C COMP are the set of actuators and
sensors respectively. An example of a dynamic equation consti-
tuting the model of a component is the mass balance for tank
Tay, expressed in (14) as a difference equation. Equations (14)
and (15) constitute EQ(T'al)

z1(k+1) =1 - 21(k) + B - gjpy 1 (F) (14)

qgut,1(k’) =KhK1- Zl(k)7 Qin71(k‘> = ¢1 pTUﬁ) (15)

where, k represents the (discrete) time instant z; (k), the liquid
level at time &, and ¢, the tank intake flow. The model of the
valve opening actuator V7 links the genuine and the known (con-
trolled) opening ratio, p1(k), as indicated by (16). Similarly,
sensor S7 links the genuine and the known (measured) output
flows (17)

pi(k) =pi(k)
qgum(k) = ’IOut,l(k)-

(16)
a7

The interpretation of (17) is that the measurement of the
output flow is equal to its genuine value as long as the sensor
S1 is not faulty. A similar interpretation holds for each sensor
in S and each actuator in A.

Additional notations with index 1 replaced by 2 or 3 can be
used to model all the components of the three tanks system.
From the notational conventions, sets F/ and Y are particularized
as

E= {P17 P?}:
Y = {Qout,1§ Qout,2§ Qout,3}7
OBS=FUY (18)

{Tal, V} {Taz}‘
(®)

Fig. 2. Causal graph of the three tanks system. (a) Nodes: specific notation.
(b) Nodes: generic notation.

Fig. 3.

Augmented causal graph of the three-tanks system.

B = {P[; Py}

Y= {Qr)ut,ﬁ Qf)um; Q?)ut,s}
OBS* =E*UY™. (19)

Fig. 2 shows the causal graph I" of the three tanks system.
The nodes represent variables describing the causal physical
phenomena. Their value can be known using the process instru-
mentation. The other variables, such as levels for instance, are
intermediary variables which are used for computations but not
represented in the graph. Fig. 2 also shows the support of the
equations related to each arc of the causal graph.

The known variables constituting the set OBS are related to
the system instrumentation. Taking these observations into ac-
count results in an augmented graph now including sensors and
actuators (Fig. 3).

In Fig. 3, the arcs related to the instrumentation are oriented
from nodes in OBS toward their corresponding node in OBS*
because observations in OBS are the inputs of the fault diag-
nosis system. The aim of the next paragraphs is to show how
the causal graph can be helpful in order to exploit recursively
the redundancy between possible estimations of nodes in OBS™.



C. Introduction to the Global and Local Subgraphs

For each node in Y*, two kinds of subgraphs in I" will be in-
vestigated: global and local. The aim is to obtain global fault
diagnosis resulting from recursive local reasoning. Each sub-
graph refers to some equations that can be used to compute es-
timations of nodes in Y *. Moreover, sensors and actuators also
provide an estimation of nodes in Y* and E*. Therefore, several
residuals based on the redundancy resulting from two estima-
tions of a single variable in Y * can be defined. The supports of
the equations involved in the computation of those residuals will
be studied in order to propose a recursive isolation procedure.

The next two paragraphs introduce some notation in order to
define the global and local subgraphs of I'. Let N be a node
in N(N = OBS” for I'). Par(N) C N is the set of parents
nodes of N. Anc(N) C N is the set of ancestors of N, which
is recursively defined as Anc(N) = Par(N)U Anc(Par(N)).
The extension of Par(.) (respectively, Anc(.)) to a set of nodes
N C N is defined as the union of parents (respectively, ances-
tors) of each node in V.. Arcs(IV) is the set of arcs of the causal
graph T linking two nodes in /V.

To understand the notation used in the next paragraphs, it is
important to note that X (i) denotes the i*" element of the set
X, whereas the index notation X; refers to a set related to the
ith global model or to the i*" local model. Paragraph G will
illustrate the generic notations introduced in paragraphs D, E,
and F, by particularizing them to the three tanks example.

D. The Global Subgraphs and Global Residuals

The arcs of the global subgraph of T' related to the node
Y*(i) e Y*, i =1...card(Y"), are those in G; (20). card(.)
denotes the cardinal of a set. The name global is justified by the
fact that all the ancestors of Y*(7) in I are involved

G, =Ares (Y™ (i) U Anc (Y™ (4)) (20)
9i =Eq(G;) ey
qu = Supp(g7) (22)

g; (respectively, G;) therefore stands for the equations (respec-
tively, the support) related to G;. The structure of the global sub-
system related to Y*(7) can be represented by statement (23)

g Eg!f = Anc(Y*(3)) N E™. (23)

Equation (23) means that an estimation of the variable rep-
resented by Y;* = Y™*(4) can be calculated from an estimation
of the exogenous variables represented by Eg¢; and the equa-
tions g; whose support is G;. Let y? denote the estimation of
the genuine value y; of the variable Y;* at time k, based on the

exogenous variables

yi = gi(egs). (24)

yY is derived from the structure of the global subsystem (23)
and the use of eg; as an estimation of the genuine values eg;
of the variables in Eg}. eg; is a vector representing the value
of known exogenous variables in Fg;. Therefore, the support of

TABLE 1I
LocAL MODEL INPUT CONFIGURATION

m(j) Estimation Support related to the estimation

o USQ):
0 u’()  Supp(y). k such that Y (k)=U,(j)(25)
1 ui(y) S(k) k such that Y™ (k) =U, ()

(24) is the union of G; and the actuators linking variables in Fg;
and Eg;

Supp (y?) =G;U U
E*(j)€Eg}

A(j) i=1...card(Y™).

(25)

The global residual ¥ is based on the redundancy resulting

from the estimation of Y;* = Y*(i) by both 39 and v; (26). y;

is the value provided by the sensor S(%). The support of (26) is
thus the union of S(i) and Supp(y?) (27).

Y=y, —y), i=1...card(Y™")

r (26)
Supp (r?) = S(i) U Supp () .

27

E. The Local Subgraphs and Local Residuals

The arcs of the local subgraph of T' related to the node
Y*(3) € Y*,i = 1...card(Y*), are those in L, (28). The
name local is justified by the fact that only the parents of Y *(7)
in T are involved (whereas all the ancestors are involved in the
global subgraph)

L; = Arcs(Y*(i) U Par (Y*(4)) (28)
li =Eq(L;) (29)
L; =Supp(Ly). (30)

l; (respectively, L;) thus stands for the equations (respec-
tively, the support) related to L;. The structure of the local sub-
system related to Y*(7) can be represented by statement (31)
Y =L (U7, El;),

3

U =Par (Y*(i))NnY™,
El; =Par (Y*(i))NnE*. (31

According to (31), computing an estimation of Y;* = Y™*(7)
from the equations /; relies on the estimation of U and El} . el;
is a possible estimation of E!l} involving the actuators whose
model links the variables in El; and El}. The estimation of the
j*" variable in U}, denoted U} (j) € Y*, can be calculated by
two different ways. A Boolean configuration vector m defines
whether U () is estimated from the global model estimation
u?(4) or from the related measurement value w;(j)

i

Y™ = b (m ® ui + (—m) ® ol ely) . (32)

The configuration m = [...m(j)...] is a binary vector
having card(U}) elements. Each element is in {0;1}. The op-
erator — represents the logical negation. The operator ® stands
for the element by element product of two vectors having the
same dimension. In (32), m(j) enables selecting the value that
will be used to estimate the j*% local model input U} (j) as
indicated in Table II.



Numerical evaluation of y;" is thus possible because (32) de-
pends only on known or calculable values. Table II shows that
using a measurement to estimate a local model input enables
local reasoning (i.e. cutting the influence of propagated faults)
whereas using the global model estimation focuses on the faults
propagated specifically by that input. Moreover, it should be
noted that the values of y? given by (24) and by (32) when
m = 0(Vj,m(j) = 0) are the same.

A first set of local residuals is based on the redundancy re-
sulting from the estimation of Y;* = Y*(i) by both y* and y;
(33). y; is the known value provided by the sensor S(7). The
support of (33), depending on the local input configuration m is
given by (34) to (36), where U}, = {U7(j) € U} /m(j) = 1}
and Uy, = {U;(j) € Uy /m(j) = 0}

rt =y —yt, i=1...card(Y") (33)
Supp (r;"*) = Local (Y;*, m)
U Upstream (Y;*, m) 34)
Local (Y;*,m) = S(i) U L; U U 46
E*(j)EEL;
ul U s6) (35)
Y ()EV;,,
Upstream (Y;*, m) = U Supp (y;)) . (36)

Y*(j)eUr

i,mm

Two particular cases can be used to illustrate the local input
configuration and its consequence in terms of support (34).
Case I: m = 0 (Vj,m(j) = 0).

Supp (r?) =Local (Y;*,0)

U Upstream (Y;*, 0) 37
Local (Y;*,0) = S(i) U L; U U 4au)] 6®
E*(j)€BL;
Upstream (Y;*,0) = U Supp (y?) . (39)
Y*(i)eu;

It is worth noting that the last term in (37) refers to compo-
nents whose faulty behavior is subject to influence ¥ through
an influence on the local input variables in U;*. In addition to
faults propagated through U, r{ is also sensitive to faults whose
origin is local.

Case 2:m =1 (Vj,m(j) = 1)

Supp (r}) =Local (Y;*,1) (40)
Local (Y;*,1)=Local (V;*,0)u| | J S()| @D
¥ ()eu;
Upstream (Y;*, 1) =0. (42)

The local model input configuration mm = 1 makes r} insen-
sitive to faults propagated through U7. r} is only sensitive to
faults whose origin is local and to faults occurring in sensors
related to the local model inputs in U;". Therefore, the Boolean
configuration vector m enables selection of the fault propaga-
tion paths in the causal graph to which residual " is sensitive.

A second set of local residuals is based on the redundancy
resulting from the estimation of Y;* = Y*(i) by both y} and

y"

it = yil —ym i=1...card(Y™) (43)
=1 (m ® u; + (—|m) ® u;, eli)
—l; (m®@u; + (—-m) @ ul, el;) . 44)
The support (46) of 77" is then deduced from (45)
Supp (r}") = U Supp(r)) (46)
Y*(EU; .,
Supp (r}") = U s
Y*()eu; .,
U Upstream (Y;*,m) . 47)

Unlike r;™, 7" cannot be influenced by the local faults. More-
over, when m = 0, 1? is influenced by all the upstream faults
propagated through all the inputs in U;* of the local model re-
lated to Y;*. 70 is also sensitive to faults occurring in the sensors
related to inputs in U*.

It is also worth noting that, once the global estimates 9/ are
computed for each node in Y*, the computation of any residual
like 77" or 77" only involves local equations I; (32), (33), (43).
Moreover, all the global estimates can be calculated by a single
simulation involving all the equations in EQ(COMP \ S). Con-
sequently, based on the global estimates, each residual like r;"
or 7" can be calculated very quickly. This makes the proposed
approach attractive in order to satisfy the requirements of a
real-time implementation.

F. Residual and Test Isolation Properties

Let r denote a residual such as r;" or r;", for instance.
Supp(r) is the support of the equations necessary for com-
puting 7. r is never exactly null, even in the case of fault-free
behavior: it may be influenced by deviations due to noise,
modeling errors or disturbances. A threshold A is thus chosen
such that the test T < (r > ) implies that the system’s
behavior is faulty. As 7 is only sensitive to faults occurring in
the components of its support, it follows that when test 1" is
true, at least one component in Supp(r) can be suspected. The
conflict set related to the test 7" is thus the support of r. This
can be particularized to the residuals ;" and r;"

Conflict (T;™)=Supp (r;"), Conflict (T;")=Supp (r]").
(48)

G. Application to the Example

In the case of the three-tanks system, the supports used to
define conflict sets are given in Table III. The lines L; to G
directly result from the application of (22) and (30) to the causal
graph in Fig. 2. The lines describing the local and upstream
components of a given node thus result from equations (38), (39)
and (35), (36).



TABLE III
SUPPORTS RELATED TO THE CAUSAL GRAPH

Components ViTay V Sy Vo Tay S, Taz S
L X X
Gy X X
Ly

Gy

L3 X
G3 X X
Local(Y",0) X X X X
Upstream(Yl*,O)

Local(Y",0) X X X
Upstream(Yz ,0)

Local(Y3" 0) X X
Upsl‘ream(Y 0 X X X X X

(o) )

m(1)=0; | {Tay, V} {Taz}: m(2)=0

*
@_'_”Q).:_I
{81}
{Tas} {Tas}

! 183}

Fig. 4. Local model input configuration related to node Y* (3).

bl

Local sub graph
related to Y'(3)

TABLE IV
CONFLICT SETS OF THE TESTS RELATED TO Y * (3)

Components Vi Tay V. Sy Vo Tay S5 Taz S5
7,° X X X X

7 X X X X

7,0 X X X

7, X X X
75000 70 X X X X X X X
7ol X X X X X X
7410 X X X X X
75 =7l X X X X
=10 X X X X X X X

o X X X X

70 X X X

In order to illustrate the impact of the local model input con-
figuration m on the conflict sets related to the tests, we shall ex-
amine node Y* (3) in Fig. 2. The causal graph (Fig. 2), as well as
the augmented graph (Fig. 3), are shown in Fig. 4. The rounded
rectangle in Fig. 4 highlights the local subgraph related to Y'*
(3). Fig. 4 illustrates local input configurations. For 3 = 1, 2 if
m(j) = O then an arc links Par(Y*(j)) = E*(j) to Y*(j),
otherwise an arc links Y () to Y*(j). When m(j) = 0, the es-
timation of Y* (3) depends on the faults that have an influence
on Y*(j) whereas when m(j) = 1, the estimation of Y™* [see
(3)] depends on the faults affecting S; (and does not depend on
the faults propagated through Y*(5)).

The ability of local model input configurations to select fault
propagation paths is detailed in Table IV. Table IV is obtained

from the conflict sets related to tests and from the supports in
Table III.

In order to emphasize the links between Fig. 4 and Table 1V,
the calculation paths and the conflict sets related to the tests
T[lo] and T3 are illustrated in Fig. 5.

V. RECURSIVE ISOLATION

A. Isolation Algorithm

Using the previous residuals and their isolation properties, we
shall now describe a recursive isolation algorithm. It is applied
each time new data are acquired on the system to be diagnosed.
The interest of recursive isolation is to prevent combinatorial
explosion. Thus, systematic calculation of all the possible resid-
uals that are mentioned in Section IV is excluded, as it could take
a too long when applied to a complex industrial process. The
objective of causal diagnosis is to search for the source node(s)
whose state(s) explain all the observed deviations in the graph.
Once a source node is found, it has to be interpreted in terms
of possible faulty components. The set of components Up,, I.S;
and Loc; are thus defined in (49), (50), and (51), in accordance
with the notations of Section I'V.

Up, = Upstream (Y;*,0) (49)

5= |J s0) (50)
Y * (j)eLri*

Loc; =Local (Y;*,0). (51)

Up, and Loc;, respectivel, refer to upstream and local compo-
nents with respect to node Y;* = Y*(4). IS, is the set of sensors
related to U}, the measured input nodes of the local subgraph re-
lated to Y;*. Introducing such partitions within the components
in COMP will be shown to be relevant in order to implement
recursive isolation.

The proposed algorithm can be divided into two steps at each
time sample. The execution of the second step is conditioned
by the result of the first one, which is outlined in Table V and
explained below.

1) Step 1: Detection and First Isolation Level: At each
sample time, for each node Y*(i) € Y*, the tests T} and T?
are computed. According to (40) and (41) (respectively, (47)),
the conflict sets of 17} (respectively, Z? ) can be expressed as

Conflict (T}
Conflict (T

) =15; U Loc;
) =15, UUp;,.

(52)
(53)

At each sample time, for each node Y*(i) € Y™, a local
diagnosis reasoning based on the tests 7' and 79 is done.
Table VI shows the (local) minimal diagnosis resulting from
the test values.

The tests 7' and 7" enable fault detection and a first isola-
tion level determining whether the source node is local and/or
upstream with respect to Y *(%). Moreover, the link with suspect
components can be made explicit according to the definitions
of Up,, IS;, and Loc;. However, unlike IS; and Loc;, the car-
dinal of Up, may be very large. That is the reason why Up, is



Conflict ={S,,V,,Ta,,Ta,,S,}

Fig. 5. Conflict sets of the tests 7)," *! and T;.

TABLE V
ISOLATION PROPERTIES OF THE RESIDUAL TESTS USED IN THE
RECURSIVE ISOLATION ALGORITHM

Up; IS;  Loc;
T! X X Step 1 : Detection and
0 X X First isolation level
.. X Step 2 : Second isolation level
" X (Selection of upstream paths
X + recursive calls)
TABLE VI

FIRST ISOLATION LEVEL: LOCAL DIAGNOSIS REASONING

Tests value (Local) minimal diagnosis
(Z,'O,T,I) =(0,0) {}  (nofault detected)
TATH=0.1)  {US}, {Loc} }

TATH =00 { {Up}, S}

EATH=)  {USy, (Ups Locy }

never made explicit (i.e. its components are never described in
extension), but the diagnosis is refined through a systematic and
recursive search for the propagation paths. This is the aim of the
second isolation level.

2) Step 2: Second Isolation Level: Each time Up, belongs
to one of the diagnosis computed at step 1, the algorithm cor-
responding to the second isolation level (Table VII) is run. This
algorithm determines the local input(s) that have propagated the
deviations observed from Y *(%) in order to go backward in the
causal graph toward the source node(s). The residuals computed
from the local input configurations are used to this purpose. Sub-
sequently, the search for the fault sources is pursued in the so-de-
termined upstream directions through recursive calls to step 1
(Table VII).

B. Algorithm Properties and Logical Assumptions

All the variable nodes such that a fault has been locally de-
tected at step 1, reflect an abnormal behavior with respect to
their reference value (value that is estimated from the actuator
values). This abnormal behavior is not necessarily due to a fault
that is local to this node. It may well be due to the propagation
of another fault. Nevertheless, informing the operator about this

Conflict =4S ,,S,,1a,,S,}

TABLE VII
ALGORITHM FOR PATH SELECTION AND RECURSIVE CALLS

For j=1..card(U,)
m=[1..1]
m(j)=0  /* Select the jth propagation path */
If 7" =1 Then
/* The node U; (j) is suspected; it belongs to the
propagation path of the deviations: recursive call */
Go to Step 1 with ¥, =U;"())
Else
/* Search for the source not pursued in the upstream
direction with respect to Uy(j): local exoneration */
End If
End For

abnormal behavior allows him/her to prepare corrective actions.
Enlightening the corresponding node in the causal graph pro-
vides a simple means to make this information available through
an interface (Fig. 6).

The recursive fault isolation proposed in this paper, which is
based on the process causal knowledge, enables on-line deter-
mination and evaluation only of the residuals required for fault
isolation reasoning. That is an important difference with the FDI
approach, where the size of the signature vector is fixed a priori:
all the ARRs have to be evaluated at each measurement acqui-
sition step. Another important difference is that the causal diag-
nostic algorithm does not require any assumption about the way
single fault effects may be combined to tackle the multiple fault
case.

The logical assumptions on which the algorithm is based are
now summarized. On the one hand, the test values at time k&,
T/ (k) and T9(k) are only used when equal to 1. However,
when both T} (k) and T (k) are null, the diagnosis related to
Y*(7) stops. This corresponds to a local exoneration. Notice
that components related specifically to this node could be sus-
pected thanks to other tests related to other nodes. Thus, exon-
eration is not definitive, but local. On the other hand, the test
value 7" (k) = 1(m # 0) of the residual 7" (k) leads to the
parent on the related path being suspected. The backward diag-
nostic analysis is only carried out on the set of suspected parents.
All the other parents of Y *(¢) are exonerated at this step of the
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Fig. 6. Fault propagation subgraph evolution with time.

algorithm but not definitively. The exoneration associated to
T (k) = 0is merely local. Each element U;(j) of the nonsus-
pected set can be detected as abnormal when evaluated through
its own tests (execution of step 1 for node U}*(j)) or suspected
in another backward diagnostic analysis from any other down-
stream variable.

Local exoneration is a weak assumption that allows complex
installations to be diagnosed using algorithms compatible with
real time requirements.

C. Time Management

On-line fault diagnosis of an industrial process requires time
management. Fault propagation in the process takes time, due

00:31:00

to the dynamics of the process. Thus, the consequences on other
variables of a single source fault can appear at different time in-
stants. Dynamic monitoring of the effects of the primary fault
is necessary to ensure continuous assessment of the disturbed
functions; revising the initial decision if necessary or relating
them if appropriate to the problem identified earlier. This is
known as fault filtering or progressive monitoring. This point
is generally disregarded in standard FDI or DX systems, where
the objectives are instead early detection and isolation. This
problem is addressed qualitatively in [40] and quantitatively by
the algorithm proposed in this section.

Once a propagation subgraph has been identified, any sub-
sequent abnormal deviations will be tested, using the same



consistency tests as those described in Section IV and V-A.
This is done in order to determine whether they correspond to
the occurrence of a new fault, or whether they are only the con-
sequences of faults previously detected and accounted for. Fault
effect propagation will lead to new simulation errors (global
residuals). Related variables will become the new terminal
nodes of the fault propagation subgraph. It is worth noting that
the isolation algorithm proposed in this paper does not consist
simply in linking variables that have been detected to be faulty
and that are related by an arc in the causal graph. It relies on
consistency tests taking advantage of the dynamic properties of
the arcs. It tests recursively every parent of a detected variable,
until a local fault has been proven. In this way, a source fault
that would have been corrected by the operator but whose
effects would be still propagating due to long delays would still
be considered as the explanation of the faulty behavior.

The propagation subgraph evolves with time as the effects
of the fault propagate dynamically. Dynamic monitoring allows
the propagation of fault consequences in the process to be ex-
plained continuously by the same source. Dynamic fault sig-
nature recognition can thus be included in the operating tools
in control rooms. Displaying the fault propagation subgraph in
the control interface provides an additional explanation that is
much appreciated by operators [20], [21]. Fig. 6 shows two sub-
sequent views of such an interface, in which the time evolution
of the fault propagation subgraph can be seen.

VI. CONCLUSION

This paper presents a method for model-based diagnosis de-
voted to on-line supervision of complex processes involving
human operators. In this context, the intelligibility and perti-
nence to the operator of the results provided by a diagnostic
system become legitimate issues, because the results of the di-
agnostic system become part of the operator’s reasoning.

The proposed diagnostic method is based on the interaction
between artificial intelligence and control techniques. Standard
FDI approaches are augmented with a causal-graph represen-
tation of the physical process. The causal graph enables de-
composition of the complex system to be diagnosed into sub-
systems that are represented by elementary relations between
variables. Inference is performed locally on each subsystem.
The causal structure enables reducing the diagnostic computa-
tional complexity.

Atthe local level, FDI techniques based on numerical residual
generation and analysis can be exploited. The method gains
from the precision of control methods for representing the local
submodels. Various numerical simulation possibilities of these
submodels are studied and shown to generate residuals appro-
priate for fault isolation. It is simple to compare these simula-
tion results with numerical data acquired from the process, and
their precision is easily quantified. Sensitivity with respect to
uncontrollable phenomena such as noise or nonmeasurable dis-
turbances can be evaluated as well as the influence of model
parameter uncertainty. Process dynamics are taken into account
using relations between variables that manage time explicitly.
Fault filtering and fault propagation monitoring thus occur nat-
urally. The residual supports were studied in order to link this
method with DX component-oriented reasoning. A drawback of

this numerical approach is that the model parameters have to be
rather precise. It could be necessary for them to be re-identified,
from time to time, in order to update the model.

On the global level, diagnostic reasoning is supported by
the causal structure. This structure, which was proposed in the
framework of qualitative modeling, is very general and enables
diagnostic inference to be clearly separated from process rep-
resentation. Hence, the model can be easily modified if some
parts of the process evolve, which is quite common in industry.
Another important consequence is that the causal decompo-
sition of the model supports diagnostic explanation, which is
relevant when diagnosis is intended for on-line process super-
vision. Finally, a result of this modeling approach is that several
assumptions, which are implicit in the FDI formulation and
which are clearly explained within the DX consistency-based
diagnostic approach, can be overcome. No logical assump-
tion about multiple fault occurrence and component global
exoneration is necessary a priori. From a theoretical point of
view the approach cannot be considered as logically sound,
because local exoneration is necessary in order to simplify the
diagnostic computational aspects and avoid combinatorial ex-
plosion, which generally results from a purely logical approach.
Howeyver, this limit is much less restrictive than the classical
exoneration assumption. First, a precise quantitative analysis
of the variable is used and not a mere Boolean analysis of the
parents’ influences. Then, when a faulty variable is wrongly
exonerated in the backward diagnostic analysis carried out on
the set of suspected parents, this means that: 1) no fault has
been detected on this variable in the detection step (the fault
consequences are thus not significant on this variable) and 2)
this variable can be reanalyzed in another backward diagnostic
analysis, through another path in the graph, for the same orig-
inal fault to be explained, depending on the graph structure.

This work could be extended using FDI knowledge when it is
possible to model faults and disturbances. The experience of the
FDI community in input decoupling could be used to generate
residuals locally ensuring a good compromise between sensi-
tivity to faults and robustness with respect to disturbances.

Another possible extension consists in envisaging changes in
the process structure. Causal process representation seems to be
well suited to automatic model construction, including struc-
tural changes. The diagnostic method proposed in this paper
could thus be extended to the diagnosis of hybrid systems.

To summarize, the FDI and DX communities use very
different models: numerical models within the FDI environ-
ment as opposed to abstract multilevel models within the DX
environment. The diagnostic method described in this paper
presents a unified framework inspired by both approaches and
combines tools from both communities. Consequently, it can
evolve, gaining from the progress made in both fields.
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