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Abstract

In the continuous time framework, a new definition is proposed for the Metropolis algorithm
(X̃t)t≥0 associated to an a priori given exploratory Markov process (Xt)t≥0 and to a tarjet proba-
bility distribution π. It should be the minimizer for the relative entropy of the trajectorial law of
(X̃t)t∈[0,T ] with respect to the law of (Xt)t∈[0,T ], when both processes start with π as initial law and
when π is assumed to be reversible for (X̃t)t≥0. This definition doesn’t depend on the time horizon
T > 0 and the corresponding minimizing process is not difficult to describe. Even if this procedure
can be made general, the details were only worked out in situation of finite jump processes and of
compact manifold-valued diffusion processes (a sketch is also given for Markov processes admitting
both a diffusive part and a jump part). The proofs rely on an alternative approach to general
Girsanov transformations in the spirit of Kunita. The case of ϕ-relative entropies is also investi-
gated, in particular to make a link with a previous work of Billera and Diaconis on the traditional
Metropolis algorithm in the discrete time setting.
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1 Introduction

The Metropolis algorithm is a very popular Monte Carlo procedure to sample approximatively
according to a given law π (cf. for instance Metropolis, Rosenbluth, Rosenbluth, Teller and Teller
[14], Hammersley and Handscomb [9], Fishman [7] or Liu [13]). In discrete time and finite state
space, it starts with a Markov kernel K and transform it into a kernel Kπ which is reversible with
respect to π. Under mild assumptions, Kπ is ergodic so that π can be approached by simulating
a Markov chain whose transitions are didacted by Kπ. Billera and Diaconis [2] took a geometrical
point of view on the construction of Kπ by introducing a distance d on the set of Markov kernels
and by showing that Kπ is a minimizer for the distance from K to the set of Markov kernels which
are reversible with respect to π. The goal of this paper is extend this point of view to continuous
time, in particular via new entropy-type discrepancies among generators.

We begin by recalling more precisely the main result of Billera and Diaconis [2]. Let S be a
finite set and denote by K the set of S × S Markov matrices. We assume that we are given π a
positive probability measure on S and K ∈ K. The associated Metropolis kernel Kπ is defined by

∀ x, y ∈ S, Kπ(x, y) B

{
min

{
K(x, y), π(y)

π(x)K(y, x)
}

, if x 6= y

1−
∑

z∈S\{x}Kπ(x, z) , if x = y

Consider the distance d on K defined by

∀ K,K ′ ∈ K, d(K ′,K) B
∑
x∈S

π(x)
∑

y∈S\{x}

∣∣K ′(x, y)−K(x, y)
∣∣

and K(π) the subset of K consisting of Markov matrices M which are reversible with respect to π,
namely satisfying

∀ x, y ∈ S, π(x)M(x, y) = π(y)M(y, x)

Let us also denote K(π,K) the subset of K(π) consisting of Markov matrices M whose off-diagonal
entries are less or equal than those of K.
Billera and Diaconis [2] proved the following result:

Theorem 1 With respect to d, the Metropolis kernel Kπ minimizes the distance from K to K(π)
and it is the unique minimizer of the distance from K to K(π,K).

The arguments of Billera and Diaconis [2] enable to extend immediately this result to the corre-
sponding continuous time setting. Let L be the set of (Markov) generators on S, i.e the S × S
matrices whose off-diagonal entries are nonnegative and such that the sums along the lines are
zero. Let π be fixed as above and L ∈ L be given. Define the distance d on L by the same formula
as before and similarly consider L(π) (respectively L(π, L)) the subset of L consisting of generators
which are reversible with respect to π (resp. and whose off-diagonal entries are dominated by those
of L). Finally the associated Metropolis generator Lπ is defined by

∀ x, y ∈ S, Lπ(x, y) B

{
min

{
L(x, y), π(y)

π(x)L(y, x)
}

, if x 6= y

−
∑

z∈S\{x} Lπ(x, z) , if x = y
(1)

Then we have

Proposition 2 With respect to d, the Metropolis generator Lπ minimizes the distance from L to
L(π) and it is the unique minimizer of the distance from L to L(π, L).
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But this result is not satisfying, because it does not admit an obvious extension to more general
generators, for instance to diffusion generators, whereas there is often an analogue to the Metropolis
construction in such a setting. For example in the Euclidean space Rd, let π be a probability
measure with a smooth and positive density (still denoted π) with respect to the Lebesgue measure
and consider the generator L B 4/2 of the Brownian motion. Then it is well-known that the
corresponding Metropolis generator should be the Langevin operator Lπ· B (4·+ 〈∇ ln(π),∇·〉)/2.
One of our objectives is to propose a geometric justification of the latter kind of assertion, in
the same spirit as Proposition 2, by providing abstract definitions of Metropolis type algorithms
associated to a given probability measure and to a given Markov process. This will lead us to
replace the distance d by other discrepancy quantities. To keep the development of this subject
to a reasonable size and to avoid technicalities, we postpone the treatment of general Markov
processes to a future work. Here we will only consider finite state space jump processes and
regular diffusions taking values in a compact manifold, but we will adopt a general formalism
each time it is possible without too much disgression. Nevertheless, for the remaining part of
this introduction, we will keep working in the finite state space setting and the analogous results
concerning compact Riemannian diffusions will be presented in section 5.

As above Proposition 2, L stands for an a priori given generator and we denote by M another
generic generator. For any probability measure µ on S, we consider (X(µ)(t))t≥0 (respectively
(Y (µ)(t))t≥0) a Markov process on S whose initial distribution is µ and whose generator is L (resp.
M). Without real loss of generality, their trajectories are assumed to be càdlàg, namely admitting
left limits and being right continuous and for any T ∈ R+, we denote by L(X(µ)([0, T ])) the law
of X(µ)([0, T ]) B (X(µ)(t))t∈[0,T ] on the set of càdlàg trajectories from [0, T ] to S. Recall that the
relative entropy of two probability measures µ and ν given on the same probability space is defined
by

Ent(µ|ν) B

{ ∫ dµ
dν ln

(
dµ
dν

)
dν ≤ +∞ , if µ� ν

+∞ otherwise

where dµ/dν stands for the Radon-Nikodym derivative of µ with respect to ν.
This notion is convenient to introduce naturally a new discrepancy (by this term we mean a
quantity satisfying the axioms of a distance, except that it is not symmetrical and that it can take
the value +∞) on L. As above, π is a given positive probability measure on S, π is said to be
invariant for the generator M if we have

∀ y ∈ S,
∑
x∈S

π(x)M(x, y) = 0

Proposition 3 If π is invariant for M , for any T ≥ 0, we have

Ent(L(Y (π)([0, T ]))|L(X(π)([0, T ]))) = T d̃(M,L) ≤ +∞

where d̃ is the discrepancy defined by

∀ M,M ′ ∈ L, d̃(M ′,M) B
∑
x∈S

π(x)
∑

y∈S\{x}

M ′(x, y) ln
(
M ′(x, y)
M(x, y)

)
−M ′(x, y) +M(x, y)

To get a better justification of the introduction of the discrepancy d̃, we are lacking a “compu-
tational complexity” interpretation of the relative entropy of two probability measures µ and ν,
something saying heuristically that “Ent(µ|ν) is a measurement of the difficulty (or maybe of the
necessary quantity of additional randomness) to simulate according to µ when we know how to
simulate from ν”. Sanov’s theorem (see for instance the book of Dembo and Zeitouni [4]) goes in
this direction, we would like a more simulation oriented result. The above proposition may still
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seems disturbing, since we are using chains starting from the distribution π we want to approx-
imate! But the discrepancy d̃ should be seen as an asymptotic object: we will show that if π is
furthermore assumed to be attractive for M , then we have for any initial distribution µ,

lim
T→+∞

Ent(L(Y (µ)([0, T ]))|L(X(µ)([0, T ])))/T = d̃(M,L) (2)

We can use the discrepancy d̃ to define another Metropolis type generator:

Theorem 4 The mapping L(π) 3M 7→ d̃(M,L) admits a unique minimizer L̃π which is given by

∀ x, y ∈ S, L̃π(x, y) B

{ √
π(y)
π(x)

√
L(x, y)L(y, x) , if x 6= y

−
∑

z∈S\{x} L̃π(x, z) , if x = y

In particular, we don’t find the usual Metropolis generator Lπ as in Proposition 2. To make a link
between them, we need to consider more general projection procedures.

Let ϕ : R+ → R+ be a convex function satisfying ϕ(1) = 0, ϕ′(1) = 0 (so ϕ is assumed to admits
a derivative at 1) and whose growth is at most of polynomial order. We define the corresponding
ϕ-relative entropy of two probability measures µ and ν given on the same probability space, by

Entϕ(µ|ν) B

{ ∫
ϕ
(
dµ
dν

)
dν , if µ� ν

+∞ otherwise

(the previous relative entropy corresponds to the function ϕ : R+ 3 r 7→ r ln(r)− r + 1).
Contrary to the usual relative entropy case, when π is invariant with respect to M , the quantity
Entϕ(L(Y (π)([0, T ]))|L(X(π)([0, T ]))) is no longer linear with respect to the time T ∈ R+, but we
can define a discrepancy dϕ in the following way:

Proposition 5 Without any assumption on M , we have

lim
T→0+

Entϕ(L(Y (π)([0, T ]))|L(X(π)([0, T ])))/T = dϕ(M,L)

where the discrepancy dϕ is given by

∀ M,M ′ ∈ L, dϕ(M ′,M) B

{ ∑
x∈S π(x)

∑
y∈S\{x}M(x, y)ϕ

(
M ′(x,y)
M(x,y)

)
, if M ′ �M

+∞ otherwise

where M ′ �M means that

∀ x, y ∈ S, M(x, y) = 0 =⇒ M ′(x, y) = 0

If furthermore we assume that ϕ is strictly convex then the mapping L(π) 3M 7→ dϕ(M,L) admits
a unique minimizer Lϕ,π.

To recover the usual Metropolis generator Lπ defined in (1), we consider for ε ∈ (0, 1/2], the convex
function ϕε satisfying ϕε(x) = (x−1)2 for any x ∈ [1− ε, 1+ ε], ϕ′ε = −1 on [0, 1− ε) and ϕ′ε = 1+ ε
on (1 + ε,+∞) (this is a kind of Huber loss function). Despite the fact that ϕε is not strictly
convex, the mapping L(π) 3 M 7→ dϕε(M,L) admits nevertheless a unique minimizer Lϕε,π and
we have

lim
ε→0+

Lϕε,π = Lπ (3)

The advantage of this approach is that it can be extended to more general situations than the finite
state space case. For instance in the Euclidean diffusion setting, we will see that the discrepancies
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dϕε do not depend on ε ∈ (0, 1/2] and are also equal to 2d̃ (this quantity will be symmetrical
in this situation, but not a distance, because it can still take the value +∞). This provides a
natural definition for d in this framework and “projecting” accordingly, we will recover the notion
of Metropolis algorithm mentioned previously in the Brownian motion case.

The paper has the following plan. In next section we will present the analogue of Girsanov
formula in the finite state space setting, which enables to compute Radon-Nikodym densities on
trajectory spaces. The above assertions about relative entropy and their generalizations to ϕ-
relative entropies will be developped respectively in sections 3 and 4. Finally in section 5 we will
extend these considerations to the compact Riemannian diffusion situation.

2 Finite state space Girsanov formula

This long section presents in the finite state space setting the changes of law which are analogeous
to those considered by Girsanov [8] for Euclidean diffusions. They corresponds to all the transfor-
mations of the underlying probability measure P of a given Markov process which remain absolutely
continuous with respect to P on finite time intervals and which preserve the (time-homogeneous)
Markov property.

We begin by recalling the martingale problem approach to Markov processes, since it is the
natural framework to deal with this subject. We need some notations: let D be the set of càdlàg
trajectories from R+ to the finite set S. We denote by (X(t))t≥0 the process of the canonical
coordinates on D and we endow D with the σ-field D generated by the X(t), for t ∈ R+. For
any T ∈ R+, we also denote D([0, T ]) the σ-field generated by the X(t), for t ∈ [0, T ]. We will
always implicitely assume that set D is endowed with the filtration (D([0, t]))t≥0. Let a probability
measure µ on S and L ∈ L be given. We say that a probability measure P on D is a solution to
the martingale problem associated to µ and L if:
• The law of X(0) (called the initial law) under P is µ.
• For any function f defined on S, the process M(f) defined by

∀ t ∈ R+, M(f)
t B f(X(t))− f(X(0))−

∫ t

0
L[f ](X(s)) ds (4)

is a martingale. In the above expression, L was interpreted as an operator acting on functions
(seen as column vector, indexed by S) through the formula

∀ x ∈ S, L[f ](x) B
∑
y∈S

L(x, y)f(y)

It is well-known, see for instance the book [6] of Ethier and Kurtz, that such a solution exists
and is unique, we denote it Pµ (or simply Px when µ is equal to the Dirac mass δx for some
x ∈ S). The probabilistic description of the evolution of (X(t))t≥0 is the following: for s > 0, let
X(s−) B limu→s,u<sX(u) and consider the first jump time τ1 B inf{s > 0 : X(s) 6= X(s−)}.
Then conditionally to X(0), τ1 is distributed as an exponential law of parameter |L(X(0), X(0))|
(this is the Dirac measure at +∞ if L(X(0), X(0)) = 0). Conditionally to X(0) and τ1 < +∞, the
first jump position X(τ1) is distributed according to the law (L(X(0), y)/|L(X(0), X(0))|)y 6=X(0)

on S \ {X(0)}. Next conditionally to X(0), τ1 and X(τ1), the waiting time for the second jump is
distributed as an exponential law of parameter |L(X(τ1), X(τ1))| etc.
If one doesn’t want to make reference to a particular initial distribution µ (and this is usually the
point of view adopted in Markov process theory, compare for instance Lemmas 6 and 7 below to
see how convenient it can be), one considers simultaneously all the martingale problems associated
to δx and L, for x ∈ S, and one says that the solution to the martingale problems relative to
L is the family (Px)x∈S . Note that all the Pµ can be recovered from this family, since we have
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Pµ =
∑

x∈S µ(x)Px. Furthermore, he Markov property of (X(t))t≥0 under Pµ is deduced without
difficulty from the uniqueness of the family (Px)x∈S as solution to the above martingale problems.

Let L̃ ∈ L be another generator and P̃µ be the solution of the martingale problem associated to
µ and L̃. More generally all notions relative to L̃ will be covered by a tilde sign when they have to
be distinguished from those relative to L. For T ≥ 0, consider Pµ,[0,T ] the restriction of Pµ to the
measurable space (D,D([0, T ]). We are interested in the generators L̃ which are such that for any
x ∈ S and any T ≥ 0, P̃x,[0,T ] is absolutely continuous with respect to Px,[0,T ] (using the Markov
property, it is clear that is equivalent to the existence of T > 0 such that for any x ∈ S, P̃x,[0,T ] is
absolutely continuous with respect to Px,[0,T ]). A necessary condition is easy to obtain. For x ∈ S,
let Sx be the set of points which are attainable by X under Px: a point y ∈ S belongs to Sx if and
only if there exists a finite sequence x0 = x, x1, ..., xn = y in S with n ∈ N and L(xi, xi+1) > 0 for
all i ∈ J0, n− 1K. More generally, let Sµ B ∪x∈supp(µ)Sx, where supp(µ) is the support of µ.

Lemma 6 If there exists T > 0 such that P̃µ,[0,T ] is absolutely continuous with respect to Pµ,[0,T ],
then S̃µ ⊂ Sµ and we have

∀ x ∈ S̃µ, ∀ y ∈ S, L(x, y) = 0 =⇒ L̃(x, y) = 0

Proof
For x, y ∈ S and T > 0, consider the event

Ax,y,T B {∃ s ∈ (0, T ] : X(s−) = x, X(s) = y}

From the probabilistic description of Pµ, we see that Pµ[Ax,y,T ] > 0 if and only if x ∈ Sµ and
L(x, y) > 0 and let denote by Rµ the set of such couples (x, y).
Now let T > 0 be as in the above lemma. From the absolute continuity assumption, we get that
R̃µ ⊂ Rµ and this amounts to the conclusions given in the lemma.

�

The necessary condition given in Lemma 6 is in fact sufficient, see remark 13 below. But to avoid
embarrassing notations, it is better to work simultaneously with the whole family (Px)x∈S . As an
immediate consequence of the above result, we get:

Lemma 7 If there exists T > 0 such that for any x ∈ S, P̃x,[0,T ] is absolutely continuous with
respect to Px,[0,T ], then we have L̃� L (with the notation of Proposition 5), which just means that
the transitions forbidden by L are also forbidden by L̃.

Our main goal in this section is to show the reciprocal result and to exhibit the density
dP̃x,[0,T ]/dPx,[0,T ]. To do so, again we need more notations.

For x 6= y ∈ S and t ≥ 0, consider

N
(x,y)
t B

∑
s∈(0,t]

1X(s−)=x,X(s)=y

the number of jumps from x to y which have occurred before time t and

M(x,y)
t B N

(x,y)
t −

∫ t

0
L(x, y)1x(X(s)) ds

Let us check that (M(x,y)
t )t≥0 is a martingale under Pµ for any initial condition µ. This comes

from the fact that we can represent it as a stochastic integral:

∀ t ≥ 0, M(x,y)
t =

∫ t

0
1x(X(s−)) dM(y)

s (5)
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where (M(y)
t )t≥0 is the martingale associated to the indicator function 1y via formula (12). Indeed,

let us compute the r.h.s.:∫ t

0
1x(X(s−)) dM(y)

s =
∫ t

0
1x(X(s−)) d

(
1y(X(s))− 1y(X(0))−

∫ s

0
L[1y](X(u)) du

)
=

∫ t

0
1x(X(s−)) d1y(X(s))−

∫ t

0
1x(X(s−))L[1y](X(s)) ds

=
∑

0<s≤t
1x(X(s−))(1y(X(s))− 1y(X(s−)))−

∫ t

0
1x(X(s−))L[1y](x) ds

= N
(x,y)
t −

∫ t

0
L(x, y)1x(X(s)) ds

Now consider another generator L̃ satisfying the conclusion of Lemma 7. We define

∀ x 6= y, A(x, y) B
L̃(x, y)
L(x, y)

(taking into account the usual convention that 0 · ∞ = 0, we have A(x, y) = 0 if L(x, y) = 0, since
L̃� L). Consider also the functions G and H defined by

∀ x ∈ S,

{
G(x) B

∑
y 6=x L(x, y)(ln(A(x, y))−A(x, y) + 1)

H(x) B −
∑

y 6=x L(x, y)(A(x, y)− 1) = L̃(x, x)− L(x, x)

Then we have

Theorem 8 Under the assumption that L̃ � L, for any initial condition µ and any finite time
horizon T ≥ 0, we have P̃µ,[0,T ] � Pµ,[0,T ] and the corresponding Radon-Nikodym derivative is
given by

dP̃µ,[0,T ]

dPµ,[0,T ]
= exp

 ∑
x 6=y∈S

ln(A(x, y))N (x,y)
T +

∫ T

0
H(X(s)) ds


= exp

 ∑
x 6=y∈S

ln(A(x, y))M(x,y)
T +

∫ T

0
G(X(s)) ds


(note that these quantities vanish if N (x,y)

T > 0 for some x 6= y satisfying L̃(x, y) = 0 and L(x, y) >
0).

This result could be proven using Doléans-Dade stochastic exponential (cf. for instance the book
of Dellacherie and Meyer [3]) and stochastic calculus for martingales with jumps. Nevertheless this
approach does not seem to us the most appropriate to deal with the present situation. Indeed, we
just want to use immediate consequences of the martingale problem formulation and elementary
stochastic calculus, enabling to compute the product of a absolutely continuous adapted process
with a martingale. The proof of Theorem 8 will take several steps. The first one consist in intro-
ducing some exponential martingales (which are not easily described as Doléans-Dade stochastic
exponential processes).

To any function f on S, we associate a new function I[f ] via the formula

∀ x ∈ S, I[f ](x) B exp(−f(x))L[exp(f)](x)− L[f ](x)

Remark 9 The mapping f 7→ I[f ] should be seen as a modified “carré du champ”. Recall that
the usual carré du champ of f (see for instance the lecture of Bakry [1]) is defined by

∀ x ∈ S, Γ[f ](x) B L[f2](x)− 2f(x)L[f ](x)

7



It is easily checked for instance that we have

exp(−osc(f))Γ[f ] ≤ 2I[f ] ≤ exp(osc(f))Γ[f ]

where osc(f) = maxS f −minS f is the oscillation of f . Furthermore, if L is a diffusion generator
(namely if the processes admitting L as generator have continuous paths, as it will be the case
in section 5), we have I[f ] = Γ[f ]/2. The interest of the carré du champ is that it enables to
compute the bracket of M(f) (i.e. the previsible process (〈M(f)〉t)t≥0 starting from 0 such that
((M(f))2 − 〈M(f)〉t)t≥0 is a martingale):

∀ t ≥ 0, 〈M(f)〉t =
∫ t

0
Γ[f ](X(s)) ds

The modified carré du champ will play a similar role of integrand for a compensator, but with an
exponential mapping rather than a square mapping.

�

We associate to any function f on S the process (Et[f ])t≥0 given by

∀ t ≥ 0, Et[f ] B exp
(
M(f)

t −
∫ t

0
I[f ](X(s)) ds

)
(6)

Then we have another characterization of the solution to the martingale problem associated to µ
and L:

Proposition 10 Under Pµ the process (Et[f ])t≥0 is a martingale. Conversely if P is a probability
measure on D such that µ is the law of X(0) and such that for any function f , the process (Et[f ])t≥0

is a martingale, then P = Pµ.

Proof

For the first point, we write that for any t ≥ 0,

Et[f ] = exp
(
−
∫ t

0
exp(−f(X(s)))L[exp(f)](X(s)) ds

)
exp(f(X(t))− f(X(0)))

so its stochastic differential is

dEt[f ] = exp
(
−
∫ t

0
exp(−f(X(s)))L[exp(f)](X(s)) ds

)
exp(−f(X(0)))

(L[exp(f)](X(t))dt+ dM(exp(f))
t )

+ exp
(
−
∫ t

0
exp(−f(X(s)))L[exp(f)](X(s)) ds

)
exp(f(X(t))− f(X(0)))

exp(−f(X(t)))L[exp(f)](X(t))dt

= exp
(
−
∫ t

0
exp(−f(X(s)))L[exp(f)](X(s)) ds

)
exp(−f(X(0)))dM(exp(f))

t

It follows that (Et[f ])t≥0 is a martingale as a stochastic integral (of a previsible integrand) with
respect to the martingale (M(exp(f))

t )t≥0.
Conversely, we write that for any t ≥ 0,

exp(f(X(t))) = exp(f(X(0))) exp
(∫ t

0
exp(−f(X(s)))L[exp(f)](X(s)) ds

)
Et[f ]
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thus differentiating we get

d exp(f(X(t)))

= exp(f(X(0))) exp
(∫ t

0
exp(−f(X(s)))L[exp(f)](X(s)) ds

)
Et[f ]

exp(−f(X(t)))L[exp(f)](X(t))dt

+ exp(f(X(0))) exp
(∫ t

0
exp(−f(X(s)))L[exp(f)](X(s)) ds

)
dEt[f ]

= L[exp(f)](X(t))dt

+ exp(f(X(0))) exp
(∫ t

0
exp(−f(X(s)))L[exp(f)](X(s)) ds

)
dEt[f ]

It follows that

dM(exp(f))
t = exp(f(X(0))) exp

(∫ t

0
exp(−f(X(s)))L[exp(f)](X(s)) ds

)
dEt[f ]

and thus (M(exp(f))
t )t≥0 is a martingale if (Et[f ])t≥0 is a martingale. The second announced result is

a consequence from the fact that any function f on S can be written as f = exp(g)−c exp(0), with
c B 1 −max(0,minS f) and the function g B ln(c + f), so that M(f) =M(exp(g)) − cM(exp(0)) =
M(exp(g)) is a martingale.

�

We need more exponential martingales than those of the form (Et[f ])t≥0 where f ∈ F(S), the space
of functions defined on S. Let us note that for any f ∈ F(S), we can write

∀ t ≥ 0, M(f)
t =

∑
x∈S

f(x)M(x)
t

This suggests to consider the new martingales

∀ t ≥ 0, M(f)
t =

∑
(x,y)∈S(2)

f(x, y)M(x,y)
t

where S(2)) B S2 \ {(x, x) : x ∈ S} and f is a function defined on S(2). We denote F(S(2))
the space of such functions and we will also see it as a subset of F(S2) by extending functions
f ∈ F(S(2)) on S2 with the convention that they vanish on the diagonal {(x, x) : x ∈ S}. This
enables to extend the modified carré du champ I as a non-linear operator from F(S(2)) to F(S)
by action on the second variable. More explicitely, we define

∀ f ∈ F(S(2)), ∀ x ∈ S, I[f ](x) B I[f(x, ·)](x)

=
∑

y∈S\{x}

L(x, y)(exp(f(x, y))− 1− f(x, y))

Next we associate to any f ∈ F(S(2)) the process (Et[f ])t≥0 via (6).

Proposition 11 For any initial condition µ, the process (Et[f ])t≥0 is a martingale under Pµ.

Proof

We remark that (Et[f ])t≥0 is a multiplicative process, in the sense that

∀ t, s ≥ 0, Et+s[f ] = Et[f ]Es[f ] ◦ θt
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where (θt)t≥0 is the family of the natural shift mappings from D to itself:

∀ t, s ≥ 0, ∀ ω ∈ D, Xs(θt(ω)) = Xt+s(ω)

Thus taking into account the fact that (Et[f ])t≥0 is adapted and the Markov property, we see that
to prove that (Et[f ])t≥0 is a martingale under Pµ, it is sufficient to show that

∀ t ≥ 0, ∀ x ∈ S, Ex[Et[f ]] = 1

To do so, we will use Proposition 10 and an approximation procedure. Let ε > 0 be given. We
consider the F(S)-valued previsible process (Fε(t))t≥0 given by

∀ t ≥ 0, ∀ x ∈ S, Fε(t)(x) B f(X(εbt/εc), x)

where b·c stands for a modified integer part: for any r ∈ R+, brc is the largest integer number
strictly less than r, with the exception that b0c = 0 (this is to insure that (Fε(t))t≥0 is previsible,
in fact this is also true if b·c is the usual integer part, but to be convinced of this assertion, one
needs to know that the jump times of the underlying Markov processes are totally imprevisible and
we don’t want to enter in such technicalities, cf. for instance the book of Dellacherie and Meyer
[3]). Next we define

∀ t ≥ 0, M(Fε)
t B

∑
x∈S

∫ t

0
Fε(s)(x) dM(x)

s (7)

and quite naturally

∀ t ≥ 0, Et(ε, f) B exp
(
M(Fε)

t −
∫ t

0
I[Fε(s)](X(s)) ds

)
Since for t ∈ [0, ε], Fε(t)(x) does not depend on t and depends on the underlying trajectory
(X(s))s≥0 only through X(0), the first part of Proposition 10 shows that for any initial point
x ∈ S,

∀ t ∈ [0, ε], Ex[Et(ε, f)] = 1

More generally, conditioning successively with respect to D([0, iε]), D([0, (i − 1)ε]), ..., D([0, ε]),
with i B bt/εc, the same argument shows that

∀ t ≥ 0, ∀ x ∈ S, Ex[Et(ε, f)] = 1

Thus to deduce the announced result, it is sufficient to prove that for any fixed x ∈ S, t ≥ 0
and f ∈ F(S(2)), Et(ε, f) converges to Et[f ] in L1(Px) as ε goes to 0+. One way to deduce this
convergence is to show on one hand that supε∈(0,1/2] Ex[E2

t (ε, f)] < +∞ and on the other hand that
pointwise (Px-a.s. or even only in probability would be enough), Et(ε, f) converges to Et[f ] as ε
goes to 0+. For the first point, we compute that

Ex[E2
t (ε, f)] = Ex

[
exp

(
M(2Fε)

t − 2
∫ t

0
I[Fε](X(s)) ds

)]
= Ex

[
Et(ε, 2f) exp

(∫ t

0
(I[2Fε]− 2I[Fε])(X(s)) ds

)]
≤ exp

(
t sup
y,z∈S

I[2f(y, ·)](z)− 2I[f(y, ·)](z)

)
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which is a finite upper bound independent from ε ∈ (0, 1/2].
Concerning the pointwise convergence, we note that for any s ≥ 0 and x ∈ S,

lim
ε→0+

Fε(s)(x) = f(X(s−), x)

Thus, passing in the limit in (7) (taking into account that in the finite setting the stochastic
differentials dM(x)

s can be seen as simple Stieljes differentials), we get that

lim
ε→0+

M(Fε)
t =

∑
x∈S

∫ t

0
f(X(s−), x) dM(x)

s

=
∑
x∈S

∫ t

0

∑
y 6=x

f(y, x)1{y}(X(s−)) dM(x)
s

=
∑

(y,x)∈S(2)

f(y, x)
∫ t

0
1{y}(X(s−))dM(x)

s

=
∑

(x,y)∈S(2)

f(x, y)M(x,y)
t

= M(f)
t

where the last but one equality comes from (5).
We also deduce that

lim
ε→0+

∫ t

0
I[Fε(s)](X(s)) ds =

∫ t

0
I[f(X(s−), ·)](X(s)) ds

=
∫ t

0
I[f(X(s), ·)](X(s)) ds

=
∫ t

0
I[f ](X(s)) ds

(where in the second equality we have used that X(s−) = X(s) almost everywhere with respect
to the Lebesgue measure ds), result leading to the wanted pointwise convergence.

�

Let the probability µ on S and the function f ∈ F(S(2)) be fixed. For any t ≥ 0, consider P̃µ,[0,t]
the probability on the measurable space (D,D([0, t])) which admits Et[f ] as density with respect to
Pµ,[0,t]. Since the process (Es[f ])s≥0 is a nonnegative martingale starting from 1, it is easy to deduce
that the family (P̃µ,[0,t])t≥0 satisfies the compatibility relations of Kolmogorov: for 0 ≤ s ≤ t, the
restriction of P̃µ,[0,t] to (D,D([0, s])) is equal to P̃µ,[0,s]. By consequence there exists a unique
probability measure P̃µ on (D,D) such that for any t ≥ 0, the restriction of P̃µ to (D,D([0, t]))
coincides with P̃µ,[0,t]. Next result is the key to Theorem 8.

Theorem 12 The probability P̃µ is solution to the martingale problem associated to µ and to the
generator L̃ defined by

∀ x, y ∈ S, L̃(x, y) B

{
L(x, y) exp(f(x, y)) , if x 6= y

−
∑

z∈S\{x} L̃(x, z) , if x = y

Proof
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We use the criterion presented in Proposition 10. The law of X(0) under P̃µ is µ since P̃µ and Pµ
coincides on the σ-field D([0, 0]) = σ(X(0)). So let g ∈ F(S) be a test function. We want to show
that (Ẽt[g])t≥0 is a martingale under P̃µ, where

∀ t ≥ 0, Ẽt[g] B exp
(
M̃(g)

t −
∫ t

0
Ĩ[g](X(s)) ds

)
with of course,

∀ t ≥ 0, M̃(g)
t B g(X(t))− g(X(0))−

∫ t

0
L̃[g](X(s)) ds

= M(g)
t −

∫ t

0
(L̃− L)[g](X(s)) ds

∀ x ∈ S, Ĩ[f ](x) B exp(−f(x))L̃[exp(f)](x)− L̃[f ](x)

Due to the definition of P̃µ, (Ẽt[g])t≥0 is a martingale under P̃µ if and only if (Ẽt[g]Et[f ])t≥0 is a
martingale under Pµ. But for any t ≥ 0, we compute that

Ẽt[g]Et[f ] = exp
(
M(g)

t +M(f)
t −

∫ t

0
F (X(s)) ds

)
where F ∈ F(S) is the function defined by, for any x ∈ S,

F (x) B (L̃− L)[g](x) + exp(−g(x))L̃[exp(g)](x)− L̃[g](x) + L[exp(f(x, ·)](x)− L[f(x, ·)](x)
= exp(−g(x))L̃[exp(g)](x) + L[exp(f(x, ·)](x)− L[g + f(x, ·)](x)

=
∑
y 6=x

(
(exp(g(y)− g(x))− 1)L̃(x, y) + (exp(f(x, y))− 1)L(x, y)

)
− L[g + f(x, ·)](x)

=
∑
y 6=x

(
[exp(g(y)− g(x))− 1] exp(f(x, y)) + exp(f(x, y))− 1

)
L(x, y)− L[g + f(x, ·)](x)

=
∑
y 6=x

(exp[g(y)− g(x) + f(x, y)]− 1)L(x, y)− L[g + f(x, ·)](x)

= I[h](x)

with h ∈ F(S(2)) given by

∀ (x, y) ∈ S(2), h(x, y) B g(y)− g(x) + f(x, y)

Let us check that

∀ t ≥ 0, M(g)
t +M(f)

t = M(h)
t

It amounts to verify that M(g) =M(ḡ) where ḡ ∈ F(S(2)) is defined by

∀ (x, y) ∈ S(2), ḡ(x, y) B g(y)− g(x)

12



Indeed, we have for any t ≥ 0,

M(ḡ)
t =

∑
(x,y)∈S(2)

(g(y)− g(x))M(x,y)
t

=
∑

(x,y)∈S(2)

(g(y)− g(x))
∫ t

0
1{x}(X(s−)) dM(y)

s

=
∑

(x,y)∈S2

(g(y)− g(x))
∫ t

0
1{x}(X(s−)) dM(y)

s

=
∑
y∈S

g(y)
∫ t

0

∑
x∈S

1{x}(X(s−)) dM(y)
s −

∑
x∈S

g(x)
∫ t

0
1{x}(X(s−)) d

∑
y∈S
M(y)

s


=

∑
y∈S

g(y)
∫ t

0
dM(y)

s −
∑
x∈S

g(x)
∫ t

0
1{x}(X(s−)) dM(1)

s )

=
∑
y∈S

g(y)M(y)
t

= M(g)
t

where for the last but one equality we have used that the martingale associated to the function
identically equal to one, M(1), is null.

So finally we get that (Ẽt[g]Et[f ])t≥0=(Et[h])t≥0 is a martingale under Pµ according to Proposi-
tion 11.

�

We can now come to the

Proof of Theorem 8

So let be given a generator L̃ satisfying L̃� L. Be begin by assuming that L̃ satisfies furthermore
L̃� L. Then we consider the previous construction with the function f ∈ F(S(2)) defined by

∀ (x, y) ∈ S(2), f(x, y) B ln

(
L̃(x, y)
L(x, y)

)

According to Theorem 12, we have

∀ T ≥ 0,
dP̃µ,[0,T ]

dPµ,[0,T ]
= ET [f ]

and this can be rewritten under the form given in Theorem 8.
In the general case, we introduce for ε > 0 the new generator L̃(ε) B L̃ + εL, to which we apply
the above result. Then with obvious notations, we get that for any T > 0,

lim
ε→0+

exp

 ∑
x 6=y∈S

ln(A(ε)(x, y))N (x,y)
T +

∫ T

0
H(ε)(X(s)) ds


= exp

 ∑
x 6=y∈S

ln(A(x, y))N (x,y)
T +

∫ T

0
H(X(s)) ds


Furthermore this pointwise convergence also takes place in Lp(Pµ,[0,T ]), for any p ≥ 1, because
it is not difficult to find three constants K1,K2,K3 ≥ 0 (depending only on T , L and L̃) such
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that for any ε ∈ (0, 1], the random variable
∑

x 6=y∈S ln(A(ε)(x, y))N (x,y)
T +

∫ T
0 H(ε)(X(s)) ds is

stochastically bounded above by K1N + K2, where N is a Poisson variable of parameter K3,
and the latter random variable admits exponential moments of all order. We deduce that as
ε → 0+, the probability P(ε)

µ,[0,T ] converges in total variation toward the probability P̂µ,[0,T ] on

(D,D([0, T ])) which has exp
(∑

x6=y∈S ln(A(x, y))N (x,y)
T +

∫ T
0 H(X(s)) ds

)
as density with respect

to Pµ,[0,T ]. It follows that the family (P̂µ,[0,T ])T≥0 satisfies the Kolmogorov compatibility conditions,
so that its elements are the restrictions to the σ-fields (D([0, T ]))T≥0 of a probability P̂µ on (D,D).
Furthermore the above convergence in total variation and the convergence of L̃(ε) to L̃ imply that
P̂µ is the solution of the martingale problem associated to µ and L̃, i.e. P̂µ = P̃µ. Thus the
conclusions of Theorem 8 also hold in the general case.

�

We end up this section with two remarks.

Remark 13 Let us justify the already announced fact that the necessary condition given in
Lemma 6 is also sufficient. So let L̃ a generator satisfying the conclusions of this lemma. Let L̂ be
another generator such that

∀ x ∈ S̃µ, ∀ y ∈ S, L̂(x, y) = L̃(x, y)

Then P̃µ is also solution to the martingale problem associated to µ and L̂, because for any f ∈ F(S)
and any t ≥ 0 we have

∫ t
0 L̃[f ](X(s)) ds =

∫ t
0 L̂[f ](X(s)) ds, P̃µ-a.s. In particular consider L̂ defined

by

∀ x, y ∈ S, L̂(x, y) B
{
L̃(x, y) , if x ∈ S̃µ
0 , otherwise

Since L̂ � L, we can apply Theorem 8 to get that for any T ≥ 0, P̃µ,[0,T ] � Pµ,[0,T ] (and the
expressions for the density given in Theorem 8 are also valid, with L̃ and L̂).

�

The second remark goes in the direction of an abstract Girsanov theory.

Remark 14 The carré du champ alluded to in Remark 9 can be polarized into a bilinear map
from F(S)2 to F(S) via the formula

∀ f, g ∈ F(S), ∀ x ∈ S, Γ[f, g](x) B L[fg](x)− f(x)L[g](x)− g(x)L[f ](x)

Next, similarly to what we have done before Proposition 11, we can extend Γ to F(S2) by action
on the second variable:

∀ f, g ∈ F(S2), ∀ x ∈ S, Γ[f, g](x) B Γ[f(x, ·), g(x, ·)](x)

Now let a function f ∈ F(S(2)) be fixed and consider the generator L̃ constructed in Theorem 12.
Then its action on functions can be expressed under the form

∀ g ∈ F(S), ∀ x ∈ S, L̃[g](x) = L[g](x) + Γ[exp(f), g](x)

(where g in the carré du champ is considered as a function of the second variable).
This procedure associating to a bivariate function f ∈ F(S(2)) an exponential martingale (Et[f ])t≥0

which leads to the construction of the solution to the martingale problem corresponding to the
operator L̃ given in the above form is in fact very general (this is investigated in a general mar-
tingale problem framework in [15]). Indeed, under regularity assumptions, we can recover in this
way all the transformations of the underlying probability of a Markov process which preserve the
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Markov property and which are absolutely continuous over finite time horizons. These general-
ized Girsanov transformations were first exihibited by Kunita [12] which used another formalism.
Heuristically, these changes amounts to modifying the intensity of jumps and adding drifts in the
directions permitted by the diffusion coefficients. According to the above formulation, they can be
parametrized by functions belonging to subspaces of F(S(2)) (satisfying some regularity or bound-
edness assumptions in general) quotiented by the subspace of bivariate functions whose carré du
champ vanishes everywhere. For instance starting with the Laplacian generator over a Riemannian
compact manifold, we recover all the vector fields as parameters of Girsanov transformations in
this setting, see also the discussion after Proposition 24 in section 5.

�

3 Entropy minimization

This section contains all the considerations concerning relative entropy mentioned in the introduc-
tion. In particular we prove Proposition 3 and Theorem 4.

In order to deal with Proposition 3 and (2) by the same computation, we first consider an
arbitrary initial condition µ on S. Recall that (X(µ)(t))t≥0 (respectively (Y (µ)(t))t≥0) is a Markov
process on S whose initial distribution is µ and whose generator is L (resp. M). For t ≥ 0, we
denote by µt the law of Y (µ)(t). We also introduce the extended function F (F does not necessary
belong to F(S), because it can take +∞ as value) defined by

∀ x ∈ S, F (x) B
∑

y∈S\{x}

M(x, y) ln
(
M(x, y)
L(x, y)

)
−M(x, y) + L(x, y)

(in particular, F (x) = +∞ is equivalent to the fact that there exist y 6= x such that L(x, y) = 0
and M(x, y) > 0).
These notations enable to compute the relative entropy of interest:

Lemma 15 For any T ≥ 0, we have

Ent(L(Y (µ)([0, T ]))|L(X(µ)([0, T ]))) =
∫ T

0
µt[F ] dt

Proof

Assume first that M � L. Then according to Theorem 8, the Radon-Nikodym density of
L(Y (µ)([0, T ])) with respect to L(X(µ)([0, T ])) is given by

dL(Y (µ)([0, T ]))
dL(X(µ)([0, T ]))

(X([0, T ])) = exp

 ∑
(x,y)∈S(2)

ln(A(x, y))N (x,y)
T +

∫ T

0
H(X(s)) ds


(recall that (X(t))t≥0 is a generical trajectory of D), with

∀ x ∈ S, H(x) B M(x, x)− L(x, x)

∀ (x, y) ∈ S(2), A(x, y) B
M(x, y)
L(x, y)

Thus the entropy Ent(L(Y (µ)([0, T ]))|L(X(µ)([0, T ]))) is equal to the expectation with respect
to L(Y (µ)([0, T ])) of

∑
(x,y)∈S(2) ln(A(x, y))N (x,y)

T +
∫ T

0 H(X(s)) ds (with the convention that this
expectation is +∞ if the latter expression is not integrable). Taking into account that for any
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(x, y) ∈ S(2), (N (x,y)
t −

∫ t
0 M(x, y)1x(X(s)) ds)t∈[0,T ] is a martingale under L(Y (µ)([0, T ])), which

is (L(Y (µ)([0, T ]))-a.s. identically null if A(x, y) = 0, we can write

Ent(L(Y (µ)([0, T ]))|L(X(µ)([0, T ])))

= E

 ∑
(x,y)∈S(2)

∫ T

0
ln(A(x, y))1x(Y (µ)(t)) dt+

∫ T

0
H(Y (µ)(t)) dt


= E

[∫ T

0
F (Y (µ)(t)) dt

]
=

∫ T

0
E
[
F (Y (µ)(t))

]
dt

=
∫ T

0
µt[F ] dt

so we get the announced equality.
We now come to the general case. Let S̃µ be the set of points attainable by Y (µ) (defined before
Lemma 6, with L̃ replaced by M). According to Remark 13, the above arguments are still valid if
we have

∀ x ∈ S̃µ, ∀ y ∈ S, L(x, y) = 0 =⇒ M(x, y) = 0

But if the latter condition is not satisfied, then on one hand for T > 0, L(Y (µ)([0, T ])) is not
absolutely continuous with respect to L(X(µ)([0, T ])) and thus L(Y (µ)([0, T ]))|L(X(µ)([0, T ])) =
+∞. On the other hand, there exists x ∈ S̃µ such that F (x) = +∞. But from the probabilistic
description of Y (µ), it appears that for any t > 0, µt gives positive weight to any point of S̃µ and
in particular µt[F ] = +∞. It follows that in this situation the equality of the above lemma is also
true for T > 0, since both terms are equal to +∞. For T = 0, the equality holds because both
terms are clearly null.

�

Proposition 3 follows immediately: if µ is invariant for M we have µt = µ for all t ≥ 0, so for any
T ≥ 0,

Ent(L(Y (µ)([0, T ]))|L(X(µ)([0, T ]))) = Tµ[F ]

and one would have noticed that π[F ] = d̃(M,L).
Concerning (2), the assumption that π is attractive for M means that for any initial condition µ,
we have

lim
t→+∞

µt = π

Thus Cesaro’s lemma enables to conclude to (2), at least if F is a true function. But if F takes the
value +∞ at some point of S, the hypothesis that π is positive on S implies that d̃(M,L) = +∞.
On the other hand the attractive assumption of π with respect to M is well-known to be equivalent
to the fact that M is irreducible. This implies that for any initial distribution µ, S̃µ = S and by
consequence, for any T > 0, the law L(Y (µ)([0, T ])) cannot be absolutely continuous with respect
to L(X(µ)([0, T ])) (see Remark 13). It follows that the l.h.s. of (2) is also equal to +∞.

One advantage of the discrepancy d̃ over the distance d introduced by Billera and Diaconis [2]
is that we don’t need an extra condition to define the projection on L(π) with respect to d̃, as it
will be clear in the

Proof of Theorem 4

16



Put an arbitrary total ordering on S, whose strict inequality is denoted ≺. The fact that M ∈ L(π)
is equivalent to the fact that

∀ x ≺ y, M(y, x) =
π(x)
π(y)

M(x, y)

and in particular M is determined by the free choice of the quantities M(x, y) ≥ 0 for x ≺ y. This
leads us to write

d̃(M,L)

=
∑
x≺y

π(x)M(x, y) ln
(
M(x, y)
L(x, y)

)
− π(x)M(x, y) + π(x)L(x, y)

+π(y)M(y, x) ln
(
M(y, x)
L(y, x)

)
− π(y)M(y, x) + π(y)L(y, x)

=
∑
x≺y

π(x)M(x, y) ln
(
π(x)M(x, y)
π(x)L(x, y)

)
− 2π(x)M(x, y) + π(x)L(x, y)

+π(x)M(x, y) ln
(
π(x)M(x, y)
π(y)L(y, x)

)
+ π(y)L(y, x)

=
∑
x≺y

π(x)M(x, y) ln
(

(π(x)M(x, y))2

π(x)L(x, y)π(y)L(y, x)

)
− 2π(x)M(x, y) + π(x)L(x, y) + π(y)L(y, x)

It appears that if we want to find a minimizer M ∈ L(π) of d̃(M,L), we can minimize each
summand of the above sum separately.
So let x ≺ y be fixed and denote

α B π(x)M(x, y)
β B π(x)L(x, y)
β′ B π(y)L(y, x)

We are led to minimize as a function of α ≥ 0 the expression

2(α ln(α)− α)− α ln(ββ′) + β + β′

By differentiating this strictly convex function, we see that the unique minimizer is α∗ B
√
ββ′.

The announced results follow at once.
�

Due to the fact that

∀ a, b ∈ R+, min(a, b) ≤
√
ab

we get that

∀ x 6= y, Lπ(x, y) ≤ L̃π(x, y)

and it follows that the Markov process associated to L̃π goes faster to equilibrium than that associ-
ated to Lπ, if we measure this property by the spectral gap or by the logarithmic Sobolev constant
(see for instance the lectures given by Saloff-Coste [17]). Nevertheless the speed of convergence
should not be the unique criterion for choosing a Metropolis algorithm (otherwise one would just
multiply L̃π by a big constant) as the numbers of operations by unit time should also be taken
into account. Furthermore, the initial generator L should also play a role, maybe in the spirit of
the discussion below Proposition 3.
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To finish this section, let us discuss an algebraic property of the mapping (L, π) 7→ L̃π:

Remark 16 If π and π′ are two positive probability measures on S, we denote π • π′ the positive
probability measure ππ′/Z where Z B

∑
x∈S π(x)π′(x) is the renormalizing factor. Let us also

denote Pπ the mapping L 3 L 7→ L̃π. Then we check directly that we have Pπ•π′ = Pπ ◦ Pπ′ .
In particular, when L ∈ L admits an invariant probability measure µ which is positive, the

construction of L̃π can be seen as a two steps procedure:
- First we symmetrize L into L̃ (= Pµ(L)) defined by

∀ x 6= y ∈ S, L̃(x, y) B
√
L(x, y)L∗(x, y)

where L∗ corresponds to the dual generator of L in L2(µ):

∀ x 6= y ∈ S, L∗(x, y) B
µ(y)
µ(x)

L∗(y, x)

- Next we “reweight” L̃ into L̃π using f = dπ/dµ the Radon-Nikodym derivative of π with respect
to µ:

∀ x 6= y ∈ S, L̃π(x, y) B

√
f(y)
f(x)

L̃(x, y)

�

4 Other Metropolis type projections

In order to better understand the difference between Lπ and L̃π, we generalize here the projection
procedure of the previous section.

We work in the finite state space setting as above: for any probability measure µ on S, we
consider (X(µ)(t))t≥0 a Markov process on S whose initial distribution is µ and whose generator is
L and we will denote by Pµ the probability measure on the underlying probability space Ω (only
the image of Pµ by (X(µ)(t))t≥0 will be important, so we could restrict ourselves to the canonical
situation where Ω = D and Pµ is the solution of the martingale problem associated to µ and L).
For any (x, y) ∈ S(2) and t ≥ 0, N (x,y)

t B
∑

s∈(0,t] 1{X(µ)(s−)=x,X(µ)(s)=y} is the number of jumps
from x to y in the time interval (0, t] and

∀ t ≥ 0, Nt B
∑

(x,y)∈S(2)

N
(x,y)
t

is the total number of jumps before time t. From the probabilistic description of (X(µ)(t))t≥0,
it appears that the process (Nt)t≥0 is stochastically dominated by (N̄t)t≥0, a Poisson process of
parameter l B maxx∈S |L(x, x)|. The following preliminary result is well-known.

Lemma 17 For any t ≥ 0 and (x, y) ∈ S(2), consider the events

Ωt,x,x B {Nt = 0}

Ωt,x,y B {N (x,y)
t = Nt = 1}

Ω̃t,x B Ω \ ty∈SΩt,x,y

18



Then we have

lim
t→0+

1− Px[Ωt,x,x]
t

= −L(x, x)

lim
t→0+

Px[Ωt,x,y]
t

= L(x, y)

lim
t→0+

Px[Ω̃t,x]
t2

< +∞

Proof
Let (x, y) ∈ S(2) be given, using the martingale problem for the indicator function of y, we get that

lim
t→0+

Px[X(x)(t) = y]
t

= L(x, y)

But for any t ≥ 0, we have

{X(x)(t) = y}4Ωt,x,y ⊂ {Nt ≥ 2}

where 4 is the symmetrical difference between sets. Taking into account the stochastic domination
of (Nt)t≥0 by (N̄t)t≥0, it appears that Px[{X(x)(t) = y}4Ωt,x,y] is at most of order t2 for small
t > 0. The second convergence announced in the lemma follows. The first one is obtained in the
same way, since we also have

lim
t→0+

1− Px[X(x)(t) = x]
t

= −L(x, x)

The last assertion of the lemma is due to the fact that Ω̃t,x is included into {Nt ≥ 2}.
�

For the next result, let ϕ : R+ → R be a locally bounded function vanishing at 1 and whose growth
is at most of polynomial order at +∞. Let also be given a family (a(x, y))(x,y)∈S(2) of elements
from R t {−∞} (in fact only the quantities a(x, y) with L(x, y) > 0 will play a role).

Lemma 18 We have for any initial distribution µ,

lim
t→0+

t−1Eµ

ϕ
exp

 ∑
(x,y)∈S(2)

a(x, y)N (x,y)
t

 =
∑

(x,y)∈S(2)

µ(x)L(x, y)ϕ(exp(a(x, y)))

Proof
We begin by remarking that for any b ≥ 0, we can find a constant c(b) ∈ R+ such that

∀ t ≥ 0, Eµ

exp

b ∑
y∈S\{x}

a+(x, y)N (x,y)
t

 ≤ exp(tc(b))

(where for any r ∈ R t {−∞}, r− B max(r, 0)). Indeed, define the function Hb ∈ F(S) by

∀ x ∈ S, Hb(x) B −
∑

y∈S\{x}

L(x, y)(exp(ba+(x, y))− 1)

then according to Theorem 8, for any t ≥ 0, the functional

exp

 ∑
(x,y)∈S(2)

a+(x, y)N (x,y)
t +

∫ t

0
Hb(X(µ)(s)) ds


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is a density under Pµ, so it is sufficient to take

c(b) B −min
x∈S

Hb(x)

In particular the expectations considered in the lemma are well defined and we can write for any
t > 0 and x′ ∈ S,

Ex′

ϕ
exp

 ∑
(x,y)∈S(2)

a(x, y)N (x,y)
t


= Ex′

1Ωt,x′,x′ϕ

exp

 ∑
(x,y)∈S(2)

a(x, y)N (x,y)
t


+

∑
y′∈S\{x′}

Ex′

1Ωt,x′,y′ϕ

exp

 ∑
(x,y)∈S(2)

a(x, y)N (x,y)
t


+Ex′

1
Ω̃t,x′

ϕ

exp

 ∑
(x,y)∈S(2)

a(x, y)N (x,y)
t


The first term of the r.h.s. is null, since ϕ(1) = 0. The second term is equal to∑

y′∈S\{x′}

ϕ(a(x′, y′))Px′
[
Ωt,x′,y′

]
∼ t

∑
y′∈S\{x′}

ϕ(a(x′, y′))L(x′, y′)

as t goes to 0+. Concerning the third term, we bound it using Hölder inequality with conjugate
exponents 1 < p, q < +∞,

Ex′

1
Ω̃t,x′

ϕ

exp

 ∑
(x,y)∈S(2)

a(x, y)N (x,y)
t


≤

(
Px′ [Ω̃t,x′ ]

) 1
p

Ex′

|ϕ|q
exp

 ∑
(x,y)∈S(2)

a(x, y)N (x,y)
t

 1
q

≤
(
Px′ [Ω̃t,x′ ]

) 1
p

Ex′

Kq exp

qr ∑
(x,y)∈S(2)

a(x, y)N (x,y)
t

 1
q

≤ K
(
Px′ [Ω̃t,x′ ]

) 1
p

Ex′

exp

qr ∑
(x,y)∈S(2)

a+(x, y)N (x,y)
t

 1
q

≤
(
Px′ [Ω̃t,x′ ]

) 1
p
K exp(tc(rq)/q)

where K, r ≥ 0 are such that we have

∀ s ∈ R+, |ϕ(s)| ≤ Ksr

So if we choose p ∈ (1, 2), Lemma 17 shows that

lim
t→0+

t−1Ex′

1
Ω̃t,x′

ϕ

exp

 ∑
(x,y)∈S(2)

a(x, y)N (x,y)
t

 = 0
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and the announced result follows.
�

Now let us assume furthermore that ϕ is convex and differentiable at 1 with ϕ′(1) = 0. Let also be
given h ∈ F(S). Then the addition of the additive functional associated to h in the exponential
does not change the previous result:

Lemma 19 We have for any initial distribution µ,

lim
t→0+

t−1Eµ

ϕ
exp

 ∑
(x,y)∈S(2)

a(x, y)N (x,y)
t +

∫ t

0
h(X(µ)(s)) ds


=

∑
(x,y)∈S(2)

µ(x)L(x, y)ϕ(exp(a(x, y)))

Proof
To simplify the notations, let us write for any t ≥ 0, N (a)

t B
∑

(x,y)∈S(2) a(x, y)N (x,y)
t . In view of

Lemma 18, it is sufficient to prove that

lim
t→0+

t−1

∣∣∣∣Eµ [ϕ(exp
(
N

(a)
t +

∫ t

0
h(X(µ)(s)) ds

))]
− Eµ

[
ϕ
(

exp
(
N

(a)
t

))]∣∣∣∣ = 0 (8)

We denote by ϕ′+ the right derivative of ϕ (recall that it exists since ϕ is convex) and we begin by
assuming furthermore that ϕ′+(0) > −∞. Writing that for any s ∈ R+ we have

ϕ′+(0) ≤ ϕ′+(s) ≤ ϕ(2s)− ϕ(s)
s

≤ ϕ(2s)
s

(ϕ is nonnegative since ϕ′(1) = 0) it appears that ϕ′+ is locally bounded and that its growth is at
most of polynomial order at +∞. Thus it exist K ′, r′ ≥ 0 such that

∀ s ∈ R+,
∣∣ϕ′+(s)

∣∣ ≤ K ′sr
′

This leads to the following bound, with the function ψ : R+ 3 s 7→ sϕ′+(s),∣∣∣∣ϕ(exp
(
N

(a)
t +

∫ t

0
h(X(µ)(s)) ds

))
− ϕ

(
exp

(
N

(a)
t

))∣∣∣∣
=

∣∣∣∣∫ t

0
h(X(µ)(s)) ds

∫ 1

0
ψ

(
exp

(
N

(a)
t + u

∫ t

0
h(X(µ)(s)) ds

))
du

∣∣∣∣
≤ K ′ ‖h‖∞ t exp

(
(r′ + 1)[N (a+)

t + ‖h‖∞ t]
)

We deduce that the l.h.s. of (8) is bounded above by

K ′ ‖h‖∞ exp((1 + r′) ‖h‖∞ t)Eµ
[
exp

(
(r′ + 1)N (a+)

t

)]
According to Lemma 18 applied with a+, the latter expectation is of order t for small t > 0, in
particular the above expression vanishes as t goes to zero, so (8) is proven.
It remains to deal with the case where ϕ′+(0) = −∞. Let η = min(1/2,min(x,y)∈S(2) exp(a(x, y)))
and consider ϕ̃, ϕ̂ : R+ → R+ two convex functions which coincide with ϕ on [η,+∞), which are
affine on [0, η] and which satisfy ϕ̃ ≤ ϕ ≤ ϕ̂ on R+. By the above proof, we have with ψ = ϕ̃ or
ψ = ϕ̂,

lim
t→0+

t−1Eµ
[
ψ

(
exp

(
N

(a)
t +

∫ t

0
h(X(µ)(s)) ds

))]
=

∑
(x,y)∈S(2)

µ(x)L(x, y)ψ(exp(a(x, y)))

=
∑

(x,y)∈S(2)

µ(x)L(x, y)ϕ(exp(a(x, y)))
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The announced result then follows by comparison.
�

We can now come to the

Proof of Proposition 5
So let π be a positive probability measure on S and besides (X(π)(t))t≥0, we are given (Y (π)(t))t≥0

a Markov process on S whose initial distribution is π and whose generator is M .
We first assume that M � L. Then according to Theorem 8, we have for any T ≥ 0,

Entϕ(L(Y (π)([0, T ]))|L(X(π)([0, T ])))

= Eπ

ϕ
exp

 ∑
(x,y)∈S(2)

a(x, y)N (x,y)
T +

∫ T

0
h(X(µ)(s)) ds


with

∀ x ∈ S, h(x) B M(x, x)− L(x, x)

∀ (x, y) ∈ S(2), a(x, y) B ln
(
M(x, y)
L(x, y)

)
∈ R t {−∞}

The convergence announced in Proposition 5 is then an immediate consequence of Lemma 19. If
the property M � L is not satisfied, we have, because π is positive and according to Lemma 7,
that for any T > 0, L(Y (π)([0, T ])) is not absolutely continuous with respect to L(X(π)([0, T ])).
So due to our conventions, the first part of Proposition 5 is also valid.

The proof of the second part is similar to that of Theorem 4, except we cannot give an explicit
formula for the minimizer Lϕ,π.
Again we consider an arbitrary total ordering on S, whose strict inequality is denoted ≺. If π is
reversible for M and M � L, we can write

dϕ(M,L) =
∑
x≺y

π(x)L(x, y)ϕ
(
M(x, y)
L(x, y)

)
+ π(y)L(y, x)ϕ

(
M(y, x)
L(y, x)

)
=

∑
x≺y

Φπ(x)L(x,y),π(y)L(y,x)(π(x)M(x, y))

where Φ is defined by

∀ α, β, β′ ≥ 0, Φβ,β′(α) B βϕ

(
α

β

)
+ β′ϕ

(
α

β′

)
(9)

(the convention that zero multiplied by anything is still zero is always enforced). In the above sum,
if x ≺ y are such that L(x, y) = 0 or L(y, x) = 0, then we must have M(x, y) = 0, since M � L.
So to find a minimizer M ∈ L(π) of dϕ(M,L) is equivalent to find a minimizer M ∈ L(π) with
M � L of the expression ∑

x/y

Φπ(x)L(x,y),π(y)L(y,x)(π(x)M(x, y))

where x / y means that x ≺ y with L(x, y) > 0 and L(y, x) > 0. Since each summand of the
above sum can be minimized separately, we are led to show that for any given (β, β′) ∈ (R∗+)2, the
mapping R+ 3 α 7→ Φβ,β′(α) admits a unique minimizer αβ,β′ ∈ R+ (note that by symmetry we
will have αβ,β′ = αβ′,β). The unique minimizer Lϕ,π of L(π) 3 M 7→ dϕ(M,L) will then be given
by

∀ (x, y) ∈ S(2), L̃ϕ,π(x, y) B
{ 1

π(x)απ(x)L(x,y),π(y)L(y,x) , if x / y or if y / x
0 , otherwise
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So let us come back to the problem of minimizing φ B Φβ,β′ , where (β, β′) ∈ (R∗+)2 are assumed
to be fixed. The function φ is convex and let us denote by φ′+ its right derivative. To see that Φ
admits α∗ as unique minimizer is equivalent to show that

∀ α ∈ R+, φ′+(α)
{
< 0 , if α < α∗
> 0 , if α > α∗

(10)

We compute that

∀ α ∈ R+, φ′+(α) B ϕ′+

(
α

β

)
+ ϕ′+

(
α

β′

)
By the fact that ϕ′(1) = 0 and the strict convexity of ϕ, it appears that for α > 0 sufficiently small
φ′+(α) < 0, that for α > 0 sufficiently large φ′+(α) > 0 and that φ′+ is increasing, thus there exists
a unique α∗ > 0 such that (10) is satisfied.

�

In fact the strict convexity condition of Proposition 5 to get the uniqueness of the minimizer can
be relaxed. To go in this direction, let us introduce

D+ B {t ∈ R+ : λ((ϕ′+)−1({t})) > 0}
D− B {t ∈ R+ : λ((ϕ′+)−1({−t})) > 0}

(where λ denotes the Lebesgue measure), which correspond to the nonnegative slopes of ϕ where
ϕ is locally affine and respectively to the opposites of the nonpositive slopes of ϕ where ϕ is locally
affine. The strict convexity of ϕ is equivalent to the fact that D− ∪ D+ = ∅. The last part of
Proposition 5 can be improved as follows:

Proposition 20 Assume that D− ∩D+ = ∅, then the mapping L(π) 3 M 7→ dϕ(M,L) admits a
unique minimizer Lϕ,π.

Proof

As in the proof of Proposition 5, we consider the mapping φ B Φβ,β′ , where (β, β′) ∈ (R∗+)2 are
fixed and where Φβ,β′ is defined in (9). To get the wanted uniqueness, it is sufficient to check that
(10) is satisfied for some α∗ > 0. Assume that this is not true, then there would exist 0 < α− < α+

such that φ′+ = 0 on (α−, α+), which means that

∀ α ∈ (α−, α+), ϕ′+

(
α

β

)
= −ϕ′+

(
α

β′

)
But the l.h.s. is nondecreasing as a function of α while the r.h.s. is nonincreasing, so we deduce that
both ϕ′+

(
·
β

)
and ϕ′+

(
·
β′

)
should be constant on the interval (α−, α+). Denoting l the absolute

value of these constants (one being the opposite of the other), we would get that l ∈ D− ∩ D+,
which is in contradiction with our assumption.

�

In fact the condition given in the above proposition is optimal:

Remark 21 Assume that the convex function ϕ (still satisfying ϕ(1) = ϕ′(1) = 0) is such that
for any L ∈ L, the mapping L(π) 3 M 7→ dϕ(M,L) admits a unique minimizer, then we have
D− ∩D+ = ∅. Indeed, let l ∈ D− ∩D+, then we can find 0 < β < β′ and 0 < α− < α+ such that

∀ α ∈ (α−, α+), ϕ′+

(
α

β

)
= −ϕ′+

(
α

β′

)
= l

23



It follows that Φβ,β′ admits the whole interval [α−, α+] as minimizers. So according to the proof of
Proposition 5, if L ∈ L is such that for some x 6= y we have π(x)L(x, y) = β and π(y)L(y, x) = β′,
then we can freely choose the value of π(x)M(x, y) = π(y)M(y, x) inside [α−, α+] for a minimizer
M of dϕ(·, L) on L(π).

�

We can now justify the first assertion made after Proposition 5. So let ε ∈ (0, 1/2] be given
and consider the function ϕε, for which D− = {1} and D+ = {1 + ε}. Thus the condition of
Proposition 20 is fulfilled and the mapping L(π) 3 M 7→ dϕε(M,L) admits a unique minimizer
Lϕε,π. Before proving the convergence (3), let us give a more precise version of Proposition 2.
From now on, endow S with an order � such that

∀ x, y ∈ S, x ≺ y ⇒ π(x)L(x, y) ≤ π(y)L(y, x)

Then we have

Proposition 22 A generator M ∈ L(π) is a minimizer of d(·, L) on L(π) if and only if for any
x ≺ y, we have

π(x)M(x, y) = π(y)M(y, x) ∈ [π(x)L(x, y), π(y)L(y, x)]

Proof
Consider the convex function ψ : R+ 3 u 7→ |u− 1|. If we replace the distance d by the discrepancy
dψ, which coincides with d on couples (M ′,M) ∈ L2 with M ′ �M and is equal to +∞ otherwise,
the proof of the second part of Proposition 5 shows that a generator M ∈ L(π) is a minimizer of
dψ(·, L) on L(π) if and only if for any x ≺ y, with L(x, y)L(y, x) > 0, we have that π(x)M(x, y) is
a minimizer of Ψπ(x)L(x,y),π(y)L(y,x), where

∀ α, β, β′ ≥ 0, Φβ,β′(α) B |α− β|+
∣∣α− β′∣∣

This function is easy to minimize and we find the condition

π(x)M(x, y) ∈ [π(x)L(x, y), π(y)L(y, x)]

Looking closely at these arguments, it appears that the situation with d instead of dψ is similar,
except we don’t have to take into account the absolutely continuity constraint and we end up with
the condition given in the proposition.

�

In particular, it appears that if there exists (x, y) ∈ S(2) with L(x, y) = 0 and L(y, x) > 0, then
some of the minimizers M of d(·, L) on L(π) do not satisfy M � L.

We can now come to the

Proof of the convergence (3)
If (x, y) ∈ S(2) is such that L(x, y)L(y, x) = 0, then we have for any ε ∈ (0, 1/2], Lϕε,π(x, y) =
0 = Lπ(x, y) and the convergence (3) is trivial. So consider (x, y) ∈ S(2) with 0 < β < β′ where
β B π(x)L(x, y) and β′ B π(y)L(y, x). For ε ∈ (0, 1/2], let α∗(ε) be defined as in (10) but with ϕ
replaced by ϕε. According to the proofs of Propositions 5 and 22, we have Lϕε,π(x, y) = α∗(ε)/π(x)
and the convergence limε→0+ Lϕε,π(x, y) = Lπ(x, y) is equivalent to the fact that

lim
ε→0+

α∗(ε) = β

But this convergence is a consequence of the observation that

∀ s ∈ [0, (1− ε)β), (φε)′(s) = −2(1 + ε)
∀ s ∈ ((1 + ε)β, (1− ε)β′), (φε)′(s) = ε

24



which implies that α∗(ε) ∈ [(1− ε)β, (1 + ε)β].
�

But the above result should not lead one to think that if (ϕε)ε∈(0,ε0], for some ε0 > 0, is another
family of functions satisfying the assumption of Proposition 20 and converging to ψ : R+ 3 u 7→
|u− 1| for small ε > 0, then (3) is fulfilled. Indeed, consider for ε ∈ (0, 1/2], the convex function
ϕε defined by ϕε(x) = (1 − x)2 for any x ∈ [1 − ε, 1 + ε], ϕ′ε = −1 − ε on [0, 1 − ε) and ϕ′ε = 1 on
(1 + ε,+∞). Then computations similar to the previous ones show that

lim
ε→0+

Lϕε,π = L̂π

with

∀ (x, y) ∈ S(2), L̂π(x, y) B

{
max

{
L(x, y), π(y)

π(x)L(y, x)
}

, if L(x, y)L(y, x) > 0
0 , otherwise

Conversely, one should neither think that all the minimizers M described in Proposition 22
could be approached by minimizers of discrepancies as in Proposition 20. Indeed, this is clear for
minimizers M not satisfying M � L, but even some minimizers satisfying this condition cannot
be approached. Consider for instance the case where there exist (x, y) ∈ S(2) and (x′, y′) ∈ S(2)

with {x, y} 6= {x′, y′} and π(x)L(x, y) = π(x′)L(x′, y′) < π(y)L(y, x) = π(y′)L(y′, x′). Then there
are some minimizers M such that π(x)M(x, y) 6= π(x′)M(x′, y′), while for any convex function ϕ
satisfying the assumption of Proposition 20, we have π(x)Lϕ,π(x, y) = π(x′)Lϕ,π(x′, y′).

Remark 23 The consideration of Proposition 22 can be extended to other discrepancies on L.
For instance for ε > 0, consider the (non symmetrical) discrepancy

∀ M,L ∈ L, dε(M,L) B
∑
x∈S

π(x)
∑

y∈S\{x}

(
∣∣K ′(x, y)−K(x, y)

∣∣+ ε(K ′(x, y)−K(x, y))+

(12)

(where (·)+ stands for the positive part). Then it appears that the mapping L(π) 3M 7→ dε(M,L)
admits the usual Metropolis generator Lπ as unique minimizer (if one replace the positive part by
the negative part in the above discrepancy, one gets the previously defined generator L̂π). But
Lemma 19 is not clear for the corresponding convex function R+ 3 u 7→ |u− 1| + ε(u − 1)+ and
this alternative definition Lπ does not extend either to the diffusion situation.

5 On the compact Riemannian diffusion situation

We now leave the finite state space setting to see how our previous considerations can be extended
to a compact Riemannian diffusion framework. As our main purpose is to illustrate how the
approach of the previous sections can be generalized, we will adopt strong regularity assumptions.
That is also why we have chosen a compact setting, to avoid the investigation of boundedness
conditions.

So let S be a smooth compact manifold of dimension n ∈ N∗. We are interested into Markov
generators L of diffusion type, which can be written in a chart C as

∀ f ∈ C∞, ∀ x ∈ S, L[f ](x) B
1
2

∑
i,j∈J1,nK

ai,j(x)∂i,jf(x) +
∑

i∈J1,nK

bi(x)∂if(x) (13)
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where C∞ is the space of smooth functions on S, where ∂i is the differentiation operator with respect
to the ith coordinate of the underlying chart C, ∂i,j = ∂i∂j and where the diffusive symmetric matrix
field C 3 x 7→ a(x) B (ai,j(x))i,j∈J1,nK and the drift vector field C 3 x 7→ b(x) B (bi(x))i∈J1,nK are
smooth. Furthermore a(x) is assumed to be invertible for all x ∈ C.

If we are given a probability measure µ on S, it is well-known (see for instance the books
of Emery [5] and of Ikeda and Watanabe [11]) that we can associate to µ, seen as the initial
distribution, and to the generator L a Markov process (X(µ)(t))t≥0 with continuous trajectories in
S (a Markov process with continuous trajectories is traditionally called a diffusion). The law Pµ
of (X(µ)(t))t≥0 on the space of continuous mappings from R+ to S is characterized as the unique
solution of the martingale problem associated to µ and L:
• The law of X(µ)(0) is µ.
• For any function f ∈ C∞, the process M(f) defined by

∀ t ∈ R+, M(f)
t B f(X(µ)(t))− f(X(µ)(0))−

∫ t

0
L[f ](X(µ)(s)) ds (14)

is a martingale.
For more informations on martingale problems associated to diffusion operators, we refer to the
books of Stroock and Varadhan [18] and Ethier and Kurtz [6].

The generator L and the Markov process (X(µ)(t))t≥0 should be seen as an a priori given Markov
framework and they will play exactly the same role they had in the previous sections. The other
data will be a probability measure π with a smooth and positive density. But first let us consider
another diffusion generator L̃ (whose diffusion symmetric matrix field and drift vector field will
be denoted (ãi,j(x))i,j∈J1,nK and (̃bi(x))i∈J1,nK for x belonging to a chart C) satisfying the same
conditions as L. A corresponding diffusion process is denoted (X̃(µ)(t))t≥0 (instead of (Y (µ)(t))t≥0

in the previous sections). Here is a preliminary condition for absolute continuity on finite time
horizons:

Proposition 24 Let µ and µ̃ be two initial distributions, if for some T > 0 we have L(X̃(µ̃)([0, T ]))�
L(X(µ)([0, T ])) then on any chart C, we have

∀ x ∈ C, a(x) = ã(x)

Proof
First we assume that µ = µ̃ = δx, the Dirac mass at x ∈ S and we consider C an open chart
containing x. Let us show that in this chart, we have a(x) = ã(x).
For i ∈ J1, nK, we denote by xi the ith coordinate mapping in C centered in x (namely xi(x) = 0
for all i ∈ J1, nK). Let (vi)i∈J1,nK ∈ Rn be a given vector and consider C ′ an open set of S satisfying
x ∈ C ′ and C̄ ′ ⊂ C. It is possible to extend the mapping C ′ 3 x 7→

∑
i∈J1,nK vixi into a function

f ∈ C∞. Since the martingale M(f) associated to f is continuous, the iterated logarithm law (see
for instance the book of Revuz and Yor [16]) shows that a.s.

lim sup
t→0+

M(f)
t√

〈M(f)〉t ln(ln(1/〈M(f)〉t))
= 1

where according to Remark 9, the bracket 〈M(f)〉 of the martingale M(f) is given by

∀ t ≥ 0, 〈M(f)〉t =
∫ t

0
Γ[f ](X(δx)(s)) ds

We compute that on any chart C ′′, the carré du champ Γ[f ] can be written down as

∀ y ∈ C ′′, Γ[f ](y) =
∑

i,j∈J1,nK

ai,j(y)∂if(y)∂jf(y)
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In particular, since a.s. limt→0+ X
(δx)(t) = x, it follows that as t goes to zero,

〈M(f)〉t ∼ t
∑

i,j∈J1,nK

ai,j(x)vivj

= tvta(x)v

and we get that a.s.,

lim sup
t→0+

f(X(δx)(t))√
t ln(ln(1/t))

= lim sup
t→0+

M(f)
t√

t ln(ln(1/t))

=
√
vta(x)v

Similarly we have a.s.

lim sup
t→0+

f(X̃(δx)(t))√
t ln(ln(1/t))

=
√
vtã(x)v

so we deduce that for any vector v ∈ Rn,

vtã(x)v = vta(x)v

Since a(x) and ã(x) are symmetrical, this relation implies that ã(x) = a(x).
More generally, for any initial distributions µ and µ̃, the above arguments show that for any

function f ∈ C∞, we have a.s.,

lim sup
t→0+

f(X(µ)(t))√
t ln(ln(1/t))

=
√

Γ[f ](X(µ)(0))

lim sup
t→0+

f(X̃(µ̃)(t))√
t ln(ln(1/t))

=
√

Γ̃[f ](X(µ̃)(0))

Assume now that the support of µ̃ is the whole state space S and that the conclusion of the above
proposition is not satisfied. Then we can find a chart C, a point x0 ∈ C and a vector v ∈ Rn such
that η = β − β̃ 6= 0, where β B vta(x0)v and β̃ B vtã(x0)v. Let f ∈ C∞ be a function as above
which coincides with x 7→

∑
i∈J1,nK vixi on a neighborhood C ′ ⊂ C of x0. Then we can find another

neighborhood C ′′ ⊂ C ′ such that for any x ∈ C ′′,

|Γ[f ](x)− β| ≤ η/3∣∣∣Γ̃[f ](x)− β̃
∣∣∣ ≤ η/3

Assume for instance that β > β′ and consider in the space of continuous trajectories from [0, T ] to
S the event

E B

{
X(0) ∈ C ′′, lim sup

t→0+

f(X(t))√
t ln(ln(1/t))

≤ β + β′

2

}

where (X(t))t∈[0,T ] is the canonical coordinate process. Then under L(X(µ)([0, T ])), E is negligible
while it has probability µ̃(C ′′) > 0 under L(X̃(µ̃)([0, T ])) and this is contradictory with our absolute
continuity assumption. So the conclusion of the above proposition also holds if the support of µ̃ is
S.

Finally we consider the general case for the initial distributions µ and µ̃. Due to the compactness
of S and our assumption on the diffusive matrix fields, the operator L̃ is uniformly elliptic, so for
T > 0 the law µ̃T/2 of X(µ)

T/2 admits a smooth and positive density and in particular its support
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is S. Thus applying the above arguments to L(X(µ)([T/2, T ])) and L(X̃(µ̃)([T/2, T ])) we get the
announced conclusion, at least if we know that L(X̃(µ̃)([T/2, T ])) � L(X(µ)([T/2, T ])). But this
is an immediate consequence of the assumption L(X̃(µ̃)([0, T ]))� L(X(µ)([0, T ])).

�

Since in the end we will mainly be interested into diffusions (X̃(µ)
t )t≥0 which are absolutely con-

tinuous with respect to (X(µ)
t )t≥0 on finite time horizons, we see that the diffusive matrix field of

L̃ will have to coincide with that of L. This leads us to consider the corresponding Riemannian
structure.

For x ∈ S, we introduce a scalar product 〈·, ·〉(x) on the tangent space TxS of S at x: if
v, w ∈ TxS and if C is a chart with x ∈ C, we define

〈v, w〉(x) B
∑

i,j∈J1,nK

(a−1(x))i,jviwj

where (vi)i∈J1,nK and (wi)i∈J1,nK are the coordinates of v and w in the chart C. It can be checked
that (〈·, ·〉(x))x∈S satisfies the rules of 2-covariant tensor and since it is symmetrical and positive
definite, it gives rise to a Riemannian structure on S, see for instance the book of Ikeda and
Watanabe [11]. From now on, we denote by 〈·, ·〉, |·|, ∇, div, 4 and λ, respectively the scalar
product, the norm, the gradient, the divergence, the Laplacian and the probability associated to
this Riemannian structure. The operator L can then be rewritten under a more intrinsic way:

L· = 4/2 ·+〈b,∇·〉 (15)

where b is a vector field on S (but whose coordinates (bi)i∈J1,nK in a chart don’t necessary coincide
with those given in the formulation (11)). Assuming that ã = a, the other generator L̃ can be
written under the same form, L· = 4/2 ·+〈̃b,∇·〉, with another vector field b̃. The usual Girsanov
formula can now be stated as:

Proposition 25 For any initial distribution µ and any finite time horizon T ≥ 0, the law
L(X̃(µ)([0, T ])) is absolutely continuous with respect to L(X(µ)([0, T ])) and the corresponding Radon-
Nikodym density is equal to

L(X̃(µ)([0, T ]))
L(X(µ)([0, T ]))

= exp
(
M(̃b−b)

T − 1
2

∫ T

0

∣∣∣̃b− b∣∣∣2 (X(µ)(t)) dt
)

where (M(̃b−b)
t )t≥0 is a martingale whose bracket is given by

∀ t ≥ 0, 〈M(̃b−b)〉t =
∫ t

0

∣∣∣̃b− b∣∣∣2 (X(µ)(s)) ds

This result can be proven by an approach formally similar to that of section 2. Indeed, if F is a
smooth function on S2 such that

∀ x ∈ S, ∇yF (x, y)|y=x = b̃(x)− b(x)

then with the notations of section 2, M(̃b−b) corresponds to M(F ) (see also Remark 14). The
definition of the martingales associated to functions of two variables goes through an approximation
procedure, starting with simple functions of the kind F = f ⊗ g, with f, g ∈ C∞, for which we take

∀ t ≥ 0, M(F )
t B

∫ t

0
f(X(µ)(s−)) dM(g)

s (16)
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The completion of the vector space generated by functions of the form F = f ⊗ g, with f, g ∈ C∞,
is done with respect to the semi-norm ||| · ||| on C∞(S2) defined by

∀ F ∈ C∞(S2), |||F ||| B sup
x∈S

Γ[F (x, ·)](x) (17)

where Γ is the carré du champ associated to L (acting on the second variable in the above formula).
In the diffusion framework the computation of the Radon-Nikodym densities are even easier, for
instance the martingale

(Et [̃b− b])t≥0 B

(
exp

(
M(̃b−b)

t − 1
2

∫ t

0

∣∣∣̃b− b∣∣∣2 (X(µ)(s) ds
))

t≥0

(18)

is the Doléans-Dade exponential of the martingale M(̃b−b), namely the solution of the s.d.e.

E0 [̃b− b] = 1

∀ s ≥ 0, dEs [̃b− b] = Es− [̃b− b] dM(̃b−b)
s

(in the diffusion setting, the s− (indicating left limit) in the above formula and in (14) can be
replaced by s).
But for our restricted purposes here, it is not necessary to developp this approach (this is done in
a general setting in [15]) and we resort to a more traditional point of view:

Proof of Proposition 24

To construct directly the martingale M(̃b−b), we imbed S isometrically into RN via the Nash’s
theorem (see for instance the book of Han and Hong [10]). Let (ei)i∈J1,NK be the canonical basis
of RN . For each i ∈ J1, NK and x ∈ S, we denote vi(x) ∈ TxS the orthogonal projection of ei on
the vector space TxS (seen as a vector subspace of the Euclidean space RN ). If X(µ)(0) is given
and distributed according to µ on S and if ((Wi(t))t≥0)i∈J1,NK is a family of independent standard
one-dimensional Brownian motions (furthermore independent from X(µ)(0)), it is well-known that
the solution (X(µ)(t))t≥0 of s.d.e.

∀ t ≥ 0, dX(µ)(t) =
∑

i∈J1,NK

vi(X(µ)(t)) dWi(t) + b(X(µ)(t)) dt

stays in S and that its law is solution to the martingale problem associated to µ and L. Indeed,
using Itô’s formula we get that for any f ∈ C∞,

f(X(µ)(t)) = f(X(µ)(0)) +
∫ t

0
L[f ](X(µ)(s)) ds+M(f)

t

where M(f) is the martingale defined by

∀ t ≥ 0, M(f)
t B

∑
i∈J1,NK

∫ t

0
vi(X(µ)(s)) dWi(s)

Now we define the martingale M(̃b−b) by

∀ t ≥ 0, M(̃b−b)
t B

∑
i∈J1,NK

∫ t

0
〈̃b− b, vi〉(X(µ)(s)) ds
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and we compute that its bracket is given by

∀ t ≥ 0, 〈M(̃b−b)〉t B
∑

i∈J1,NK

∫ t

0
〈̃b− b, vi〉2(X(µ)(s)) ds

=
∑

i∈J1,NK

∫ t

0
〈(̃b− b)(X(µ)(s)), ei〉2 ds

=
∫ t

0

∣∣∣̃b− b∣∣∣2 (X(µ)(s)) ds

Since the martingale M(̃b−b) is continuous, we deduce that the process E [̃b − b] defined in (16) is
a positive martingale starting from 1. Thus via Kolmogorov’s theorem, we can use it to construct
a probability measure P̃µ on the σ-algebra generated by X(µ) by imposing that on σ(X(µ)

t : t ∈
[0, T ]), dP̃µ/dPµ = ET [̃b− b], for any T ≥ 0.

Next for any function f ∈ C∞, we get the co-bracket of M(̃b−b) and M(f) by a similar compu-
tation:

∀ t ≥ 0, 〈M(̃b−b),M(f)〉t B
∑

i∈J1,NK

∫ t

0
〈̃b− b, vi〉(X(µ)(s))〈∇f, vi〉(X(µ)(s)) ds

=
∫ t

0
〈̃b− b,∇f〉(X(µ)(s)) ds

It follows that the process((
M(f)

t −
∫ t

0
〈̃b− b,∇f〉(X(µ)(s)) ds

)
Et [̃b− b]

)
t≥0

is a martingale under Pµ, fact which is immediately translated into the assertion that the process
M̃(f) defined by

∀ t ∈ R+, M̃(f)
t B M(f)

t −
∫ t

0
〈̃b− b,∇f〉(X(µ)(s)) ds

= f(X(µ)(t))− f(X(µ)(0))−
∫ t

0
L̃[f ](X(µ)(s)) ds

is a martingale under P̃µ. Thus the image of P̃µ under the process X(µ) is the solution to the
martingale problem associated to µ and L̃ and the validity of the above proposition follows.

�

This absolute continuity property enables to obtain a converse result to Proposition 23:

Remark 26 By conditioning with respect to X(µ)(0) and applying Proposition 24 with µ a Dirac
mass, we get the equivalence between the following asertions:
• We have µ̃� µ and ã = a.
• There exists T > 0 such that L(X̃(µ̃)([0, T ]))� L(X(µ)([0, T ])).
• For any T ≥ 0, we have L(X̃(µ̃)([0, T ]))� L(X(µ)([0, T ])).
Furthermore in this situation, the Radon-Nikodym density is given, for any T ≥ 0, by

L(X̃(µ̃)([0, T ]))
L(X(µ)([0, T ]))

=
dµ̃

dµ
(X(µ)(0)) exp

(
M(̃b−b)

T − 1
2

∫ T

0

∣∣∣̃b− b∣∣∣2 (X(µ)(t)) dt
)

�
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These results lead us to introduce the notation L̃ ∼ L, where L and L̃ are two generators as in
the beginning of this section, if ã = a (by analogy with the previous section, we could also have
adopted the notation L̃ � L, but we prefered to write L̃ ∼ L to indicate that in the present
continuous framework, this is an equivalence relation). Let π be a probability measure on S. We
define an associated discrepancy d on the set L of generators as above by

∀ L, L̃ ∈ L, d(L̃, L) B

{ ∫ ∣∣∣̃b− b∣∣∣2 (x)π(dx) , if L̃ ∼ L
+∞ , otherwise

Note that the discrepancy d is symmetrical: for any L, L̃ ∈ L, d(L̃, L) = d(L, L̃).
To justify the introduction of d (and to try to smooth the abuse of notation consisting in

denoting it in the same way as the distance of Billera and Diaconis [2] in the discrete time and
space setting), let us consider ϕ : R+ → R a convex function differentiable in a neighborhood of
1, admitting a second derivative ϕ′′(1) > 0, satisfying ϕ(1) = ϕ′(1) = 0 and whose growth is at
most of polynomial order. Then we have a result analogous to Proposition 5:

Proposition 27 For any L̃, L ∈ L, we have

lim
T→0+

Entϕ(L(X̃(π)([0, T ]))|L(X(π)([0, T ])))/T =
ϕ′′(1)

2
d(L̃, L)

As it will appear in the following proof, this convergence is also true if ϕ′′(1) = 0, but we have to
replace ϕ′′(1)d(L̃, L) by 0 if L̃ ∼ L and +∞ otherwise.

Proof
If the condition L̃� L is not satisfied, then according to Remark 25 we have

∀ T > 0, Entϕ(L(X̃(π)([0, T ]))|L(X(π)([0, T ]))) = +∞

Thus it is sufficient to treat the situation where L̃ ∼ L. According to Proposition 24, we have for
any T ≥ 0,

Entϕ(L(X̃(π)([0, T ]))|L(X(π)([0, T ]))) = E
[
ϕ(ET [̃b− b])

]
As in the finite state space, this expectation is finite because for any T ≥ 0 and p ≥ 1, we have

E
[
EpT [̃b− b]

]
= E

[
exp

(
pM(̃b−b)

T − p

2

∫ T

0

∣∣∣̃b− b∣∣∣2 (X(µ)(t)) dt
)]

(19)

= E
[
ET [p(̃b− b)] exp

(
p2 − p

2

∫ T

0

∣∣∣̃b− b∣∣∣2 (X(µ)(t)) dt
)]

≤ exp
(
p2 − p

2
T
∥∥∥b̃− b∥∥∥2

∞

)
E
[
ET [p(̃b− b)]

]
= exp

(
p2 − p

2
T
∥∥∥b̃− b∥∥∥2

∞

)
We begin by assuming furthermore that ϕ is smooth on R+ and that the growth of ϕ′′ is at most
of polynomial order. In this case we can use directly Itô’s formula to get that for any T ≥ 0,

E
[
ϕ(ET [̃b− b])

]
= E

[∫ T

0
ϕ′(Et [̃b− b])Et [̃b− b] dM(̃b−b)

t +
1
2

∫ T

0
ϕ′′(Et [̃b− b])E2

t [̃b− b] d〈M(̃b−b)〉t
]

=
1
2

E
[∫ T

0
ϕ′′(Et [̃b− b])E2

t [̃b− b]
∣∣∣̃b− b∣∣∣2 (X(π)(t)) dt

]
=

1
2

∫ T

0
E
[
ϕ′′(Et [̃b− b])E2

t [̃b− b]
∣∣∣̃b− b∣∣∣2 (X(π)(t))

]
dt
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So if we divide by T and let T go to zero, we get in the limit

1
2

E
[
ϕ′′(E0 [̃b− b])E2

0 [̃b− b]
∣∣∣̃b− b∣∣∣ (X(π)(0))

]
=

ϕ′′(1)
2

d(L̃, L)

where to justify the convergence, we have taken into account the fact that the growth of ϕ′′ is at
most of polynomial order and the bound (17). Note that the convexity of ϕ was not necessery to
deduce this convergence.

We now come to the general case. By our assumptions on ϕ, for any ε > 0, we can find two
smooth functions ϕε,− and ϕε,+ on R+ satisfying the following conditions:

ϕε,−(0) = ϕ′ε,−(0) = 0 = ϕε,+(0) = ϕ′ε,+(0)

ϕ′′ε,−(0) = ϕ′′(0)− ε and ϕ′′ε,+(0) = ϕ′′(0) + ε

∀ s ∈ R+, ϕ−,ε(s) ≤ ϕ(s) ≤ ϕ+,ε(s)

ϕ′′−,ε and ϕ′′+,ε grow at most polynomially

Then using the previous convergence with the functions ϕε,− and ϕε,+ and the following bound
valid for any T ≥ 0,

E
[
ϕ−,ε(ET [̃b− b])

]
≤ Entϕ(L(X̃(π)([0, T ]))|L(X(π)([0, T ]))) ≤ E

[
ϕ+,ε(ET [̃b− b])

]
it appears that

lim sup
T→0+

Entϕ(L(X̃(π)([0, T ]))|L(X(π)([0, T ])))
T

≤ ϕ′′(0) + ε

lim inf
T→0+

Entϕ(L(X̃(π)([0, T ]))|L(X(π)([0, T ])))
T

≥ ϕ′′(0)− ε

It remains to let ε go to zero to be convinced of the announced convergence.
�

In the case of the usual entropy, corresponding to the function R+ 3 s 7→ u ln(u)−u+1, we recover
the analogous result to Proposition 3: if π is invariant for L̃, then for any T ≥ 0, we have

Ent(L(X̃(π)([0, T ]))|L(X(π)([0, T ]))) =
T

2
d(L̃, L) ≤ +∞

Indeed, the only nontrivial case corresponds to T > 0 and L̃� L, for which we compute that

∀ T > 0, Ent(L(X̃(π)([0, T ]))|L(X(π)([0, T ]))) = Ẽπ
[
ln
(
ET [̃b− b]

)]
= Ẽπ

[
M(̃b−b)

T − 1
2

∫ T

0

∣∣∣̃b− b∣∣∣2 (X̃(π)(t)) dt
]

where Ẽπ[·] stands for the expectation with respect to X̃(π). To go further, note that M(̃b−b) is
no longer a martingale under this law and to transform it into a martingale we have to substract
the process 〈M(̃b−b),M(̃b−b)〉 (this comes from arguments similar to those used in the proof of
Proposition 24, see also the book [16] of Revuz and Yor). Thus it follows that

Ent(L(X̃(π)([0, T ]))|L(X(π)([0, T ]))) = Ẽπ
[

1
2

∫ T

0

∣∣∣̃b− b∣∣∣2 (X̃(π)(t)) dt
]

=
1
2

∫ T

0
Ẽπ
[∣∣∣̃b− b∣∣∣2 (X̃(π)(t))

]
dt

=
T

2
Ẽπ
[∣∣∣̃b− b∣∣∣2 (X̃(π)(0))

]
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because π is invariant for L̃ and we recognize the last term as Td(L̃, L)/2.

Thus as it was announced, the discrepancies 2d̃ and dϕε for ε ∈ (0, 1/2] all coincides with d in
our diffusion framework. It is then quite natural to propose as the Metropolis generator associated
to π and L, the minimizer Ld of the mapping L(π) 3 L̃ 7→ d(L̃, L), at least if it exists. Here L(π)
also stands for the set of generators from L̃ ∈ L for which π is reversible. This means that

∀ f, g ∈ C∞, π[fL̃[g]] = π[gL̃[f ]]

Under our smoothness assumptions, for a given L̃ ∈ L, if such a reversible probability measure π
exists, it admits a positive and smooth density with respect to λ, because π must also be invariant
for L̃ and so it is a weak solution to the elliptic equation L̃∗[π] = 0, where L̃∗ is dual operator of L̃
in L2(λ). Conversely, if π is a probability measure admitting a positive and smooth density with
respect to λ, then L(π) is not empty, since it contains at least the operator (4·+〈∇ ln(π),∇·〉)/2.
In fact let us check that this is the only element L̃ of L(π) satisfying L̃ ∼ L, where L is given
in (13). The condition L̃ ∼ L implies that there exists a vector field b̃ such that we can write
L̃· = 1

24·+
〈
b̃,∇·

〉
. The dual operator L̃∗ of L̃ in L2(λ) is then given by L̃∗· = 1

24·−div(·̃b). The

reversibility of π with respect to L̃ is equivalent to the fact that L̃ is equal to its dual operator in
L2(π), condition which can be written

L̃· =
1
π
L̃∗[π·] (20)

(where we denote in the same way the probability measure π and its density with respect to λ).
By expanding this relation and by taking into account the equation L̃∗[π] = 0, we get that the
vector field ∇ππ − 2b̃ must vanish everywhere, which amounts to the above assertion.

So the minimization of L(π) 3 L̃ 7→ d(L̃, L) is very simple, since Ld B (4·+〈∇ ln(π),∇·〉)/2 is
the unique element of L(π) with d(Ld, L) < +∞.

The above approach can be extended to the situation where we add jumps to the above diffusion
generators. But as already mentioned in the discussion after Proposition 24, we don’t want to
developp here the underlying theory of martingales associated to functions of two variables. So let
us close this paper by sketching the line of reasoning, which is a mix of the arguments given in the
finite and diffusion case, without entering into the details of the corresponding computations:

Remark 28 Consider generators of the type H = L + Q, where the diffusion part L is given as
in (11), with the same assumptions on the coefficients a and b, and where the jump part can be
written as

∀ f ∈ C∞, ∀ x ∈ S, Q[f ](x) B
∫

(f(y)− f(x)) q(x, y)λ(dy)

where the intensity of jumps q is a positive and smooth function on S2. It is easy to see that the
decomposition of H under the form L+Q is unique and more precisely that the action of H on C∞
determine the coefficients a, b (in any chart) and q. The set of such generators H will be denoted
H.
If µ is a probability measure on S, we denote (X(µ))t≥0 any càdlàg Markov process admitting µ
as initial distribution and H as generator. Its law on the set of càdlàg trajectories is the unique
solution of the martingale problem associated to µ and H.
Let H̃ ∈ H be another generator of the same kind, all notions relative to H̃ will receive a tilde
at their top. As in the beginning of this section, for any T > 0, we have L(X̃(µ)([0, T ]) �
L(X(µ)([0, T ]) if and only if ã = a, property which is still denoted by H̃ ∼ H. Again we endow
S with the Riemannian structure induced by a−1, in order to adopt intrinsic notations: H =
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4/2 ·+〈b,∇·〉+Q[·], where b is a vector field on S (and idem for H̃ if H̃ ∼ H). Let us introduce
the functions V and v defined by

∀ (x, y) ∈ S2, V (x, y) B

{
ln
(
q̃(x,y)
q(x,y)

)
, if x 6= y

0 , if x = y

∀ x ∈ S, v(x) B
∫

(V (x, y)− exp(V (x, y)) + 1)q(x, y)λ(dy)

Then it is possible to associate naturally to V a martingale M(V ), such that if H̃ ∼ H, we have
for any T ≥ 0,

L(X̃(µ)([0, T ]))
L(X(µ)([0, T ]))

= ET [̃b− b]ET [V ]

where the first factor was defined in (16) and the second factor is given by

ET [V ] B exp
(
M(V )

T +
∫ T

0
v(X(µ)(t)) dt

)
The fact that these densities so neatly decompose into a diffusion factor and a jump factor is
related to the fact that the martingale M(V ) is totally discontinuous (namely its co-bracket with
any continuous martingale is null, see for instance the book of Dellacherie and Meyer [3]). So
in this situation, we see that in the completion of the space of simple functions of two variables
with respect to the norm (15), two kinds of orthogonal objects appear: germs of functions on
the diagonal (corresponding to vector fields) and functions of two variables which vanish on the
diagonal (corresponding to jump rate densities). The parametrization of Girsanov transformations
by these objects (the couple (̃b − b, V ) in the above example) is in fact very general, as it was
alluded to in Remark 14. These formulas enable to handle ϕ-entropies of trajectorial laws and to
define corresponding discrepancies. Indeed, under the assumptions on ϕ preceding Proposition 26,
we get for any probability measure π on S,

lim
T→0+

Entϕ(L(X̃(π)([0, T ]))|L(X(π)([0, T ])))/T = dϕ(L̃, L)

where the discrepancy in the r.h.s. is given by

dϕ(L̃, L) B

{
ϕ′′(1)

2

∫ ∣∣∣̃b− b∣∣∣2 (x)π(dx) +
∫
ϕ
(
q̃(x,y)
q(x,y)

)
π(dx)q(x, y)λ(dy) , if H̃ ∼ H

+∞ , otherwise

Assume now that π has a smooth and positive density with respect to λ (which will still be
denoted π) and consider H(π) the subset of H consisting of generators from H admitting π as a
reversible measure. As it can be guessed, our purpose is to find the minimizer Hϕ of the mapping
H(π) 3 H̃ 7→ dϕ(H̃,H), under the additional condition on ϕ given in Proposition 20. In order to
go in this direction the following result is important.

Proposition 29 The generator H̃ is reversible with respect to π if and only if its diffusion part L̃
and its jump part Q̃ are both reversible with respect to π.

Proof
As in the case (18) of the diffusion generators, the reversibility of π is equivalent to the equation
H̃· = 1

π H̃
∗[π·], where H̃∗ is the dual operator of H̃ in L2(λ). Expanding the r.h.s. we get that for

any f ∈ C∞ and x ∈ S,

1
π(x)

H̃∗[πf ](x) =
1
2
4f(x) +

〈
∇ ln(π)− b̃,∇f

〉
(x) +

∫
(f(y)− f(x))

π(y)
π(x)

q̃(y, x)λ(dy)

+
H̃∗[π]
π(x)

f(x)
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So the previous equality is equivalent to the fact that

H̃∗[π] = 0
∇ ln(π)− b̃ = b̃

∀ x 6= y ∈ S, π(y)
π(x)

q̃(y, x) = q(x, y)

The second equation is equivalent to the reversibility of π with respect to the diffusion part L̃ and
the third equation is equivalent to the reversibility of π with respect to the jump part Q̃. The
first equation, which is the formulation of the stationarity of π, is in fact implied by the two other
equations.

�

Indeed, the last proposition is also true without assumpion of regularity on the probability measure
π, but it appears a posteriori that π has to admit a smooth and positive density with respect to
λ, since it must also be reversible for the elliptic operator L̃.
Thus Hϕ is a minimizer of the mapping H(π) 3 H̃ 7→ dϕ(H̃,H) if and only if its diffusion part
Lϕ is a minimizer of the mapping L(π) 3 L̃ 7→ ϕ′′(1)

2 d(L̃, L) and its jump part Qϕ is a minimizer

of the mapping q̃ 7→
∫
ϕ
(
q̃(x,y)
q(x,y)

)
π(dx)q(x, y)λ(dy). For the diffusion part, this leads to Lϕ =

(4 ·+〈∇ ln(π),∇·〉)/2. For the jump part, the computations of the proof of Proposition 5 (taking
into account Proposition 20) lead to

∀ x 6= y, qϕ(x, y) =
1

π(x)
απ(x)q(x,y),π(y)q(y,x)

where the function (R∗+)2 3 (β, β′) 7→ αβ,β′ was defined in term of ϕ in the proof of Proposition 5.
In particular in the case of the classical entropy, we find the rate density q̃ given by

∀ x 6= y, q̃(x, y) =

√
π(y)
π(x)

√
q(x, y)q(y, x)

�
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